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Abstract:  Synthetic Aperture Radar (SAR) is traditionally used in the identification, mapping, 
and analysis of petroleum slicks, regardless of their origin. On SAR images, oil slicks appear as 
dark patches that contrast with the brightness of the surrounding sea surface. This distinction 
allows for automated detection algorithms to be designed using computer vision methods for 
objective oil slick identification. Nevertheless, efficient interpretation of the SAR imagery by 
statistical analysis can be diminished due to the speckle effect present on SAR images, a 
granular artefact associated with the coherent nature of SAR, which visually degrades the 
image quality. In this study, a quantitative and qualitative assessment of common SAR image 
despeckling methods is presented, analyzing their performance when applied to images 
containing natural oil slicks. The assessment is performed on Copernicus Sentinel-1 images 
acquired with various temporal and environmental conditions. The assessment covers a diverse 
area of filters that employ Bayesian and non-linear statistics in the spatial, transform and 
wavelet domains, focusing on their demonstrated performance and capabilities for edge and 
texture retention. In summary, the results reveal that filters using local statistics in the spatial 
domain produce consistent desired effects. The novel SAR-BM3D algorithm can be used 
effectively, albeit with a higher computational demand.  

Supplementary material: Implementations of the speckle filters used in this paper are made 
available at: https://github.com/cavrinceanu/specklefilters under an MIT license. All figures are 

available at: 10.6084/m9.figshare.12935159 . All table data is available at: 

10.6084/m9.figshare.13010405.  
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The offshore discharge of oil can have significant effects on marine ecology, the impact of which 
is dependent on the sensitivity of specific living organisms to the exposed surfactant. According 
to Migliaccio et al. (2005), the presence of oil can disrupt the life cycle of marine coastal 
communities. This disruption is dependent on the quantity, physical and chemical 
characteristics, location, seasonality, water depth and other metocean conditions. The main 
sources of oil pollution in the marine environment are linked to accidents involving tankers, 
leaking pipelines or damaged oil rigs, or intentional discharges such as bilge dumping and ship 
tank cleaning (National Research Council (US) Committee, 2003). Another common source is 
oil runoff into the ocean from land and coastal facilities following rainfall. A quantity ranging from 
20 ×103 to 60 ×103 tonnes per year has been estimated to enter the oceans as a result of 
anthropogenic activities, accounting for approximately 53% of the total oil in global marine 
waters (National Research Council (US) Committee, 2003). 

It is less widely acknowledged that the remaining 47% of the total is released naturally through 
seepage of oil from reservoirs and the erosion of hydrocarbon bearing sediments. An early 
estimate of the rate of natural oil discharge was provided by Wilson et al. (1974) at 600 ×103 
tonnes per year, while Farrington (1985) estimated this at 250 ×103 tonnes per year a decade 
later. The most recent attempt to quantify the total natural hydrocarbon content in the ocean 
was by Kvenvolden and Cooper (2003), who note that a rate of 200 ×103 to 2 ×106 tonnes per 
year offers an accurate range for evaluation, which is also supported by National Research 
Council (US) Committee (2003). Current estimates vary considerably due to a shortfall in 
accurate and comprehensive assessments of the petroleum input into the marine environment. 
Thus, there is a clear need for an effective programme for detecting, mapping and quantifying 
the volume of both natural and anthropogenic petroleum discharges.  

Synthetic Aperture Radar (SAR) images are usually acquired from spaceborne or unmanned 
aerial vehicles using active sensors that operate in the microwave region of the electromagnetic 
spectrum. The wavelengths at which SAR systems operate (from centimeters to meters) offers 
the advantage of high spatial sampling and wide area coverage regardless of the cloud cover or 
sun illumination conditions. SAR has therefore been a valuable resource for both land and 
oceanic applications. On land, SAR data has been successfully used in research and 
operational workflows across multiple fields: geology, agriculture, natural hazards assessment, 
forestry, urban and infrastructure monitoring being some of the most common examples. 
Offshore, marine environmental monitoring and ocean surveillance are just two of the many 
uses of SAR data. In this regard, SAR data has been traditionally used in the analysis of 
metocean phenomena (e.g. internal waves (Apel, 2004), surface circulation (Lyzenga et al., 
2004) or sea-ice (Pichierri and Rabus, 2018), monitoring marine traffic (Pichel et al., 2004) and 
surface slicks (Alpers and Espedal, 2004)).  

In marine waters, wind stress creates surface roughness which translates into a short and a 
long wave spectrum, and the presence of oil affects both. Periodic short surface waves 
travelling towards or away from the radar sensor, with a length comparable to the radar 
wavelength, act to scatter some of the radar signal back towards the sensor, a mechanism 
described as Bragg scattering (Holt, 2004); the primary mechanism for backscattering radar 
pulses (Valenzuela, 1978).The strength of the signal reflected by a surface is represented in 
terms of its brightness in a radar amplitude image.  Hence, due to its roughness, the water 
surface will appear radiant (Holt, 2004). However, oil slicks, independent of their origin, manifest 
as dark features against the luminous surrounding environment in an amplitude image. This is 
because hydrocarbon fluids are interacting with the smaller scale waves by dampening them 
(Holt, 2004; Brekke and Solberg, 2005) through what was described as the Marangoni Effect 



