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Abstract—The LLC resonant converter, featured with soft 

switching realization, magnetic components simplicity, high 

conversion efficiency, high-power density and low EMI noise, 

has been widely used in diverse fields. Voltage-controlled 

oscillator (VCO), which shows strong nonlinear characteristics, 

plays a crucial role in output voltage regulating of the LLC 

resonant converter. However, in small-signal modeling for LLC 

resonant converter, VCO is usually treated as a constant gain, 

which will relegate the model accuracy especially in the high-

frequency region. In this paper, an accurate small-signal model 

that can reflect the nonlinearity of VCO is proposed. The 

discrete-time small-signal model of the power stage is also 

deduced by exploiting the half-cycle symmetry for simplifying 

the derivation. Then the transfer function from the modulation 

signal to output voltage of the LLC resonant converter is 

developed. Finally, the simulation results verify the accuracy of 

the proposed model. 

Keywords—LLC resonant converter, voltage-controlled 

oscillator (VCO), discrete-time model 

I. INTRODUCTION 

LLC resonant converter exhibits the advantages of soft 
switching realization, magnetic components simplicity, high 
conversion efficiency, high-power density and low EMI noise. 
Therefore, LLC resonant converter has been widely used in 
diverse fields, including aerospace, data center power supply, 
electric vehicle chargers and solar array simulator in 
photovoltaic application [1]–[4]. In order to design an optimal 
controller and analyze its stability, it is desirable to derive an 
accurate small-signal model for LLC resonant converter. 

For switching converters, the most widely used small-
signal modeling method is the averaging method [5], which 
takes the periodic average of the state variables and ignores 
the influence of the switching ripple. The state variables in 
resonant tank of resonant converters do not have dc 
components, but contain strong switching frequency 
component and its harmonics, so the averaging method is not 
applicable to resonant converters. 

Based on fundamental harmonic approximation and the 
principle of harmonic balance, the extended describing 
function (EDF) method establishes the small-signal model of 
resonant converters in state space representation and derives 
the corresponding equivalent circuit [6], [7]. Using the EDF 
method, the small-signal model of LLC resonant converter 
was developed in [8]. This model shows good accuracy in the 
region where the switching frequency is close to the resonant 
frequency. However, when the switching frequency deviates 
from the resonant frequency, the resonant tank of LLC 
resonant converter hardly behaves as an ideal band-pass filter 
and more harmonic components are involved in energy 
transfer. To improve the accuracy of the small-signal model, 

more harmonic components should be incorporated in 
modeling. Besides, voltage-controlled oscillator (VCO), 
which shows strong nonlinear characteristics, plays a crucial 
role in frequency-controlled LLC resonant converter and 
should be taken into consideration as well. The frequency 
domain small-signal modeling for LLC resonant converter 
based on describing function method, which captures the 
influence of all harmonics and the nonlinearity of VCO, was 
given in [9]. This model is very accurate, however, its 
derivations and results are complicated, which provides 
limited guidance for controller design. 

The discrete-time modeling method [10]–[12] focuses on 
the accurate modeling of the power stage with consideration 
of all harmonics. However, there is no extension to the popular 
LLC resonant converter using this method [9]. In this paper, a 
discrete-time small-signal model of LLC resonant converter is 
derived step by step. The half-cycle symmetry characteristic 
of the power stage is exploited to simplify the analysis. In the 
conventional discrete-time modeling for resonant converters, 
VCO is usually treated as a constant gain, which relegates the 
accuracy of the model. To improve the accuracy of the model, 
this paper will analyze the principle of VCO in detail and 
establish its accurate small-signal model. Combining VCO 
with the power stage, the transfer function from the 
modulation signal to output voltage of LLC resonant converter 
is developed for the design of controller and stability analysis. 

This paper is organized as follows. In Section II, the 
discrete-time modeling of the power stage of LLC resonant 
converter is derived in detail. Section III establishes the 
accuracy small-signal model of VCO. Section IV verifies the 
accuracy of the proposed model by simulation. Finally, 
Section V concludes this paper. 

