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ABSTRACT
Air–water flows are among the most important flow types in hydraulic engineering. Their experimental modelling at reduced size using Froude
scaling laws introduces scale effects. This study introduces novel scaling laws for compressible air–water flows in which the air is considered
compressible. This is achieved by applying the one-parameter Lie group of point-scaling transformations to the governing equations of these flows.
The scaling relationships between variables are derived for the fluid properties and the flow variables including temperature. The novel scaling laws
are validated by computational fluid dynamics modelling of a Taylor bubble at different scales. The resulting velocity, density, temperature, pressure
and volume of the bubble are shown to be self-similar at different scales, i.e. all these variables behave the same in dimensionless form. This study
shows that the self-similar conditions of the derived novel scaling laws for compressible air–water flows have the potential to improve laboratory
modelling.

Keywords: Air–water flows; Froude scaling laws; Lie groups; scale effects; self-similarity

1 Introduction

Many hydraulic phenomena such as spillway flows, intakes,
hydraulic jumps or breaking wave impacts are characterized
by air bubble entrainment. The compressibility of air plays
a central role in these processes, e.g. in wave impacts on
coastal structures, pockets of air are entrapped between the over-
turning breaker and the structure (Bredmose et al., 2015). A
further example is air entrainment in, and deaeration of, pres-
sure conduits in hydropower plants (Vereide et al., 2015; Zhou
et al., 2013). The compressibility of air needs to be taken into
account to correctly estimate impact forces (Bagnold, 1939;
Müller, 2019; Peregrine & Thais, 1996).

The study of these phenomena is often conducted in reduced
laboratory scale models designed following the Froude scal-
ing laws (FSLs). They ensure that the square root of the ratio
between the inertial and gravity force, namely the Froude num-
ber F, is the same in the model and nature, i.e. the prototype.

Most studies suggest that the FSLs without scaled fluid prop-
erties underestimate air entrainment because the effects of vis-
cosity and surface tension are over-represented in the model
(Chanson et al., 2004; Kiger & Duncan, 2012). Indeed, further
forces considered in other non-dimensional numbers, such as
the Reynolds number R (inertial force to viscous force) and the
Weber number W (inertial force to surface tension force), are
represented incorrectly (Felder & Chanson, 2009; Heller, 2011;
Hughes, 1993; Pfister & Chanson, 2014; Stagonas et al., 2011).
Furthermore, the FSLs do not account for effects of air com-
pressibility and heat transfer. Hence, additional scale effects are
potentially introduced because of the effects of temperature T
and because the thermophysical properties of air are neglected
(Bredmose et al., 2015; Lin et al., 2021).

Recently, a scaling approach based on self-similarity
has been introduced (Carr et al., 2015; Ercan & Kav-
vas, 2015, 2017). A self-similar object is identical to a part of
itself. As such, the scaling of a physical process that follows
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suitable laws results in a self-similar scaled copy of the pro-
cess itself (Barenblatt, 2003; Heller, 2017; Henriksen, 2015;
Zohuri, 2015). This means that a self-similar process behaves
the same way at different scales, such that scale effects are
avoided (Polyanin & Manzhirov, 2008). For example, the scaled
model and the prototype of a hydraulic jump are self-similar if
dimensionless results are identical. This implies that the dimen-
sionless velocity field and void fractions are invariant when
self-similarity is achieved.

This new approach involves the derivation of scaling condi-
tions by applying the one-parameter Lie-group of point scaling
transformations (Lie, 1880, hereafter referred to as Lie group
transformations) to the governing equations. These were orig-
inally used to reduce the number of independent variables of
an initial boundary value problem by transforming it in a new
space where the solution of the problem remains the same as
the original one. Subsequently, they were applied to derive the
conditions under which various hydrological processes are self-
similar through the change in size (Carr et al., 2015; Ercan
& Kavvas, 2015, 2017). The advantage of this approach is
that it gives a complete set of conditions for all the variables
in the governing equations that must be satisfied to achieve
self-similarity (Kline, 1965).

Catucci et al. (2021) applied the Lie group transformations
to the Reynolds-averaged Navier–Stokes (RANS) equations
of air–water flows, including the surface tension terms. They
showed that the novel scaling laws (NSLs) are more flexible and
universal than the FSLs. Numerical validations of the obtained
NSLs have been conducted for a plunging jet and a dam break
wave experiment. The air compressibility has not been taken
into account.

In this article, using the methodology of Catucci et al. (2021),
we derive NSLs for air–water flows where air is assumed to be
compressible and water incompressible. The Lie group transfor-
mations are applied to the continuity, momentum conservation
and heat transfer equations and the equation of state, with air
assumed to be a perfect gas. This work shows the conditions
under which these governing equations are self-similar and how
to downscale a phenomenon affected by inertial, gravity, viscous
and surface tension forces as well as the compressibility of air
and heat transfer.

The derived scaling laws are validated by using compu-
tational fluid dynamics (CFD) simulations to a compressible
air–water flow, namely a Taylor bubble, i.e. a slug-shaped bub-
ble of compressible gas, raising in a vertical pipe filled with
fluid. The rise of the Taylor bubble represents a classical phe-
nomenon in two-phase flows such as in the slug flow regime
commonly seen in industrial contexts (Davies & Taylor, 1950;
Ferreira et al., 2021; Llewellin et al., 2012; Shin et al., 2021).
This phenomenon is also relevant in volcanology because it is
widely accepted that Strombolian-type volcanic eruptions are
driven by the rise and burst of large Taylor bubbles (Chouet
et al., 1997; James et al., 2004).

Here, the Taylor bubble is also simulated with the commonly
applied FSLs by using ordinary water and air in the models
(herein called traditional FSLs), as usually applied in laboratory
experiments. In this way, the difference between the NSLs and
traditional FSLs is illustrated.

This article is organized as follows: in Section 2 the Lie
group transformations are applied to the governing equations
and the NSLs are derived. The numerical model is presented
in Section 3. Subsequently, a case study of the Taylor bubble
is illustrated in Section 4, including the set-up, the application
of the NSLs and the discussion of the results. The conclusions
and recommendations for future work are given in Section 5.
Appendix A includes the details of the derivation of the NSLs
and the self-similar conditions.

