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A B S T R A C T

Encouraging rehabilitation by the use of technology in the home can be a cost-effective strategy, particularly if
consumer-level equipment can be used. We present a clinical qualitative and quantitative analysis of the pose
estimation algorithms of a typical consumer unit (Xbox One Kinect), to assess its suitability for technology
supervised rehabilitation and guide development of future pose estimation algorithms for rehabilitation appli-
cations. We focused the analysis on upper-body stroke rehabilitation as a challenging use case. We found that the
algorithms require improved joint tracking, especially for the shoulder, elbow and wrist joints, and exploiting
temporal information for tracking when there is full or partial occlusion in the depth data.

1. Introduction

Stroke was the third most common cause of disability worldwide in
2010 [1], ranked by Disability-Adjusted Life Year (DALY). Even though
motor control can be significantly improved by post-discharge exercises
(Selzer, Michael, unfortunately only 31% of patients adhere to their
home exercise regime [2]. Game-based rehabilitation systems can mi-
tigate this [3–5], but they need to provide real-time feedback that re-
duces compensatory movements to enable true motor recovery.

In order to assess whether consumer-level equipment can provide
this necessary quality of feedback, this paper presents a clinical analysis
of a pose estimation algorithm running on a consumer depth sensor
(Xbox One Kinect), in the context of stroke rehabilitation, using ex-
ercises taken from the Graded Repetitive Arm Supplementary Program
(GRASP) manual (Harris J. E., 2009). A quantitative analysis of the
joint position accuracy was also performed to support the clinical
analysis. Section 2 indicates previous work in evaluating pose estima-
tion algorithms in other contexts. Section 3 explains the methodology of
both the clinical analysis and the quantitative analysis as applied to the
stroke rehabilitation exercises. Section 4 examines the results and dis-
cusses the limitations associated with the pose estimations (both

clinically and quantitatively). Section 5 draws conclusions and posits
future work to be undertaken to improve the outcomes.

2. Related work

A number of studies have been undertaken on Kinect 1 and Kinect 2,
though within different scenarios. Generally, these studies used marker
based motion capture systems to establish ground truth. Fernández-
Baena et al. [6] examined Primesense’s NITE pose estimation algorithm
using depth data from Kinect 1. They claimed that joint accuracy could
be improved by imposing a fixed length on the bones, and indicated
that “Kinect can be a very useful technology in present rehabilitation
treatments”, though they performed no clinical analysis. Obdrzalek
et al. [7] examined Kinect 1 for elderly coaching exercises and con-
cluded that measurements “could be used to assess general trends in the
movement”, though they made no clinical claims. Kurillo et al. [8]
found that Kinect 1’s pose estimations were sufficiently accurate for
reachable workspace analysis. Xu & McGorry [9] compared the quality
of Kinect 1 and 2 for poses within activities of daily living, and inter-
estingly found that Kinect 1 produces lower errors. In contrast, Wang
et al. [10] considered that Kinect 2 was superior over a range of 12
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exercises particularly when occlusion and body rotation occurred. In
terms of clinical assessment, Yeung et al. [11] found that Kinect 1 could
achieve acceptable accuracy for total body centre of mass movements,
but performed better for medial and lateral movements than anterior
and posterior movements.

In terms of stroke rehabilitation, Webster and Celik [12] evaluated
the joint accuracy of Kinect 1 on 13 gross movements. They found that
Kinect 1 accuracy is sufficient for gross movement-based rehabilitation
systems for clinical and in-home use. However, there was no assessment
within standard rehabilitation exercises or clinical evaluation for the
possibility of detecting compensatory movement. Mobini et al. [13]
evaluated the accuracy of the flexible action and articulated skeleton
toolkit [20] using Kinect 1 for upper body stroke rehabilitation appli-
cations. They found that lateral variations in position did not sig-
nificantly impact joint accuracy, though horizontal distance had some
effect. We note that these may be relevant issues when the stroke sur-
vivors are setting up their equipment without assistance.

These previous studies concentrated on absolute joint accuracy as
compared with a ground truth provided by motion capture systems. The
comparison with a clinical study, where expert clinicians provide
analysis on significant aspects of the poses calculated by the equipment,
was not performed. During rehabilitation, clinicians stress the im-
portance of ensuring that the patients avoid compensatory movements,
and so the evaluation and assessment of the pose algorithms needs to
emphasise this aspect.