II. DISCRETE-TIME MODELING OF THE POWER STAGE OF 

LLC RESONANT CONVERTER 

Fig. 1 shows the schematic diagram of LLC resonant 
converter. The power stage consists of an inverter, a resonant 
tank, a rectifier and an output filter. In Fig. 1, Vin is the input 
voltage, Lr and Cr are the resonant inductor and the resonant 
capacitor whose resonant frequency is denoted as fr, Lm is the 
magnetizing inductor, Tr is the transformer whose turn ratio is 
N:1, Co is the output capacitor and RLd is the load resistance. 
vAB is the inverter output voltage, iLr and iLm are the respective 
currents going through Lr and Lm, vCr is the voltage of Cr, vp 
and ip are the respective primary voltage and primary current 
of Tr and iR is the rectified current. Hv is the feedback 
coefficient of the output voltage vo, vfb is the feedback signal 
of vo, Vref is the voltage reference, Gc is the feedback controller, 
vm is the modulation signal and vgs is the driving signal. 

In this section, the discrete-time small-signal model of the 



power stage of LLC resonant converter will be deduced. In the 
following derivation, all switching devices, inductors and 
capacitors are ideal. 

A. State Space Equations 

In the power stage, iLr, iLm, vCr and vo are chosen as state 
variables in the analysis. The state vector x(t) is defined as 

   
T

Lr Lm Lm Cr ot i i i v vx =  (1) 

It should be noted that the difference between iLr and iLm is 

taken as the first state variable in (1) for the convenience of 
the following derivation. 

The typical waveforms of full-bridge LLC resonant 
converter are shown in Fig. 2, where Qgs_p is the driving signal 
for the positive half period and ts is the switching period. The 
kth (k = 0, 1, 2, …) sampling period, denoted as tsa_k, is 

sa_ 1k k kt t t   (2) 

where tk is the sampling instant, i.e. the beginning instant of 
tsa_k, tk+1 is the ending instant of tsa_k, tk+tak is the switching 
instant from mode S1 to mode S2. The first mode occurs at the 
sampling period is defined as mode S1 and the second is 
defined as mode S2. 

As seen in Fig. 2, the state variables exhibit half-cycle 
symmetry, where vo is even symmetry and the other variables 
are odd symmetry. Therefore, only the positive half period of 
the converter needs to be analyzed. The equivalent circuits of 
the positive half period are shown in Fig. 3. 

Region 1 (fs < fr): in mode S1, Lr resonates with Cr and the  

voltage of Lm is clamped at Nvo. The equivalent circuit during 
the interval tk < t < tk+tak is shown in Fig. 3(a). At t = tk+tak, iLr 
and iLm are equal. In mode S2, Lm in series with Lr resonate 
with Cr and the output is separated from the transformer. The 
equivalent circuit during the interval tk+tak < t < tk+1 is shown 
in Fig. 3(b). 

Region 2 (fs > fr): in mode S1, Lr resonates with Cr and the 

voltage of Lm is clamped at Nvo. The equivalent circuit during 
the interval tk < t < tk+tak is shown in Fig. 3(c). At t = tk+tak, iLr 
and iLm are equal. Then the voltage of Lm is clamped at Nvo. 
The equivalent circuit during the interval tk+tak < t < tk+1 is 
shown in Fig. 3(a). 

Based on the symmetry characteristic of LLC resonant 
converter, the state variables can be substituted as follows 

 
 

 s

r v

positive half period

negative half period

t
t

t


 

M M

x
x

x
 (3) 

where the matrices Mr and Mv are determined by the half-
cycle symmetry of the state variables 

r diag[ 1, 1, 1,  1]  M =  (4) 

 

 

T

v T

in

0 0 0 0 full-bridge

0 0 0 half-bridgeV


 


M  (5) 