2 Derivation of self-similar conditions for the
compressible RANS equations

2.1 Governing equations

The governing equations for compressible air–water flows
are described by the conservation laws of mass (continuity),
momentum and energy. The continuity and momentum equa-
tions are:

∂ρ

∂t
+ ∂ρUj

∂xj
= 0, (1)

∂ρUi

∂t
+ Uj

∂ρUi

∂xj
= ∂

∂xj

(
μ

∂Ui

∂xj
− ρuiuj

)
− ∂p

∂xi
+ ρgi + fσ

(2)

where i is the free index, j the dummy index, following Ein-
stein’s notation, t is time, xi and xj are the spatial coordinates,
Ui and Uj the Reynolds-averaged flow velocity components, ui

and uj the fluctuating velocity components, uiuj is the Reynolds
stress term, p the Reynolds-averaged pressure, μ the molecular
viscosity, ρ the density of the fluid, gi the i-coordinate of the
gravitational acceleration vector and fσ the surface tension force
per unit volume defined as:

fσ = σκ
∂γ

∂xi
(3)

Here, σ is the surface tension constant, κ the curvature of the
free surface and γ the phase fraction. This is a dimensionless
variable with values between 0 and 1 that is used to identify any
air–water interface. The energy conservation equation is:

∂ρT
∂t

+ Uj
∂T
∂xj

= ∂

∂xj

(
μ

∂T
∂xj

)
+
(

γ

cv,w
+ 1 − γ

cv,a

)

×
(

−∂ρk
∂t

− Uj
∂ρk
∂xj

− Uj
∂p
∂xj

)
(4)
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where T is the temperature, cv,w and cv,a are the specific
heat capacities at constant volume for water and air, respec-
tively (Van Wylen & Sonntag, 1985). The density of air ρa is
expressed as a function of p and T by the ideal gas law:

ρa = p
RT

(5)

in which:

R = Ru

Mm
= 287 J kg−1 K−1 (6)

is the specific gas constant. Ru = 8.314 J mol−1 K−1 is the ideal
gas constant and Mm = 0.289 kg mol−1 the molar mass of air.
Equation (6) is written in terms of the volume V and the number
of moles n as:

nT = pV
Ru

(7)

The unit of n is mol, i.e. the amount of substance (n =
N/NA with NA as the Avogadro number and N the number
of specific elementary entities, Analytical Methods Committee
AMCAN86, 2019). In this work, the water phase is assumed
to be incompressible with the density ρw constant and energy
transformations are assumed to be isothermal.

The k –ε turbulence model is used for the Reynolds stresses
in Eq. (2) (see Pope, 2000, for more details):

−uiuj = νt

(
∂Ui

∂xj
+ ∂Uj

∂xi

)
− 2/3kδij (8)

where k is the turbulent kinetic energy, δij the Kronecker delta
and νt the eddy viscosity:

νt = Cμk2/ε (9)

k and its rate of dissipation ε are calculated from:

∂k
∂t

+ Uj
∂k
∂xj

= Pk − ε + ∂

∂xj

[
(ν + νt/Cσk )

∂k
∂xj

]
(10)

and

∂ε

∂t
+ Uj

∂ε

∂xj
= Cε1

ε

k
Pk − Cε2

ε2

k

+ ∂

∂xj

[
(ν + νt/Cσε

)
∂ε

∂xj

]
(11)

Pk = ut
∂Ui
∂xj

( ∂Ui
∂xj

+ ∂Uj

∂xi
) and Cε1 = 1.44, Cε2 = 1.92, Cμ = 0.09,

Cσk = 1.0 and Cσε
= 1.3 are the standard model coefficients

used in the k-ε turbulence model (Launder & Spalding, 1974).

2.2 Derivation of the NSLs

The Lie group transformations are defined as:

φ = βαφ φ∗ (12)

Equation (12) transforms the variable φ in the original space
into the variable φ∗ in the transformed (*) space, β is the scal-
ing parameter and αφ the scaling exponent of the variable φ.
The scaling ratio of the variable φ is rφ = φ/φ∗ = βαφ (Ercan
& Kavvas, 2015, 2017).

All the variables of Eqs (1)–(11) in the original domain are
written in the transformed domain as:

x1 = βαx1 x∗
1 , x2 = βαx2 x∗

2 , x3 = βαx3 x∗
3 , t = βαt t∗,

U1 = βαU1 U∗
1, U2 = βαU2 U∗

2, U3 = βαU3 U∗
3, p = βαp p∗,

gi = βαg g∗
i , ρ = βαρ ρ∗, ν = βαν ν∗,

σ = βασ σ ∗, κ = βακ κ∗,

u1 = βαu1 u∗
1, u2 = βαu2 u∗

2, u3 = βαu3 u∗
3,

T = βαT T∗, R = βαR R∗, cv,w = βαcv,w c∗
v,w,

cv,a = βαcv,a c∗
v,a, αMm = βαMm M ∗

m and αn = βαn n∗ (13)

The derivation of the NSLs for Eqs (1)–(3) and Eqs (8)–(11)
essentially follows Catucci et al. (2021) as reported in our
Appendix A. In the present article, the Lie group transforma-
tions are applied to Eqs (4)–(7). Catucci et al. (2021) also
demonstrated that each of the parameters xi, Ui and ui need to
have the same scaling factor in order to achieve self-similarity.
Herein, αx is the unique exponent for length, αU for velocity and
αuu for the Reynolds stress term.