3. Experimental methodology

This section will describe the methods employed for capturing,
processing and analysing the data used in the clinical and quantitative
studies.

3.1. Experimental setup

Our evaluation is based upon version 2.0.1410.19000 of the pose
estimation algorithm of the Kinect for Windows SDK for the Xbox One
Kinect. This provides pose estimations for 25 joints at 30 Hz and allows
a user’s skeleton to be tracked on a subset of joints. Joint locations were
recorded while seated, with default tracking mode in order to capture
spine joints also.

Kinect produces a depth image with a resolution of 512*424 pixels
[19], as shown in Fig. 1. This depth image is then used as input to the
Kinect Software Development Kit’s (SDK) pose estimation algorithm,
which is based on the approach presented by Shotton et al. [14] to infer
the joint positions. This reduces the original feature space of the depth
image (217088 values) to a much more tractable 75 values per frame.
Given that Kinect’s pose estimation algorithm [14] runs in under 5ms
on an Xbox 360 graphical processing unit (GPU), further in-depth
analysis of human motion can more efficiently take place on this re-
duced feature space.

It should be noted that when Kinect is tracking a body, joints are
classified as either tracked or inferred. A joint is classed as tracked
when confidence in the data is high i.e. there is little or no occlusion of
the point cloud data surrounding the joint. If there is full or significant
occlusion of the point cloud data surrounding the joint, its coordinates
are classed as inferred.

3.2. Clinical/qualitative analysis methodology

The gross upper-body exercises selected for analysis from the
GRASP manual were, as labelled in the manual: Arm to Side, Arm to
Front, Shoulder Shrug, Twist and Drying Off (Fig. 2). They range from
relatively simple exercises, e.g. arm to side, to more difficult exercises,
e.g. drying off, which requires multiple limbs and a towel to be used. All
exercises were recorded from a frontal view as this is the expected view
for observing patients. As we are investigating the pose estimation ac-
curacy in the context of upper-body stroke rehabilitation applications,
pose positions below the hips and on the hands were not considered.

To perform a clinical analysis of the pose estimations, recordings of
a user performing the GRASP exercises were captured in Kinect Studio.
The physiotherapists watched a recording of each exercise with the
joint skeletal data overlaid. The exercise was first performed correctly,
and then repeated with each of the common compensatory movements
(as listed in Table 1) deliberately included. So, for example, the ‘Drying
Off’ exercise was performed 5 times; correctly and then 4 separate
faulty versions. The physiotherapists made observations on the accu-
racy of the pose estimations using the key in Table 2, noting accuracy of
the joint positions relevant to assessing performance of a stroke patient.

3.3. Quantitative analysis methodology

For the quantitative assessment, the ground truth (GT) was provided
by a passive retro-reflective marker based motion capture system [15].
This system captured the exercises at 240 Hz simultaneously with Ki-
nect. The participants sat in an armless chair ∼2m from the Kinect.
Previous work has indicated that at this distance, Kinect has an average
depth accuracy error of less than 2mm [16]. 14mm passive reflective
markers were placed on the centre of the anatomical joints to be
tracked. Where Kinect’s counterpart anatomical joint is unclear, e.g.
SpineMid, the markers were placed over the top of the Kinect joint
while the user was in a seated t-pose posture, as shown in Fig. 3.
Multiple markers were used on certain joints to determine the location
of the centre of the joint. For example, two markers were placed on the
front and back of each shoulder and the position between the two
markers were calculated to get the joint centre.

The Kabsch algorithm [17] was used for rotational alignment of the
datasets in the X and Y coordinates. It minimises the RMS deviation
between the HipLeft, HipRight and SpineShoulder joints for both da-
tasets at the t-pose posture frames. As the markers are visually placed
on top or near their counterpart Kinect joints, rotational alignment is

Fig. 1. A 3D representation of the depth data (Left). A 2D greyscale representation of the depth data (Centre). The RGB colour image (Right). These images are all
captured from a single time step from the Xbox One Kinect.
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accurate for the X and Y positions. To find a good rotational alignment
for the datasets in the Z position, a reference frame was defined when
the user’s arms were by their side, and the Qualisys dataset rotated
around the X axis by 0.5 ° to find the minimum difference in WristLeft Z
position between the Kinect dataset and Qualisys dataset on the re-
ference frame and t-pose frame.