The positive half period of xs(t) is the same as x(t), while 
the negative half period is symmetrically transformed with 
respect to x(t). The waveforms after transformation are shown 
in Fig. 4, where iLr_s, iLm_s, vCr_s and vo_s are the waveforms of 
iLr, iLm, vCr and vo after transformation, respectively. 
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Fig. 1. The schematic diagram of LLC resonant converter. 
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Fig. 2. Typical waveforms of the full-bridge LLC resonant converter. (a) fs < fr; (b) fs > fr. 
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Fig. 3. Equivalent circuits of the positive half period. (a) Lr resonates with 

Cr, vp = Nvo; (b) Lm in series with Lr resonate with Cr; (c) Lr resonates with 

Cr, vp = Nvo. 

According to Fig. 2 and Fig. 3, the state space equations of 
LLC resonant converter in mode S1 and mode S2 are 
respectively obtained as 

 
 

   

s

1 s 1 in

1 a

o s

  : k k k

d t
t V

S t t t tdt

v t t


 
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A B

C

x
x
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 (6) 

 
 

   

s

2 s 2 in

2 a 1

o s

   : k k k

d t
t V

S t t t tdt

v t t




 

  
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A B

C

x
x

x

 (7) 

where Ai and Bi represent the state matrices of mode Si 

respectively, i = 1,2 and C is the output matrix. Expressions 
of the coefficient matrices in the state space equations are 
listed in Table I. 

As shown in Fig. 4, xs(t) obtains the property of even half-
cycle symmetry after transformation with respect to x(t). 
However, the transformation destroys the continuity at the 
sampling instants for the odd symmetry variables in x(t). At 
the sampling instants, the left limit and the right limit of xs(t) 
satisfy 

   s r s vk kt t  M Mx x  (8) 

B. Difference Equations 

The solutions of (6) and (7) are shown in (9), where the 
matrix function Ei(t) is expressed as 

 
0

   1,2i
t

i t e d i
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A
E  (10) 

To simplify the analysis, xs(tk) is defined to be equal to its 
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Fig. 4. Typical waveforms after symmetry transform (fs < fr). 

right limit, i.e., 

   s sk kt tx x  (11) 

Substituting (8) and (11) into (9), the expressions of xs(t) 
at tk+tak and tk+1 can be obtained as 

     1 a

s a s 1 a 1 in
kt

k k k kt t e t t V  
A

E Bx x  (12) 

 
     2 1 a

r s 1 v

s a 2 1 a 2 in
k k k

k

t t t

k k k k k

t

e t t t t t V



 





    
A

M M

E B

x

x
 (13) 

Putting (12) into (13), we have 

 
       

 

2 1 a 2 1 a1 a

r s 1 v

s 1 a 1 in

2 1 a 2 in 

k k k k k kk

k

t t t t t tt

k k

k k k

t

e e t e t V

t t t V

 



   





 

  

A AA

M M

E B

E B

x

x  (14) 

According to (6) and (11), the output voltage at the 
sampling instants can be written as 

   o sk kv t tCx  (15) 

C. Steady-State Operation Point Calculation 

At the steady-state operation of the converter, Tk is defined 
as the start instant of the sampling period, i.e. the sampling 
instant, Tsa represents the sampling period and Tk+Ta is the 
switching instant from mode S1 to mode S2. Tk and Tsa are 
related to the switching period Ts as follows 

s
2

k

k
T T  (16) 

sa s

1

2
T T  (17) 

Moreover, the steady-state values of xs(t) are equal at 
every sampling instants and the mode switching instants, i.e., 

     s 1 s s 0k kT T  X X X  (18) 
 

 
     
     

1

2 a

s 1 1 in 1 a

s

s a 2 a 2 in 2 a 1

: 

: 

k

k k

t t

k k k k k

t t t

k k k k k k k

e t t t V S t t t t
t

e t t t t t V S t t t t

 

 



     
 

      

A

A

E B

E B

x
x

x
 (9) 