Equation (4) is rearranged as follows, before the Lie group
transformations are applied:

∂ρT
∂t

+ Uj
∂ρT
∂xj

= ∂

∂xj

(
μ

∂T
∂xj

)
− γ

cv,w

∂ρk
∂t

− γ

cv,w
Uj

∂ρk
∂xj

− γ

cv,w
Uj

∂p
∂xj

− 1 − γ

cv,a

∂ρk
∂t

− 1 − γ

cv,a
Uj

∂ρk
∂xj

− 1 − γ

cv,a
Uj

∂p
∂xj

(14)

Equation (14) in the transformed domain is:

βαρ+αT−αt
∂ρ∗T∗

∂t∗
+ βαU+αρ+αT−αx U∗

j
∂ρ∗T∗

∂x∗
j

= βαμ+αT−2αx
∂

∂x∗
j

(
μ∗ ∂T∗

∂x∗
j

)

− βαγ +αρ+αk−αcv,w −αt
γ ∗

c∗
v,w

∂ρ∗k∗

∂t∗
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− βαγ +αU+αρ+αk−αcv,w −αx
γ ∗

c∗
v,w

U∗
j
∂ρ∗k∗

∂x∗
j

− βαγ +αU+αp −αcv,w −αx
γ ∗

c∗
v,w

U∗
j
∂p∗

∂x∗
j

− βαρ+αk−αcv,a −αt
1

c∗
v,a

∂ρ∗k∗

∂t∗

+ βαγ +αρ+αk−αcv,a −αt
γ ∗

c∗
v,a

∂ρ∗k∗

∂t∗

− βαU+αρ+αk−αcv,a −αx
1

c∗
v,a

U∗
j
∂ρ∗k∗

∂x∗
j

+ βαγ +αU+αρ+αk−αcv,a −αx
γ ∗

c∗
v,a

U∗
j
∂ρ∗k∗

∂x∗
j

− βαU+αp −αcv,a −αx
1

c∗
v,a

U∗
j
∂p∗

∂x∗
j

+ βαγ +αU+αp −αcv,a −αx
γ ∗

c∗
v,a

U∗
j
∂p∗

∂x∗
j

(15)

Self-similarity is achieved if Eq. (15) can be obtained from
Eq. (14) by means of a scaling process. Therefore, all terms of
Eq. (15) must be transformed by using the same scaling ratios:

αρ + αT − αt = αU + αρ + αT − αx

= αμ + αT − 2αx

= αγ + αρ + αk − αcv,w − αt

= αγ + αU + αρ + αk − αcv,w − αx

= αγ + αU + αp − αcv,w − αx

= αρ + αk − αcv,a − αt

= αγ + αρ + αk − αcv,a − αt

= αU + αρ + αk − αcv,a − αx

= αγ + αU + αρ + αk − αcv,a − αx

= αU + αp − αcv,a − αx

= αγ + αU + αp − αcv,a − αx (16)

T is an independent parameter meaning that αT is user defined
(its choice is flexible). Since αk = 2αx − 2αt (from Catucci
et al., 2021) and αγ = 0, as γ is a dimensionless parameter, αcv,w

and αcv,a can be written in terms of αx, αt and αT:

αρ + αT − αt = αγ + αρ + αk − αcv,w − αt

⇒ αcv,w = αk − αT ⇒ αcv,w = 2αx − 2αt − αT (17)

and

αρ + αT − αt = αγ + αρ + αk − αcv,a − αt

⇒ αcv,a = αk − αT ⇒ αcv,a = 2αx − 2αt − αT (18)

Hence, αcv,w = αcv,a = αcv . Herein, αcv is the unique exponent for
both αcw and αca . Equation (5) is transformed as follows:

βαρ ρ∗
a = βαp −αR−αT

p∗

R∗T∗ (19)

leading to:

αρ = αp − αR − αT (20)

As αp = 2αx − 2αt + αρ (Eq. A9) the scaling exponent of R is
obtained from Eq. (20) as:

αR = 2αx − 2αt − αT (21)

The Lie group transformations of Eq. (6) yield:

αR = αRu − αMm (22)

where αRu (the scaling exponent of Ru) is also derived from
Eq. (7) written as:

Ru = pV
nT

(23)

The Lie group transformations of Eq. (23) yield the following
equation in the transformed domain:

βαRu Ru = βαp +αV−αn−αT
pV
nT

(24)

leading to:

αRu = αp + αV − αn − αT (25)

αMm is obtained by combining Eq. (22) with Eqs (25) and (A9)
and considering the dimension of V such that αV = 3αx:

αMm = 2αx − 2αt + αρ + 3αx − αn − αT − 2αx

+ 2αt + αT ⇒ αMm = 3αx + αρ − αn (26)

where αn is user defined because n is an independent parameter.
The scaling conditions for compressible flows are summa-

rized in the second column of Table 1 together with those for
gi, p, μ, ν, σ , etc., and all the turbulence variables derived
in Appendix A. All the exponents are written in terms of the
five independent scaling exponents αx, αt, αρ , αT and αn. It is
possible to assign the value of one of the independent scaling
exponents and still preserve self-similarity. For example, in the
fourth column of Table 1, the scaling conditions in terms of αx,
αρ , αg = αR = 0 and αn are presented, where αt = 0.5αx.

Some restrictions have to be introduced to avoid some incon-
sistencies, when the ideal gas is intended to be used also in the
scaled model. First, R must be invariant between the model and
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Table 1 NSLs for the variables of the governing equations for air–water flows including compressibility and heat transfer

Scaling conditions
in terms of αx , αt,

αρ , αT and αn

Scaling conditions in
terms of αx , αρ ,

αg = αR = 0 and αn

Scaling conditions
in terms of αx ,

αR = αT = αMm =
0 and αn = 3αx

Variables Exponents
Scaling
ratios Exponents

Scaling
ratios Exponents

Scaling
ratios

xi (m) αx βαx αx βαx αx βαx

t (s) αt βαt αt = 0.5αx β0.5αx αt = αx βαx

ρ (kg m−3) αρ βαρ αρ βαρ αρ = 0 β0 = 1
T (K) αT βαT αT = αx βαx αT = 0 β0 = 1
n (mol) αn βαn αn βαn αn = 3αx β3αx

Ui (m s−1) αU = αx − αt βαx−αt αU = 0.5αx β0.5αx αU = 0 β0 = 1
p (Pa) αp = 2αx − 2αt + αρ β2αx−2αt+αρ αp = αx + αρ βαx+αρ αp = 0 β0 = 1
gi (m s−2) αg = αx − 2αt βαx−2αt αg = 0 β0 = 1 αg = −αx β−αx

μ (m2 s−1) αν = 2αx − αt β2αx−αt αν = 1.5αx β1.5αx αν = αx βαx

ν (kg m−1 s−1) αμ = 2αx + αρ − αt β2αx+αρ−αt αμ = 1.5αx + αρ β1.5αx+αρ αμ = αx βαx