After the alignment of the two datasets to accurately calculate the
standard deviation (SD) and mean error of Kinect’s joint positions, a
seated t-pose posture was selected as the GT frame of Kinect’s joints (see
Fig. 3). This posture presents Kinect’s pose estimation with little diffi-
culty. The joint SDs were modelled as ellipsoids to enable visualisation
of the variance/jitter of each joint in all axes [10]. The exercises were
performed by 5 volunteers, and the calculated results averaged.

4. Results and discussion

4.1. Qualitative analysis results

Four practising physiotherapists analysed the accuracy of the joint
position estimations for each GRASP exercise. Their assessments are
presented in Table 3. For samples from the clinical evaluation sessions
see [18]. Physiotherapists were free to comment on any joint, using
their clinical judgement to decide what was worthy of comment. Be-
cause of time constraints, only P1 watched all of the exercises (5 correct
and a total of 16 with compensatory movement). Where P1 made no
comment on an exercise, they confirmed that it was because they
considered the pose tracking to be acceptable for assessing the exercise
with regards to the compensatory movements. However they did ex-
plicitly comment on some of the exercises that were wholly acceptably
tracked, and these are shown in the table. The exercises where P1 had
made some comment about the tracking quality were presented

Fig. 2. The five exercises selected from the GRASP manual
for evaluation. Arm to Side (Top Left): Shoulder joint is
abducted to 90 ° and then adducted back to 0 °. Arm to
Front (Top Middle): Shoulder joint is flexed to 90 ° and
then extended back to 0 °. Shoulder Shrug (Top Right):
Shoulder joints are elevated and then depressed. Twist
(Bottom Left): Shoulders are flexed to 90 ° and hands are
clasped, thorax is rotated towards 90 ° in one direction
then returned to starting position and rotated towards 90 °
in the opposite direction. Drying off (Bottom Right): Towel
is grasped and placed behind the neck, arm extension and
flexion is performed along the frontal plane.

Table 1
List of exercises the physiotherapists observed including the associated common compensatory movements.

Exercise Associated Common Compensatory Movements

Arm to side Trunk lateral flexion, Shoulder elevation, Thorax rotation, Arm flexion
Arm to front Trunk backward flexion, Shoulder elevation, Thorax rotation, Arm flexion
Shoulder shrug Head side flexion, Shoulder abduction
Twist Trunk lateral flexion, Arm flexion
Drying off Trunk lateral flexion, Shoulder elevation, Dipped arm, Head side flexion
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individually to the other physiotherapists (without any indication of
each other’s views) to determine whether they also considered the
tracking to have some problems. To calculate the mean (M) and stan-
dard deviation (SD), the categories AT, MT and UT from Table 2 were
given a value of 1, 2 and 3 respectively.

As can be seen from Table 3, each of the exercises resulted in some
undesirable aspects in the tracking. Even the more straightforward
exercises such as ‘Arm to Side’, which would have little or no occlusion,
caused some issues. Problems occurred with jitter at the elbow and
wrist joints, which could give rise to variable bone lengths. Fernández-
Baena et al. [6] commented that fixed bone lengths might improve the
joint accuracy. Trunk flexion caused problems throughout, partly due to
occlusion. It was noted by several physiotherapists that to perform a
correct analysis of the exercise, joint rotational information is required.
This was noted when assessing trunk flexion during the twist exercise.

Of more clinical interest is the variation between the opinions of the
physiotherapists. This may partly be due to familiarity, as P1 spent
much longer analysing the results. The highest variation came from the
SpineMid joint for the twist exercise while trunk lateral flexion oc-
curred, where P2 rated the joint unacceptable, noting that the spine was
not showing flexion, while the others rated it acceptable. The mean
categorisation shows that exercises with objects or substantial occlusion
leads to unacceptable or moderately acceptable tracking and therefore
can be difficult to correctly assess. On occasions joint position estima-
tions would result in an anatomically impossible pose, for example
shoulder joints tracking inwards towards the spine as trunk backwards
flexion occurs.