TABLE I.  COEFFICIENT MATRICES OF  STATE SPACE EQUATIONS 

Region A1 A2 B1 B2 C 

fs < fr 

r r m

m

r r

o Ld o

1
0 0

0 0 0

1 1
0 0

1
0 0

N N

L L L

N

L

C C

N

C R C

 
   

 
 
 
 
 
 
 
 

 
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r m

r r

Ld o

0 0 0 0

1
0 0 0

1 1
0 0

1
0 0 0

L L

C C

R C

 
 
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 
 
 
 
 
 

 

r

1

0

0

0

L
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 
 
 
 
 
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 r m

0

1

0

0

L L

 
 
 
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 
 
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  0 0 0 1  

fs > fr 

r r m
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r r
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1
0 0
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0 0

1
0 0

N N
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N
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 
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 
 
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 
 
 
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r r m

m

r r

o Ld o

1
0 0

0 0 0

1 1
0 0

1
0 0

N N

L L L

N

L
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N

C R C

 
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 
 
 
 
 
 
 
 

 
  

 

r

1

0

0

0

L

 
 
 
 
 
 
  

 

r

1

0

0

0

L

 
 
 
 
 
 
  

  0 0 0 1  

 

   s a s akT T T X X  (19) 

Substituting (18) into (14) yields 

     
1

s r 2 1 2 1 1 in 2 2 in v0 V V


   M B B MX      (20) 

where 

1 a

1

T
e

A  (21a) 

 2 sa a

2

T T
e




A
  (21b) 

 1 1 aT E  (21c) 

 2 2 sa aT T E  (21d) 

Substituting (18) and (19) into (12), the steady-state value 
of xs(t) at the mode switching instants can be obtained as 

   s a 1 s 1 1 in0T V  BX X   (22) 

Although the steady-state equations (20), (21) and (22) are 
obtained, it is not enough to calculate the steady-state point. 
There still exists an unknown variable Ta, which can be 
determined by the boundary condition 

     Lr a Lm a 1 s a 0i T i T T  R X  (23) 

where  1 1 0 0 0R . 

Due to the complex resonance in the LLC resonant 
converter, it is difficult to calculate the analytical solution of 
(23). Therefore, Ta is computed iteratively and then substituted 
into (20), (21) and (22) to determine the steady-state point. 

D. Small-Signal Perturbation and Linearization 

The sampling instants, mode switching instants, state 
variables and the output variable can be expressed as the 
steady-state point plus the small-signal perturbation 

ˆ
k k kt T t   (24a) 

a a a
ˆ ˆ

k k k k kt t T T t t      (24b) 

     s s s
ˆt t t x X x  (24c) 

     o o o
ˆv t V t v t   (24d) 

Taking the zero-order Talyor polynomial of (24c) and (24d) 
at the sampling instants, we have 

     s s s
ˆ

k k kt T T x X x  (25) 

     o o o
ˆ

k k kv t V T v T   (26) 

Substituting (24) and (25) into (14), eliminating the 
steady-state values and ignoring the high order ac terms, the 
following difference equation can be obtained 

     

   

r s 1 2 1 s 2 s a sa_

2 s a s a a

ˆˆ ˆ

ˆ

k k k

k

T T T t

T T t





 

 

   
 

M x x X

X X

  


 (27) 

where sa_ 1
ˆ ˆ ˆ

k k kt t t  ,  s aT X  and  s aT X  are the 

respective left derivative and right derivative of xs(t) at Ta in 
the steady-state operation, which can be written as 

   s a 1 s a 1 inT T V  A BX X  (28) 

   s a 2 s a 2 inT T V  A BX X  (29) 

In the process of linearization, on the assumption of the 
small-signal perturbation, the matrix functions in (14) can be 
approximated as 

   
ˆ

ˆ    1, 2i i
T t T

ie e t i


  
A A

I A  (30) 

   
ˆ

0

ˆ ˆ   1,2i i
T t

T

i iT t e d T e t i
 



    
A A

E E  (31) 

where T is the steady-state value, t̂ is the small-signal 

perturbation and I is the unit matrix. 