σ (N m−1) ασ = 3αx − 2αt + αρ β3αx−2αt+αρ ασ = 2αx + αρ β2αx+αρ ασ = αx βαx

κ (m−1) ακ = α−1
x βα−1

x ακ = α−1
x βα−1

x ακ = α−1
x βα−1

x

νt (m2 s−1) ανt = 2αx − αt β2αx−αt ανt = 1.5αx β1.5αx ανt = αx βαx

uiuj (m2 s−2) αuu = 2αx − 2αt β2αx−2αt αuu = αx βαx αuu = 0 β0 = 1
k (m2 s−2) αk = 2αx − 2αt β2αx−2αt αk = αx βαx αk = 0 β0 = 1
ε (m2 s−3) αε = 2αx − 3αt β2αx−3αt αε = 0.5αx β0.5αx αε = −αx β−αx

Pk (m2 s−3) αPk = 2αx − 3αt β2αx−3αt αPk = 0.5αx β0.5αx αPk = −αx β−αx

R (J kg−1 K−1) αR = 2αx − 2αt − αT β2αx−2αt−αT αR = 0 β0 = 1 αR = 0 β0 = 1
cv (J kg−1 K−1) αcv = 2αx − 2αt − αT β2αx−2αt−αT αcv = 0 β0 = 1 αcv = 0 β0 = 1
Mm (kg mol−1) αMm = 3αx + αρ − αn β3αx+αρ−αn αMm = 3αx + αρ − αn β3αx+αρ−αn αMm = 0 β0 = 1

its prototype to preserve the ideal gas behaviour. This leads to
the assumption αR = 0 and from Eq. (21), this implies:

αT = 2αx − 2αt (27)

Combining this condition with Eqs (17) and (18) leads to
αcv = 0 and cv,a and cv,w being invariant between the prototype
and its model.

Since Ru is the universal gas constant, it is invariant between
the model and its prototype and its scaling exponent is αRu = 0.
Since αR = 0, Eq. (22) yields:

αMm = 0 (28)

Furthermore, the molar density Mc represents the number of
moles of a molecule present in a unit volume:

Mc = n/V (29)

The application of the Lie group transformations to Eq. (29)
leads to αMc = αn − αV. In order to preserve the perfect gas
hypothesis both in the model and its prototype, Mc must be
invariant. Indeed, if Mc increases, also the interaction between
the molecules increases and the perfect gas hypothesis might not
hold. Hence, by keeping Mc invariant:

αMc = αn − αV = 0 ⇒ αn = αV ⇒ αn = 3αx (30)

The combination of Eq. (30) with Eqs (26) and (28) leads to
αρ = 0. Therefore, Eqs (A5), (A9) and (A11) reduce to:

αμ = 2αx − αt (31)

αp = 2αx − 2αt (32)

and

ασ = 3αx − 2αt (33)

Hence, to preserve the perfect gas behaviour in the model, ρ,
Mw and R must be kept invariant.

Another restriction is related to the nature of temperature. If
gi is kept invariant, αt = 0.5αx and, from Eq. (27), αT = αx. For
example, if the geometric scale factor l = 2 and β = 1, βαx = 2
and βαT = βαx = 2 (third column of Table 1). Hence, assuming
that the initial temperature T0 of the prototype is at room tem-
perature (293 K), the corresponding temperature of the model
should be 146.5 K, which is below the freezing point. This dras-
tic change of the initial temperature between the model and
prototype suggests that it is convenient to keep T invariant. From
Eq. (27), it follows:

αT = 2αx − 2αt = 0 ⇒ αt = αx (34)

However, this condition is inconsistent with αg = 0 that
imposes αt = 0.5αx (fourth column of Table 1). Hence, it is



6 D. Catucci et al. Journal of Hydraulic Research (2023)

impossible to keep gi , R and T invariant under the same scaling
conditions. The solution is to apply Eq. (34) to αg = αx − 2αt

(second column of Table 1):

αg = −αx (35)

In other words, by keeping R and T invariant, g must be
increased in the model with respect to the prototype. The scaling
configuration that preserves the ideal gas behaviour and avoids a
reduction of T in the scaled model is written in terms of αx, αR =
αT = αMm = 0 and αn = 3αx in the sixth column of Table 1.

3 Numerical model

Air–water flows are simulated by using the compressible two-
phases flow solver compressibleInterIsoFoam, based on the
Volume of Fluid (VOF) method, implemented in the Open-
FOAM v1706 CFD package (Greenshields, 2019). The system
of Eqs (1)–(11), i.e. continuity, momentum, heat transfer and the
equation of state, including the k-ε turbulence model, is solved
with the pressure and velocity fields shared among both phases.
The interface between water and air is identified by a value of
the phase fraction γ between γ = 1 (water) and γ = 0 (air). The
fluid properties used in the governing equations are mapped in
all domains as a weighted average using γ as weight, e.g. for ρ

and ν:

ρ = γρw + (1 − γ )ρa (36)

and

ν = γ νw + (1 − γ )νa (37)

where subscripts w and a refer to the water and air phase,
respectively. σ appears in Eq. (3) to model the surface tension
force per unit volume, as stated in the continuum surface force
method proposed by Brackbill et al. (1992). The curvature of the
interface between two fluids κ is defined as:

κ = − ∂

∂xi

(
∂γ /∂xi

| ∂γ /∂xi |
)

(38)

γ is transported as a scalar by the flow field and the interface
location (e.g. the free surface) is updated by solving the volume
fraction equation:

∂γ

∂t
+ ∂(γ Uj )

∂xj
= 0 (39)

The interface reconstruction technique used by compressibleIn-
terIsoFoam is isoAdvector. This numerical scheme uses iso-
surfaces, a set of points having the same value of γ and cutting
the cells with the free surface. The cells containing the free sur-
face are divided in two sub-cells of the volumetric proportions

determined by γ (Roenby et al., 2016). It is worth mentioning
that the choice of the numerical scheme used to solve the
interface does not affect the numerical validation of the NSLs
(Catucci et al., 2022).