4.2. Quantitative analysis results

The joint names described in this section are taken from Kinect SDK.
The “Twist” exercise had a relatively high SD, as shown in Table 4 and
Fig. 4, and shows how the pose estimation algorithm struggles with
poses with limited depth data of the joint and surrounding areas, such
as when the arms were extended towards the depth sensor. When
comparing the exercises “Arm to Side” and “Shoulder Shrug” against
the exercises “Arm to Front” and “Twist”, limb joint positions, for ex-
ercises performed along the Y and Z axes, are more inaccurate than
along the X and Y axes. This appears to be due to the unavoidable oc-
clusion.

In Fig. 5, the error of the joint positions are larger for the arm to
front exercise than the arm to side, this is understandable, as there
would be limited depth data for the arm as it is raised to 90 °.

Fig. 6 shows the algorithm struggling to track the true movement of
the shoulder joint even though there is no occlusion in the depth data
around the shoulder joint. This could be due to the pose estimation
algorithm being trained on a dataset containing no or limited data of
correctly labelled elevated shoulder joints.

Figs. 7, 8 and 9 show the errors for each exercise repetition for the
shoulder, elbow and wrist joints - these are the main important joints
for assessing the exercises. Fig. 7 shows the shoulder joint has a rela-
tively large error when being tracked during the twist exercise. Fig. 8
shows the elbow joint with relatively large error on the arm to front and
twist exercise. Fig. 9 shows the wrist joint has the largest mean error
when compared to the elbow and shoulder joint. It also has a relatively
large error during the arm to front, twist and drying off exercises.

Interestingly in Fig. 7 the ShoulderRight joint does not appear to be
relatively erroneous for the shoulder shrug exercise, but the phy-
siotherapists reported UT and MT for this joint on this exercise. This
suggests absolute joint error is not a definitive measure of acceptability.

5. Conclusion and future work

Based on the clinical analysis supported by the quantitative mea-
sures we conclude that the pose estimations are mostly inadequate for
correctly assessing stroke rehabilitation exercises.

When performing upper-body gross exercises the shoulder joints act
as indicators for incorrect movement of limbs. For example, elevated
shoulders are a common compensatory movement among stroke pa-
tients and needs to be detected during rehabilitation exercises.
However, the algorithm failed to accurately track the true movement of
the shoulder joints even when the joints were in a tracked state. This
could be improved by retraining the pose estimation algorithm with
correctly labelled shoulder joints that contain training data with ele-
vated shoulders.

Partial or full occlusion in the depth data surrounding a joint causes
unacceptable jitter and tracking. When objects are required for per-
forming an exercise (eg the towel used in “Drying off”), unacceptable
jitter and tracking can also occur as the algorithm can transiently
misclassify it as a body part, resulting in incorrectly tracked joint po-
sitions. Similarly, for seated exercises it is recommended a user be se-
ated on a perching stool to eliminate the chances of seat arms being
misclassified as joints.

Table 2
Key used by the physiotherapists for the evaluation of the joint position estimations in Table 3.

Key

Acceptable tracking (AT) A joint’s estimated positions’ result in an acceptable difference from the true position. The error in the position does not lead to
misclassification in the assessment, e.g. a limb is showing no flexion when no flexion is occurring.

Moderately acceptable tracking (MT) A joint’s estimated positions’ result in a moderately acceptable difference from the true position. The error in the position leads to a minor
misclassification in the assessment, e.g. a limb is showing minor flexion when no flexion is occurring.

Unacceptable tracking (UT) A joint’s estimated positions’ result in an unacceptable difference from the true position. This change in position leads to a significant
misclassification in the assessment, e.g. a limb is showing severe flexion when no flexion is occurring.

Fig. 3. Seated T-Pose posture used as Kinect's ground truth for determining the
SD and mean error of joint positions over.
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Table 3
Physiotherapists’ evaluation of Kinect’s Pose Estimation for each GRASP exercise.

Description P1 P2 P3 P4 M SD Comments

ElbowRight joint
“Arm to Side”
All versions

MT AT AT AT AT 0.43 P1: Jitter occurs along the axis of the bone, resulting in variable limb lengths.