Furthermore, according to Fig. 2, at t = tk+tak, iLr and iLm 
are equal. The constraint equation can be written as 

     Lr a Lm a 1 s a 0k k k k k ki t t i t t t t     R x  (32) 

Substituting (12) into (32), after small-signal perturbation 
and linearization, we have 

   1 1 s 1 1 1 s 1 in â
ˆ 0 0k kT V t    R R A Bx X   (33) 

Substituting (33) into (27), eliminating the small-signal 

component âkt , we obtain 

   r s 1 s sa_
ˆˆ ˆ

k k kT T t  M x x   (34) 

where 



   2 1 2 s a s aT T     
 
X X K    (35a) 

 2 s aT  X  (35b) 

 
1 1

1 1 1 s 1 in0 V
 
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R

R A B
K

X




 (35c) 

The frequency of tsa_k can be expressed as 

sa_ sa sa_ s sa_

sa_2

sa_ sa sa_ sa sa

ˆ ˆ2

1 1 1 1
ˆ

ˆ

k k k

k

k k

f f f f f

t
t T t T T

   

   


 (36) 

which indicates 

sa_ sa_2

sa

1ˆ ˆ
k kf t

T
   (37) 

Assume that VCO is a constant gain, both the period and 
frequency can be treated as continuous time domain functions. 
The continuous sampling frequency, denoted as fsa_c, satisfies 

   sa_c VCO m
ˆ ˆ2f t K v t  (38) 

where KVCO is defined as 

s sa
VCO

m m m sa

1

2 2

f f
K

V V V T
    (39) 

Moreover, the small-signal component 
sa_
ˆ

kf  can be 

written as 

 sa_ sa_c 1
ˆ ˆ

k kf f T   (40) 

where the sampling instants will be explained in Section III. 

Substituting (37) and (40) into (34), the linearized 

difference equation of sx̂  and 
sa_cf̂  is 

     2

r s 1 s sa sa_c 1
ˆˆ ˆ

k k kT T T f T  M x x   (41) 

Applying small-signal perturbation to (15), eliminating the 
steady-state values, the output function can be expressed as 

   o s
ˆˆ

k kv T T Cx  (42) 

E. Z Transform 

After z transform of (41) and (42), the transfer function 

from *

sa_cf̂  to *

ov̂ , Gvfsa_c(z), can be expressed as 

 
 

 
   

sa_c

1o 2

r sa

sa_c

ˆ

ˆvf

v z
G z z T z

f z


   C M    (43) 

where *

sa_cf̂  and *

ov̂  are the sampling signals of 
sa_cf̂  and ov̂  

respectively. 

Considering that the sampling frequency is a virtual signal 
that is unmeasurable, Gvfsa_c(z) cannot be measured directly. 
Therefore, the transfer function from the modulation signal to 
output voltage is measured as a whole. 

Furthermore, converting (43) from z-domain to s-domain 
and combining with (38), the transfer function from the 
modulation signal to output voltage can be obtained as 

   
sa_c sa

vm_dis_const VCO2 vf sT
G s K G z

z e



 (44) 

III. SMALL-SIGNAL MODELING OF VOLTAGE-CONTROLLED 

OSCILLATOR 

It is worth noting that the derivations given in Section II 
are based on the assumption that VCO is a constant gain. 
However, the nonlinearity of VCO also has a significant effect 
on the model. In this section, the accurate small-signal model 
of VCO will be deduced. 

The VCO circuit and the key waveforms are shown in Fig. 
5(a) and Fig. 5(b) respectively [13], where A1 is the voltage-
controlled current source, A2 is the comparator, A3 is the one-
shot monostable multivibrator and A4 is the D flip-flop. As 
seen in Fig. 5(a), the modulation signal vm generates ic to 
charge the capacitor Cfs. When the capacitor voltage vCfs 

reaches the maximum value Vcp, A2 outputs a pulse signal vp1 
to trigger A3 which generates vp2 to turn on the switch Qfs, 
making vCfs drop to zero immediately. After that, vCfs rises 
from zero again and then starts the operation of the next 
charging cycle. The outputs of A4, denoted as Qgs_p and Qgs_n, 
are complementary square waves, which are used as the 
driving signals for positive and negative half period 
respectively. By controlling vm to regulate ic, changing the 
charging speed of Cfs, the switching frequency is modulated 
accordingly. 