4 Numerical results

4.1 Test case: Taylor bubble

A Taylor bubble is a slug-shaped bubble of gas, raising in a
vertical pipe filled with a fluid. Its behaviour depends on the
gravitational acceleration, viscosity, density, surface tension and
also the compressibility of the fluids (Davies & Taylor, 1950;
Llewellin et al., 2012). It is usually divided in four parts:
(1) a hemispherical tip called the nose, (2) a body surrounded
by a film of fluid, (3) a tail region and (4) a wake, which can
be laminar or turbulent. In this section, the NSLs are applied
to the Taylor bubble presented in the experiments of Pringle
et al. (2015) and in the numerical study of Ambrose et al. (2016).
The fluid inside the bubble is compressible air surrounded by
incompressible water.

Here, CFD simulations are used to validate the NSLs, i.e.
between the solution at different geometrical scales with scale
factors l = lp

lm
, where lp is a characteristic length in the proto-

type (subscript p) and lm the corresponding one in the model
(subscript m).

4.2 Numerical set-up

The numerical domain consisted of a vertical cylinder of height
9.50 m with an internal diameter d = 0.29 m. Initially, the pipe
was filled with water to a depth of 5.00 m. A bubble of air was
introduced close to the bottom of the pipe by setting γ = 0 in
the bubble region. The initial shape of the bubble used in the
numerical simulations was a hemisphere with a radius of 0.14 m
on the top of a cylinder with the same radius and a height of
0.50 m, resulting in a total height of hb = 0.64 m. The nose of
the bubble was located at x3 = 1.64 m from the bottom of the
pipe (Fig. 1). The initial pressure inside the bubble p0 was set at
a constant value matching the hydrostatic water pressure at the
nose. The water had a constant density ρw = 1000 kg m−3, σ =
0.07 N m−1 and the kinematic and dynamic viscosities were
νw = 1 × 10−6 m2 s−1 and μw = 1 × 10−3 kg m−1 s−1, respec-
tively. The initial density of air was ρa,0 = 1 kg m−3, νa =
1.48 × 10−5 m2 s−1 and μa = 1.48 × 10−5 kg m−1 s−1. T0 of the
entire domain was set at 293 K, cv,w = 4195 m2 K−1 s−2 and
cv,a = 1007 m2 K−1 s−2.

The top boundary of the domain was modelled as a fully
transmissive open boundary condition at atmospheric pressure.
The no-slip boundary condition was applied to the remaining
walls including the bottom. Note that, because of the orientation
of the reference frame, gi = (0, 0, −g) in Eq. (2).

A structured O-grid mesh was created with a spacing of
0.0025 m at the wall increasing to 0.0075 m at the centre
(Fig. 1c) while the cells were 0.008 m tall. The mesh was refined
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Figure 1 Schematic illustration of the computational domain at pro-
totype scale: (a) the longitudinal section of the domain, (b) a Taylor
bubble region and (c) a cross-section of the mesh

near the wall to resolve the film around the Taylor bubble. The
time step �t was set to 0.0005 s at the start of the simulation and
it was subsequently varied to respect the Courant–Friedrichs–
Lewy (CFL) condition (Courant et al., 1967):

Uj �t
�xj

< Cmax (40)

where �xj is the mesh size in the Cartesian coordinate system
in the j th direction (j = 1, 2, 3) and Cmax = 0.5 is the maximum
Courant number. The simulations were run on the Univer-
sity of Nottingham high performance computing (HPC) cluster
Augusta. The number of cells in the computational domain was
1,513,200 and it required 8 h to simulate the actual time of
3.4 s by using 16 cores and 15 GB of memory (also for the

corresponding times at reduced scales). All the dimensional
parameters, including the mesh sizes and time steps, were scaled
to the smaller domains according to the selected scaling laws.

4.3 Application of the NSLs

Three self-similar domains, namely T4, T8 and T16, were cre-
ated with geometrical scale factors of l = βαx = 4, 8 and 16,
respectively. To achieve this, it was assumed that αx = 1 such
that β = 4 (T4), 8 (T8) and 16 (T16), respectively. All vari-
ables and parameters were transformed by the scaling exponents
in the sixth and seventh columns of Table 1 (with scaling
conditions in terms of αx, αR = αT = αMm = 0 and αn = 3αx).
Their specific values for the prototype and the scaled models,
obtained by applying the conditions in Table 2, are presented
in Table 3. The prototype was also scaled by using traditional
FSLs (T4F, T8F and T16F) using the same l as in the self-similar
domains and by keeping the fluid properties and the temperature
invariant.

Table 2 Scaling parameters and exponents used to scale the
Taylor bubble prototype values to the corresponding values in
the domains T4, T8 and T16 by using the NSLs

Domain T4 T8 T16

Scaling parameter β 4 8 16
Scaling exponents

Length (m) αx 1 1 1
Time (s) αt 1 1 1
Density (kg m−3) αρ 0 0 0
Velocity (m s−1) αU 0 0 0
Gravitational acceleration

(m s−2) αg

−1 −1 −1

Pressure (Pa) αp 0 0 0
Kinematic viscosity

(m2 s−1) αν

1 1 1

Dynamic viscosity
(kg m−1 s−1) αμ

1 1 1

Surface tension
(N m−1) ασ

1 1 1

Specific heat capacity
(m2 K−1 s−2) αcv

0 0 0

Scaling ratios
Length (m) βαx 4.0000 8.0000 16.0000
Time (s) βαt 4.0000 8.0000 16.0000
Density (kg m−3) βαρ 1.0000 1.0000 1.0000
Velocity (m s−1) βαU 1.0000 1.0000 1.0000
Gravitational acceleration

(m s−2) βαg

0.2500 0.1250 0.0625

Pressure (Pa) βαp 1.0000 1.0000 1.0000
Kinematic viscosity

(m2 s−1) βαν

4.0000 8.0000 16.0000

Dynamic viscosity
(kg m−1 s−1) βαμ

4.0000 8.0000 16.0000

Surface tension (N m−1)
βασ

4.0000 8.0000 16.0000

Specific heat capacity
(J kg−1 K−1) βαcv

1.0000 1.0000 1.0000
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4.4 Results and discussion

The numerical simulation of the prototype overestimates the rise
velocity of the Taylor bubble presented in Pringle et al. (2015)
by approximately 40% with a dimensionless velocity U′

b =
Ub/

√
gd = 0.486, where Ub is the velocity magnitude of the

bubble nose. This difference is due to the errors introduced in
the numerical simulations (Ambrose et al., 2016). It is worth
mentioning that the differences to the experimental results do
not affect the validation of the NSLs as the validation is based
on comparing the results of T1 with the ones from the scaled
domains.