WristRight joint
“Arm to Side”
All versions

MT AT AT AT AT 0.43 P1: Jitter occurs along the axis of the bone, resulting in variable limb lengths.

SpineMid joint
“Arm to Side”
Trunk lateral flexion

AT MT AT AT AT 0.43 P2: Angle around SpineMid joint is represented as a straight line when trunk flexion is
occurring.

Hip joints
“Arm to Side”
Trunk lateral flexion

UT AT AT MT MT 0.83 P1: Hip joints give the impression that one hip is being lifted from the seat.
P4: Hip joints showing exaggerated movements than is true.

Shoulder joints
“Arm to Side”
Shoulder elevation

UT MT AT MT MT 0.71 P1: Roughly 25% of the vertical movement is reported in the joint.
P2: Shoulder position not accurately portraying severity of shoulder elevation.
P4: Shoulder elevation is visible but not to the extent that is true.

ShoulderRight joint
“Arm to Front”
All versions except trunk backward
flexion
and shoulder elevation

MT AT AT AT AT 0.43 P1: As the arm reaches 90 degrees the shoulder joint drops to the axilla this gives the impression
the arm is at a higher angle than is true.

ElbowRight joint
“Arm to Front”
All versions except elbow flexion

MT AT UT MT MT 0.71 P1: Jitter occurs when joint is occluded resulting in elbow flexion when the arm is straight.
Joint also reports different limb lengths.
P3: Incorrectly displaying elbow flexion when the arm is raised.
P4: Jitter can cause confusion with knowing whether the patient kept their arm straight during
the exercise.

WristRight joint
“Arm to Front”
All versions

MT AT UT MT MT 0.71 P1: Jitter occurs when joint is occluded resulting in elbow flexion when the arm is straight.
Joint also reports different limb lengths.
P3: Incorrectly displaying elbow flexion when the arm is raised. Incorrectly showing flexion
extension in the wrist.
P4: Jitter can cause confusion with knowing whether the patient kept their arm straight during
the exercise.

Shoulder joints
“Arm to Front”
Trunk backward flexion

UT UT UT UT UT 0 P1: The shoulders track inwards severely when this is not the case, thus falsely reporting elbow
flexion.
P3: Visually looks like the shoulder joints move towards the torso as trunk backward flexion
occurs.

SpineMid joint
“Arm to Front”
Trunk backward flexion

AT MT AT AT AT 0.43 P2: Angle around SpineMid joint is represented as a straight line when trunk flexion is
occurring.

Shoulder joints
“Arm to Front”
Shoulder elevation

UT UT UT UT UT 0 P1: UT occurs when the arms occlude the shoulder.
P2: Shoulder dips down as the arms occlude the shoulder.
P3: Initially elevates but when the shoulder is occluded by the arm, the shoulder joint depresses.
P4: Not clear shoulder elevation is occurring.

Elbow joints
“Arm to Front”
Elbow flexion

UT AT AT MT MT 0.83 P1: When the elbow is flexed, jitter occurs even when the joint is not occluded.
P4: Jitter can cause confusion with knowing whether the patient kept their arm straight during
the exercise.

Shoulder joints
“Shoulder Shrug”
All versions

UT UT MT MT MT/UT 0.5 P1: Only a minor vertical movement when elevating the shoulders.
P2: Minor shoulder elevation tracked when significant shoulder elevation occurring.
P3: Not showing elevation to the degree the shoulders are.
P4: Can see some elevation but not showing the range.

Wrist joints
“Shoulder Shrug”
All versions

MT AT AT AT AT 0.43 P1: Jitter occurs when joint becomes occluded by the legs.

Hips and SpineBase joints
“Shoulder Shrug”
All versions

AT AT AT MT AT 0.43 P1: Acceptable jitter can be seen, they also slightly elevate as the shoulders are lifted even
though the true joint positions remain still.
P4: Hips elevate with the shoulders.

Neck joint
“Shoulder Shrug”
Head Flexion

MT MT UT AT MT 0.71 P1: Reporting only minor head lateral flexion when severe.
P2: Not correctly showing the severity of head flexion.
P3: Not able to interpret the head and neck markers as flexion.