Applying small-signal perturbation mv̂  to the modulation 

signal, we have 

   m m m
ˆv t V v t   (45) 

where Vm is the dc value. 

The integral form of the voltage-ampere characteristics 
equation of Cfs in the kth charging period can be expressed as 
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Fig. 5. The circuit diagram and key waveforms of VCO. (a) Circuit diagram; 

(b) Key waveforms before and after perturbation. 
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    (46) 

where g is the coefficient of the voltage-controlled current 
source A1. 

Imposing small-signal perturbation into (46), we obtain 

 

   

1 1

1

ˆ

cp m mˆ
fs

m 1 1 m

fs fs

ˆ

ˆ ˆ ˆ

k k

k k
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   

    





 (47) 

Eliminating the steady-state values of (47) and upon 
rearrangement, we have 

 
1

1 sa
sa_ 1 m

m

1
ˆ ˆ ˆ ˆ

k

k

T

k k k
T T

t t t v t dt
V







      (48) 

Substituting (37) and (39) into (48), we obtain 

 
1

1 sa
sa_ VCO m

sa

1ˆ ˆ2
k

k

T

k
T T

f K v t dt
T



 
   (49) 

For notation simplification, the periodic average of mv̂

defined as 
sa

m
ˆ

T
v , where the period is Tsa, is expressed as 

   
sa sa

m m

sa

1
ˆ ˆ

t

T t T
v t v d

T
 


   (50) 

Substituting (50) into (49) yields 

 
sa

sa_ VCO m +1
ˆ ˆ2k k T
f K v T  (51) 

According to Fig. 5, the charging current ic of the capacitor 
Cfs changes in real-time with vm. Only when vCfs reaches Vcp, 
Qgs_p and Qgs_n are flipped, meaning that tsa_k should be 

determined at the ending instant of the period. Therefore, sa_
ˆ

kt  

and 
sa_
ˆ

kf  should occur at Tk+1. As shown in Fig. 6, sa_
ˆ

kt  and 

sa_
ˆ

kf  of every sampling cycle constitute the impulse trains 

respectively, which can be expressed as 

   sa sa_ 1

0

ˆ ˆ
k k

k

t t t t T






   (52) 
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k k
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f t f t T
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
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   (53) 

Substituting (51) into (53) leads to 
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Fig. 6. The perturbation waveforms of VCO. 

   
sa

*

sa VCO m
ˆ ˆ2

T
f t K v t  (54) 

where 
sa

*

m
ˆ

T
v is the sampling signal of 

sa
m

ˆ
T

v , which can be 

written as 

     
sa sa

*

m m 1

0

ˆ ˆ
kT T

k

v t v t t T






   (55) 

Furthermore, taking the Laplace transform of (50), we 
obtain 

   

   
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(56) 

From (56), the transfer function from mv̂  to 
sa

m
ˆ

T
v , 

named as Gav(s), is expressed as 

 
 

 

sa

sa
m

av

m sa

ˆ
1

ˆ

sT
T

v s e
G s

v s sT




   (57) 

According to (54) and (57), the frequency domain 
characteristics of VCO can be mainly determined by Gav(s). 
Fig. 7 gives the bode diagram of Gav(s). Here, we observe that 
for the low-frequency range, i.e., frequencies much lower than 
the switching frequency, Gav is a constant. Thus, VCO can be 
treated as a constant gain in the low-frequency region. Besides, 
as the perturbation frequency increases, the magnitude of Gav 
decreases and the phase of it lags, which significantly 
influences the small-signal model of LLC resonant converter 
in the high-frequency region. Consequently, the nonlinearity 
of VCO should be incorporated in modeling. 
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Fig. 7. Bode diagram of Gav(s). 