Nevertheless, the general behaviour of the Taylor bubble
agrees qualitatively with the experimental findings of Pringle
et al. (2015). The bubble transits to its stable shape between
dimensionless time t′ = t

√
g/d = 0 and 6 in the prototype.

After t′ = 6, the slug shaped bubble fully forms, rising with a
constant U′

b.
The initial stage of bubble formation is illustrated in Fig. 2,

showing the cross-section x′
2 = x2/d = 0 at t′ = 2.90 of T1, T16

and T16F. Both T1 and T16 show the bubble divided by the
water. Note that the details of the air bubbles differ between T1
and T16; however, the dynamics of the transition of the bubble
to the final shape is the same. This means that self-similarity at
the scale of individual bubbles with dimensions much smaller
than the Taylor bubble is not expected. In T16F, a slug-shape
bubble is formed with a very limited wake and smaller bubbles.

Figure 3 shows the cross-sections x′
2 = 0 of the domains

at t′ = 14.54 for T1, T16 and T16F. The prototype and T16
show the typical slug shape with the nose situated almost at
x′

3 = x3/d = 13. This suggests that there is no scale effect for
Ub by using the NSLs. Further, the shedding of smaller bubbles
can be seen in the wake of the main one. In the domain scaled
with the traditional FSLs the behaviour is significantly differ-
ent. Indeed, the nose is rounder with respect to T1 and the nose
reaches x′

3 = 10. Moreover, the wake contains less air along the
x′

3 axis.

Figure 2 Snapshot of the Taylor bubble at the cross-section x′
2 = 0

and dimensionless time t′ = 2.90 of (a) the prototype, (b) T16 and
(c) T16F

Figure 4 shows the time history of the x′
3 position of the nose.

The slopes of the curves represent U′
b. U′

b is computed after
t′ = 6, i.e. after the initial stage in which the bubble shape is
unstable. As shown in Table 4, U′

b for T4, T8 and T16 are nearly
self-similar with respect to the prototype. Table 4 shows also the
relative differences of U′

b computed as:

EU′
b
= 100

|U′
b,p − U′

b,m|
U′

b,p
(41)

where U′
b,p is the value of U′

b in the prototype and U′
b,m in

the scaled domains. The small differences between the proto-
type and the models scaled with the NSLs are also confirmed in
Fig. 4, where the respective curves do not overlap. Nevertheless,
the differences are not directly proportional to l, as also shown
by EU′

b
, which is even smaller in T16 than in T4 and T8

(Table 4). Hence, there is no evidence that those differences are
related to the increase of l, i.e. due to scale effects. In contrast,

Table 3 Parameters for the Taylor bubble in the prototype and the scaled domains

Domain T1 T4 T8 T16 T4F T8F T16F

Diameter of the pipe d (m) 0.290000 0.072500 0.036250 0.018125 0.072500 0.036250 0.018125
Initial height of the bubble hb (m) 0.640 0.160 0.080 0.040 0.160 0.080 0.040
Initial height of the water plug (m) 3.360 0.840 0.420 0.210 0.840 0.420 0.210
Computational time (s) 3.50000 0.87500 0.43750 0.21875 1.75000 1.23700 0.87500
Gravitational acceleration g (m s−2) 9.81 39.24 78.48 156.96 9.81 9.81 9.81
Initial pressure inside the bubble p0 (Pa) 134286.000 134286.000 134286.000 134286.000 33571.500 16785.750 8392.875
Density of water ρw (kg m−3) 1000 1000 1000 1000 1000 1000 1000
Initial density of air ρa,0 (kg m−3) 1 1 1 1 1 1 1
Kinematic viscosity of water νw (m2 s−1) 1 × 10−6 2.50 × 10−7 1.25 × 10−7 6.25 × 10−8 1 × 10−6 1 × 10−6 1 × 10−6

Dynamic viscosity of water μw (kg m−1 s−1) 1 × 10−3 2.50 × 10−4 1.25 × 10−4 6.25 × 10−5 1 × 10−3 1 × 10−3 1 × 10−3

Surface tension σ (N m−1) 0.07 1.75 × 10−2 8.75 × 10−3 4.38 × 10−3 0.07 0.07 0.07
Specific heat capacity of water cv,w (J kg−1 K−1) 4195 4195 4195 4195 4195 4195 4195
Specific heat capacity of air cv,a (J kg−1 K−1) 1007 1007 1007 1007 1007 1007 1007
Initial temperature T0 (K) 293 293 293 293 293 293 293
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Figure 3 Snapshot of the Taylor bubble at the cross-section x′
2 = 0

and dimensionless time t′ = 14.54 of (a) the prototype, (b) T16 and (c)
T16F

by using the traditional FSLs there is a clear demonstration of
scale effects. Indeed, EU′

b
increases with increasing l, reaching

30.66% in T16F.

It is relevant to analyse whether the NSLs guarantee self-
similarity with respect to Eq. (7). Figure 5 shows the time
histories of the averages of the dimensionless densities ρ ′ =
ρ/ρa,0, temperatures T′ = T/T0 and pressures p ′ = p/p0 inside
the bubbles as well as the variation of the corresponding dimen-
sionless volumes V′ = V/d3, for the self-similar domains. The
prototype T1, T4, T8 and T16 show a sudden increase in ρ ′ and
from t′ = 6, ρ ′ decrease almost linearly. This is due to the transi-
tory stage in which the bubble is suddenly compressed (Fig. 2).
In the prototype, T′ consistently decreases with some fluctu-
ations. This behaviour is also replicated in T4, T8 and T16,
even if the curves do not perfectly overlap. The differences in
T′ between the prototype and the scaled domains are less than
±0.005 such that they do not indicate significant scale effects.
p ′ matches between the prototype and the self-similar domains,
decreasing linearly with the ascent of the bubble. Furthermore,
the volume of the bubble V′ confirms self-similarity between T1,
T4, T8 and T16.