Head joint
“Shoulder Shrug”
Head Flexion

MT MT UT MT MT 0.43 P1: When severe head lateral flexion occurs, the joint has MT, resulting in reporting a minor
head lateral flexion.
P2: Not correctly showing the severity of head flexion.
P3: Not able to interpret the head and neck markers as flexion.

SpineMid joint
“Shoulder Shrug”
Shoulder abduction

MT MT UT MT MT 0.43 P1: Falsely reporting minor trunk lateral flexion, when no trunk lateral flexion occurring.

Shoulder joints
“Twist”
All versions

UT AT MT UT MT 0.83 P1: Joints track around the axilla as the arms are raised to 90 degrees.
P4: When arms raised shoulders become depressed down to the rib cage.

Elbow joints
“Twist”
All versions

MT AT MT AT AT/MT 0.5 P1: Joint showing jitter and variable limb lengths during the exercise.

Wrist joints
“Twist”
All versions

MT AT UT AT MT 0.83 P1: Joint showing jitter and variable limb lengths during the exercise.

(continued on next page)

J. Sarsfield et al. International Journal of Medical Informatics 121 (2019) 30–38

34



When assessing the suitability of a pose estimation algorithm in-
tended for rehabilitation applications, solely performing a quantitative
measure does not provide conclusive answers, a clinical analysis op-
tionally supported by a quantitative measure is required to determine
suitability. This is because the measured accuracy of the joint estima-
tions does not take into account that joints require a varying degree of
accuracy to correctly assess a given exercise. This is evident by the
shoulder joints for the arm to front and shoulder shrug exercise,
whereby the ShoulderRight joint displays similar error in Fig. 7 for
these exercises but has a mean classification of AT and MT/UT re-
spectively from the clinicians presented in Table 3.

Future pose estimation algorithms should consider using temporal
information and extrapolating from previous frames for inferring joint
positions that have full or partial occlusion. This should also reduce the
possibility of inferring a joint position incorrectly by ruling out sudden
and extreme changes in position. We are currently working on techni-
ques that use temporal information in a scalable way to improve joint
tracking. Estimating joint rotation should be considered for a more in-

depth and correct assessment of a patent’s performance. Constraining
joint estimations to within the anatomical limits of the human body
should ameliorate severe tracking error and solve the issue of anato-
mically impossible poses.

In order to make the task of automatically assessing for compen-
satory movements easier, clinicians should be consulted to try to select
exercises that are useful for rehabilitation but provide fewer or easier
challenges for pose estimation algorithms. For example, clinicians
highlighted using less obtrusive objects such as a rod or walking stick to
perform the drying off exercise, resulting in fewer tracking errors.
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Table 3 (continued)

Description P1 P2 P3 P4 M SD Comments

SpineShoulder, Head and Neck joints
“Twist”
All versions

UT AT MT UT MT 0.83 P1: Joints incorrectly track vertically as the joints are occluded by the arms.
P3: Rotation is inferred by arm joint positions.
P4: Joints elevated when occlusion occurs.

SpineMid joint
“Twist”
Trunk lateral flexion

AT UT AT AT AT/MT 0.87 P2: Angle around SpineMid joint is represented as a straight line when trunk flexion is
occurring.

Elbow joint
“Twist”
Trunk lateral flexion

UT MT MT MT MT 0.43 P1:Unacceptable jitter.
P2: Jitter occurring.
P4: Shows more flexion than is occurring during some of the exercise.

Wrist joint
“Twist”
Trunk lateral flexion

UT MT MT AT MT 0.71 P1: Unacceptable jitter.
P2: Jitter occurring.

Shoulder joints
“Drying Off”
All versions

UT UT MT UT UT 0.43 P1: Unacceptable jitter and tracking on the towel.
P2: Joint incorrectly tracks on towel.
P3: Joint positions briefly glitch onto the towel.
P4: Unacceptable because the joint occasionally tracks on the towel.

Elbow joints
“Drying Off”
All versions

UT UT MT MT MT/UT 0.5 P1: Unacceptable jitter and tracking on the towel.
P2: Joint incorrectly tracks on towel.
P3: Joint positions briefly glitch onto the towel.
P4: Unacceptable because the joint occasionally tracks on the towel.

Wrist joints
“Drying Off”
All versions

UT AT AT MT MT 0.83 P1: Unacceptable jitter and tracking on the towel.