Moreover, from (53), the small-signal component 
sa_
ˆ

kf  

can be expressed as 

 sa_ sa 1
ˆ ˆ

k kf f T   (58) 

Substituting (37) and (58) into (34), the linearized 

difference equation of sx̂  and saf̂  is 

     2

r s 1 s sa sa 1
ˆˆ ˆ

k k kT T T f T  M x x   (59) 

After z transform of (42) and (59), the transfer function 

from saf̂  to *

ov̂ , Gvfsa(z), can be expressed as 

 
 

 
   

sa

1o 2

r sa

sa

ˆ

ˆvf

v z
G z z T z

f z


   C M    (60) 

It should be noted that Gvfsa(z) is the same as Gvfsa_c(z). 
Thus, Gvm_dis_const(s) can be rewritten as 

   
sa sa

vm_dis_const VCO2 vf sT
G s K G z

z e



 (61) 

According to the analysis above, Fig. 8 shows the control 
block diagram of LLC resonant converter, where ve is the error 

signal and *

mv̂  is the sampling signal of mv̂ . As seen, 

considering the nonlinearity of VCO, the transfer function 
from the modulation signal to output voltage is 

     
sa sa

vm_dis_VCO av VCO2 vf sT
G s G z K G z

z e
  


 (62) 

From Fig. 1 and Fig. 8, the output capacitor Co and the 
feedback controller Gc behave as the low-pass filter, 
attenuating the high frequency components of the output 
voltage sufficiently. Assume that vm is harmonic free, i.e., vm 

contains only the single frequency perturbation ωp. According 
to Shannon sampling theorem, we have 
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(63) 

Substituting (63) into (62) yields 

     
sa sa

vm_dis_VCO av VCO2 vf sT
G s G s K G z

z e
  


 (64) 

IV. SIMULATION VERIFICATION 

To verify the effectiveness of the proposed discrete-time 
model of LLC resonant converter, the SIMPLIS simulation 
tool is used to measure the transfer function from the 
modulation signal to output voltage by sample-and-hold 
scheme [14]. The circuit parameters are listed as follows: Po = 
500 W, Vo = 48 V, fr = 100 kHz, Lm = 200 μH, Lr = 40 μH, Cr 
= 62.5 nF, Co = 100 μF, N = 24:6. Fig. 9 gives the simulation 
and the theoretical results. As seen, based on the assumption 
that VCO is a constant gain, Gvm_dis_const(s) tends to over-
estimate the phase margin in the high-frequency region and 
hence offers inaccurate stability information. Considering the 
nonlinearity of VCO, Gvm_dis_VCO(s) is in very good agreement 
with the simulation results up to the switching frequency, 
verifying the accuracy of the proposed model.
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Fig. 8. Control block diagram of LLC resonant converter. 
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(a)                                                                                 (b)                                                                                  (c) 

Fig. 9. Bode diagrams of the modulation signal to output voltage transfer function of LLC resonant converter by simulation and theoretical results. (a) Vin = 

300V, fs = 0.7fr; (b) Vin = 383V, fs = 0.99fr; (c) Vin = 400V, fs = 1.1fr. 



V. CONCLUSIONS 

In this paper, a discrete-time domain model of the power 
stage of LLC resonant converter has been presented by 
exploiting the half-cycle symmetry for simplifying the 
analysis. The accurate small-signal model of VCO is then 
deduced, capturing the nonlinear characteristics. Combining 
VCO with the power stage, the transfer function from the 
modulation signal to output voltage is further derived. The 
corresponding block diagram of the proposed model is also 
illustrated, exhibiting very concise and simple form. Finally, 
simulation results verify the validity of the proposed model. 
Compared with the model where VCO is treated as a constant 
gain, the proposed model considering the nonlinearity of VCO 
can better predict the small-signal properties of LLC resonant 
converter, which is accurate up to the switching frequency. 
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