The time histories of ρ ′, T′, p ′ and V′ for the domains scaled
with the traditional FSLs are presented in Fig. 6. In contrast to
the NSLs, T4F, T8F and T16F fail to reproduce the behaviour
of the prototype and the time series of the aforementioned
variables are completely different from those of the prototype
and those obtained with the NSLs. Indeed, ρ ′ decreases and
remains constant from t′ = 0.5 until the end of the simulation.

Since the traditional FSLs overestimate the viscosity and the
surface tension and do not account for the air compressibility,

Figure 4 Time history of the bubble nose location on the x′
3 coordinate for the prototype and all the scaled domains
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Table 4 U′
b for the prototype and all scaled domains

T1 T4 T8 T16 T4F T8F T16F

U′
b 0.486 0.476 0.495 0.482 0.398 0.363 0.337

EU′
b

(%) – 2.06 1.85 0.82 18.11 25.31 30.66

Figure 5 Time histories of the averages of (a) the dimensionless density ρ′, (b) the dimensionless temperature T′ and (c) the dimensionless pressure
p ′ inside each modelled Taylor bubble and (d) the dimensionless volume V′ for T1, T4, T8 and T16

Figure 6 Time histories of the averages of the (a) dimensionless density ρ′, (b) dimensionless temperature T′ and (c) dimensionless pressure p ′
inside the bubbles and (d) the dimensionless volume V′ for T1, T4F, T8F and T16F
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Figure 7 Time history of the void fraction lost in the wake of the bubble for the prototype and the scaled domains

the bubble is not compressed at the beginning of the simulations,
and the initial variation of V′ is smaller (Fig. 6c). Consequently,
ρ ′ decreases suddenly in contrast to the prototype. The over-
estimation of the pressure effects is demonstrated in Fig. 6c,
showing the variation in the slope of p ′ with increasing l. Both
the absolute and relative fluctuations of T′ reduce with increas-
ing l. Finally, in T4F, T8F and T16F, V′ increases in time and
its maximum value increases also with l. Hence, the traditional
FSLs introduce scale effects, which increase with l.

When the bubble rises, the pressure decreases such that the
bubble expands, while also releasing air into the wake and V′

decreases. This occurs in the prototype and in the self-similar
domains. Hence, domains T1, T4, T8 and T16 have more air
in the wake with respect to the domains scaled with tradi-
tional FSLs (Fig. 3). This behaviour is clearly demonstrated in
Fig. 7 showing the time history of the void fraction in the wake,
namely the volume of air in the wake divided by the volume of
the entire domain between the bottom and the free surface. It is
worth mentioning that the void fraction depends on the viscos-
ity, surface tension and the compressibility of the bubble that
in turn is related to the heat exchange between water and air.
Hence, the same amount of void fraction behind the bubbles
shows that all these effects are scaled correctly. The behaviour in
the domains T1, T4, T8 and T16 is the same, having a void frac-
tion around 0.035 at the end of the simulation. The differences
between the self-similar domains may be due to the small dif-
ferences in describing individual bubbles at scales smaller than
the Taylor one, as shown in the initial stages of the motion in
Fig. 2. Nevertheless, the general behaviour of the Taylor bubble
is scaled in T4, T8 and T16 with differences that are not associ-
ated with scale effects, since they are not directly proportional
to l, in contrast to the differences observed in domains T4F,
T8F and T16F. Indeed, the viscosity and surface tension are

overestimated and the compressibility of air and the related heat
exchange are neglected.

5 Conclusions

The Froude scaling laws (FSLs) have been applied to air–
water flows at reduced size for almost a century. A significant
disadvantage of this scaling approach is the introduction of
scale effects due to the overestimation of the viscosity and sur-
face tension. Furthermore, the compressibility of air and heat
exchange are neglected, thus additional scale effects are poten-
tially introduced. In this article, Lie group transformations are
applied to the system of governing equations of compressible
air–water flows to derive novel scaling laws (NSLs), allowing
the modelling of hydrodynamic phenomena at small scales with-
out viscous, surface tension, compressibility and heat exchange
scale effects.

Since the temperature cannot be reduced below the freezing
point and the molar mass as well as the molar density need to be
the same, some restrictions on the scaling exponents are taken
into account. Hence, the scaling configuration used in this work
is expressed as a function of the scaling exponents of the length
αx, the specific gas constant αR, the temperature αT, the molar
mass αMm and the number of moles αn.

The derived NSLs were validated numerically with the sim-
ulation of a Taylor bubble. Computational fluid dynamics sim-
ulations allow for testing a wide range of conditions, including
domain T16, where the model size was relatively small. The
results show that the general behaviour of the phenomenon is
correctly scaled. The small differences observed between the
models and the prototype are not due to scale effects but the
divergences in describing the motion of individual bubbles that
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have dimensions much smaller than the Taylor one. In contrast,
the FSLs introduce scale effects proportional to the geometri-
cal scale factor, showing a distinct behaviour with respect to the
prototype and those obtained with the NSLs.

An advantage of this novel scaling method is that it uses
the system of governing equations of the phenomenon and it
provides a complete picture of the conditions that all the parame-
ters and variables involved must satisfy to obtain self-similarity.
Hence, the NSLs are more general than the FSLs based on the
hypothesis that the viscosity, surface tension, compressibility of
air and heat exchange are unscaled.