Hip and SpineBase joints
“Drying Off”
All versions

UT AT MT UT MT 0.83 P1: The hips and SpineBase joints show UT in the vertical axis.
P4: Joints move around during the exercise.

SpineMid joint
“Drying Off”
Trunk lateral flexion

UT UT UT UT UT 0 P2: Angle around SpineMid joint is represented as a straight line when trunk flexion is
occurring.
P4: SpineMid does not move. Not showing any side flexion.

Table 4
Table showing the error and SD for each joint position estimation averaged over all repetitions. The right arm was used for the arm to side and arm to front exercises.

Joint Arm to Side Arm to Front Shoulder Shrug Twist Drying Off

Error SD Error SD Error SD Error SD Error SD

SpineBase 1.14 0.34 1.18 0.34 2.42 1.19 6.80 3.51 3.09 0.98
SpineMid 1.13 0.33 1.78 0.37 2.73 1.00 8.39 5.15 4.62 1.60
Neck 0.77 0.24 1.12 0.27 1.27 0.45 6.53 3.75 2.78 1.17
Head 0.61 0.15 0.57 0.21 1.36 0.66 4.80 2.55 3.71 1.72
ShoulderLeft 1.47 0.23 1.56 0.38 2.71 0.97 8.21 5.48 4.90 1.91
ElbowLeft 4.58 0.45 3.69 0.24 3.89 1.11 15.44 5.41 5.78 1.99
WristLeft 6.77 0.98 5.61 0.28 6.21 1.54 18.11 5.63 10.80 3.39
ShoulderRight 1.18 0.47 2.37 1.02 3.06 1.47 10.91 6.13 4.99 2.48
ElbowRight 2.35 1.15 11.48 6.19 3.75 1.12 16.84 6.58 5.99 2.67
WristRight 3.27 1.57 15.45 6.69 5.60 1.53 20.47 7.09 14.84 5.20
HipLeft 1.36 0.39 1.51 0.28 2.81 1.04 7.90 4.10 3.58 0.98
HipRight 1.31 0.52 1.99 0.38 2.83 0.83 7.90 4.00 3.46 1.01
SpineShoulder 1.08 0.28 1.79 0.33 2.30 1.01 6.48 3.51 3.35 1.45
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Fig. 4. depicts the SD of the error for all repetitions of that exercise modelled as ellipsoids. Exercise order from top left; Arm to Side, Arm to Front, Shoulder Shrug,
Twist, Drying Off.

Fig. 5. Plots showing a participant’s WristRight joint deviation from the ground truth joint position. Arm to side (left) and arm to front (right).

Fig. 6. Plot showing a participant’s ShoulderRight joint position in the Y axis
when performing the shoulder shrug exercise.

J. Sarsfield et al. International Journal of Medical Informatics 121 (2019) 30–38

36



Fig. 7. Exercise repetition errors of the ShoulderRight joint.

Fig. 8. Exercise repetition errors of the ElbowRight joint.

Fig. 9. Exercise repetition errors of the WristRight joint.
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Mohammad Taheri, Caroline Langensiepen, Cleveland Barnett, Louise
Selwood, Penny Standen, Pip Logan, Christopher McCollin, Christopher
Simcox, Catherine Killick, Emma Hughes.

Summary points
What was known before this study?

• Consumer-level depth sensors combined with pose estimation
algorithms have potential for practical technology su-
pervised rehabilitation applications.

• Current pose estimation algorithms designed to run on con-
sumer-level depth sensors are not specifically designed for
rehabilitation applications and therefore the pose estima-
tions need to be evaluated in this context to determine
suitability.

What did this study add to our body of knowledge?

• Based on the clinical analysis supported by the quantitative
measures we conclude that the pose estimations are mostly
inadequate for correctly assessing stroke rehabilitation ex-
ercises.

• Future pose estimation algorithms intended for rehabilitation
applications should consider; exploiting temporal informa-
tion to ameliorate issues with occlusion, constraining joint
estimations to within the anatomical limits of the human
body, estimating joint rotational information for a more in-
depth and correct assessment.

• A methodology for clinically analysing the performance of a
pose estimation algorithm for use in rehabilitation applica-
tions.
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