The scaling configuration proposed implies that the gravita-
tional acceleration g needs to be increased in the model, since
its scaling exponent is negative (αg = −αx). This can be done in
the laboratory by conducting centrifuge model tests (e.g. Zhang
et al., 2009). Alternatively, future works can focus on finding
other scaling configurations, e.g. the application of Lie group
transformations to compressible air–water flows under adiabatic
conditions.
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Notation

Cmax = maximum Courant number (–)
Cε1, Cε2, Cμ, Cσk and Cσε

= standard coefficients used in the
k-ε model (–)

cv = specific heat capacity (m2 K−1 s−2)
d = bubble diameter (m)
EU′

b
= relative differences in the Taylor bubble velocity (

fσ = surface tension force (N)
F = Froude number (–)
gi = gravitational acceleration (m s−2)
hb = initial height of the bubble (m)
k = turbulence kinetic energy (m2 s−2)
l = characteristic length (m)
Mc = molar density (mol m−3)
Mm = molar mass (kg mol−1)

n = number of moles (mol)
N = number of specific elementary entities (–)
NA = Avogadro number (–)
p = Reynolds-averaged pressure (Pa)
p ′ = average of the dimensionless pressure inside the

Taylor bubble (–)
p0 = initial pressure inside the Taylor bubble (Pa)
Pk = Production of turbulence due to horizontal velocity

gradients (m2 s−3)
R = Reynolds number (–)
R = specific gas constant (m2 K−1 s−2)
Ru = ideal gas constant (J mol−1 K−1)
T = temperature (K)
T′ = average of the dimensionless temperature inside the

Taylor bubble (–)
T0 = initial temperature inside the Taylor bubble (–)
t = time (s)
t′ = dimensionless time (–)
Ub = velocity of the Taylor bubble (m s−1)
U′

b = dimensionless velocity of the Taylor bubble (–)
U = Reynolds-averaged flow velocity components (m

s−1)
U′ = dimensionless Reynolds-averaged flow velocity

components (–)
u = fluctuating velocity components (m s−1)
uiuj = Reynolds stress term (m2 s−2)
V = air volume (m3)
V′ = dimensionless air volume (–)
W = Weber number (–)
x = spatial coordinates (m)
x′ = dimensionless spatial coordinates (–)
αc,v = scaling exponent for the specific heat capacity (–)
αfσ = scaling exponent for the surface tension force (–)
αg = scaling exponent for the gravitational acceleration

(–)
αk = scaling exponent for the turbulence kinetic energy

(–)
αMm = scaling exponent for the molar mass (–)
αn = scaling exponent for the number of mole (–)
αp = scaling exponent for the pressure (–)
αPk = scaling exponent for the production of turbulence

due to horizontal velocity gradients (–)
αR = scaling exponent for the specific gas constant (–)
αT = scaling exponent for the temperature (–)
αt = scaling exponent of the time (–)
αU = scaling exponent for the velocity (–)
αu = scaling exponent for the velocity fluctuation (–)
αuiuj = scaling exponent for the Reynolds stress term (–)
αx = scaling exponent of the length (–)
αε = scaling exponent for the dissipation of the turbulent

kinetic energy (–)
ακ = scaling exponent for the curvature of the free surface

(–)
αμ = scaling exponent for the dynamic viscosity (–)
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αν = scaling exponent for the kinematic viscosity (–)
ανt = scaling exponent for the eddy viscosity (–)
αρ = scaling exponent for the density (–)
ασ = scaling exponent for the surface tension (–)
αφ = scaling exponent of φ (–)
β = scaling parameter (–)
γ = phase fraction (–)
�t = time step (s)
�x = mesh size (m)
δij = Kronecker delta (–)
ε = rate of dissipation of the turbulent kinetic energy (m2

s−3)
κ = curvature of the free surface (m−1)
l = geometrical scale factor (–)
μ = dynamic viscosity ( kg m−1 s−1)
ν = kinematic viscosity (m2 s−1)
νt = eddy viscosity (m2 s−1)
ρ = density (kg m−3)
ρ ′ = initial dimensionless density of air inside the Taylor

bubble (–)
ρ ′ = average of the dimensionless density inside the Tay-

lor bubble (kg m−3)
σ = surface tension (N m−1)
φ = variable in the original space (various)
φ∗ = variable in the transformed space (various)

Subscripts

a = air
F = Froude
i = free index
j = dummy index
m = model
p = prototype
U′ = dimensionless velocity (–)
w = water
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Appendix A

The Lie group transformations for Eq. (1) yield the following
equations in the transformed domain:
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Self-similarity is guaranteed if the scaling ratios of all terms in
Eq. (A1) are the same, implying that the exponents of all terms
must also be the same:

αρ − αt = αρ + αU − αx ⇒ αU = αx − αt (A2)

This confirms that the scaling condition for the velocity is the
same as for incompressible flows in Catucci et al. (2021).

The Lie group transformations for Eq. (2) yield the following
equation in the transformed domain:

βαρ+αU−αt
∂ρ∗U∗

i

∂t∗
+ β2αU+αρ−αx U∗

j
∂ρ∗U∗

i

∂x∗
j

= βαμ+αU−2αx
∂

∂x∗
j

(
μ∗ ∂U∗

i

∂x∗
j

)
− βαρ+αuu−αx

∂

∂x∗
j
(ρ∗u∗

i u∗
j )

− βαp −αx
∂p∗

∂x∗
j

+ βαρ+αg ρ∗g∗
i + βαfσ f ∗

σ (A3)

Equation (A3) is self-similar if:

αρ + αU − αt = 2αU + αρ − αx

= αμ + αU − 2αx

= αρ + αuu − αx

= αp − αx

= αρ + αg

= αfσ (A4)

From Eq. (A4) the scaling exponent of μ is obtained as:

αρ + αU − αt = αμ + αU − 2αx ⇒ αμ = αρ + 2αx − αt

(A5)

The Lie group transformations for Eq. (3) result in:

βαfσ f ∗
σ = βασ +ακ+αγ −αxi σ ∗κ∗ ∂γ ∗

∂x∗
i

(A6)

The dimension of κ is the inverse of a length such that ακ =
−αxi . Further, αγ = 0 because γ is dimensionless. Hence,
Eq. (A6) reduces to:

αfσ = ασ − 2αxi (A7)

αg , αp and αν are obtained from Eq. (A4) and they can be written
in terms of αx, αt and αρ as:

αρ + αU − αt = αρ + αg ⇒ αg = αx − 2αt (A8)

αρ + αU − αt = αp − αx ⇒ αp = 2αx − 2αt + αρ (A9)

By using Eqs (A4) and (A7):

αU − αt = αfσ − αρ ⇒ αx − 2αt = ασ − 2αx − αρ (A10)

from which:

ασ = 3αx − 2αt + αρ (A11)

Similarly, the application of the Lie group transformations to
Eqs (8)–(11) are reported in Catucci et al. (2021) with the
derivation of ανt , αk, αε and αPk .
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