(Hühnerfuss et al., 1983; Girard-Ardhuin et al., 2003). Capillary and shortgravity waves (i.e., 
short surface waves driven by the effects of surface tension and gravity) produced by wind 
stress at liquid surfaces have regular transverse motion. Areas covered by oil experience a 
change in visco-elastic properties producing a difference in the surface stress gradient, 
opposing normal dissipation patterns, and creating longitudinal motion. Dampening of the high 
frequency ripples occurs when the two kinds of waves are in resonance and is controlled by the 
nature, density and viscosity of the film layer (Girard-Ardhuin et al., 2003). Natural hydrocarbons 
resulting from seepage usually create thin, monomolecular layers, whereas thick crude oils, 
fuels and other derivatives will coat the surface differently and introduce further changes in the 
dampening process. This latter process is still a subject of ongoing debate (Migliaccio et al. 
2005). However, a consensus exists that when microwave pulses transmitted by the SAR 
instrument are incident upon the flattened area, the Bragg scattering mechanism is inhibited, 
which translates into a dark patch delineating the oil slick on a SAR image.  

Due to the distinct contrast between the open sea and an oil slick, SAR imagery has been 
extensively exploited in semi-automatic operational workflows for oil slick detection and 
mapping (Solberg et al., 1999; Girard-Ardhuin et al., 2003; Keramitsoglou et al. 2003; Brekke 
and Solberg, 2005; Solberg and Brekke, 2008). Slick identification on SAR data is highly 
dependent on the exact air-sea conditions pertaining during the acquisition, the SAR system 
configuration and position and the performance of the detection algorithm. The latter of these 
relies on the ability to recognize slick-like structures and correctly classify them as of 
hydrocarbon nature against similar surfactant slicks. In many cases – particularly within the oil 
industry – this task is performed manually through expert interpretation, owing to the challenges 
of implementing automated algorithms and a degree of ambiguity about their efficacy in being 
capable of detecting the subtleties of oil spill phenomena. Nonetheless, manual interpretation 
can be laborious when mapping slicks spanning large areas and somewhat subjective, and so 
progression towards a more reliable, automated, and objective processing chain has long been 
sought and debated within the scientific community. 

A semi-automatic workflow involving the use of single-polarized SAR data from ERS-1 was 
proposed by Solberg et al. (1999) and has been adopted as a standard algorithm for operational 
processes and research. The procedure involves basic image processing steps that make use 
of local statistics. Several subsequent studies retained the same processing steps (pre-
processing, dark feature extraction, classification and analysis) but have suggested various 
improvements (Brekke and Solberg, 2005; Solberg and Brekke, 2008; Suresh et al., 2015). A 
key step in the workflow is the initial image pre-processing performed in preparation for 
segmentation, which comprises geometric and radiometric calibration and, importantly, image 
enhancement.  

Due to the coherent nature of SAR imagery (Migliaccio et al., 2005), images are affected by 
speckle ‘noise’, inducing a grainy appearance and introducing a large backscatter variation even 
over homogeneous areas. The ‘salt and pepper’ effect, generated by the interference of echoes 
returning from individual scatterers (e.g., ocean wave geometries) within a resolution cell 
(Woodhouse 2017), diminishes the quality of the image. This alternating pattern of dark and 
bright pixels affects the performance of computer vision algorithms, with dark pixels often 
classified and grouped as pertaining to a dark formation, regardless of their distribution across 
the scene. Images in which the speckle effect has been mitigated present a much better 
distribution of the pixel values, similar to a smoothing or blurring operation, where the granular 
variability has been reduced. This can facilitate the grouping of pixels with similar values into 
contiguous dark objects or regions within an image. Therefore, successful pixel clustering and 



extraction of dark formations through segmentation is highly dependent on effective suppression 
of this speckle artefact during the image enhancement pre-processing stage.  

The published literature presents a wide variety of speckle filtering techniques applied to SAR 
imagery, while also examining their efficiency (Argenti et al., 2013). However, the performance 
of such filters is generally assessed using synthetic images or simulated SAR images. The 
absence of ground-truth data means that these studies provide only an approximate estimation 
of the practical efficiency of speckle filters. In reality, SAR data displays a great radiometric and 
geometric complexity that cannot be fully recreated artificially. Frequently, after an initial 
analysis on artificial imagery, the same despeckling methods are also applied to real SAR 
acquisitions (Mansourpour et al., 2006; Nezry, 2014; Kupidura, 2016). Very few such studies, 
however, perform assessments on scenes acquired over marine environments. While the 
speckle principle remains the same, the variations induced by the distributed presence of local 
scatterers does provide a distinct noise reflectivity pattern.  

Furthermore, studies related to oil slick detection rarely justify their decision to opt for a 
particular speckle filter over other candidates. Accordingly, common practice in the literature 
tends to dictate the choice of filtering technique employed in many other studies. The general 
consensus is that the filter should be able to effectively smooth large homogenous areas, retain 
edges and linear features and, most importantly, not alter image statistics significantly. Methods 
that have frequently exhibited these characteristics in the literature are often presumed to be 
viable candidates in any case. However, this may not necessarily be a valid assumption, 
especially given that every scene is unique in terms of the air-sea conditions and SAR imaging 
configuration at the time of acquisition.  

Another factor that requires consideration is the implementation of a given despeckle filtering 
algorithm across the various software packages and toolboxes widely utilized for SAR image 
processing. Whilst it could be assumed that this is consistent, subtle differences in the coding of 
the algorithms are likely between different programming languages. Therefore, the failure to 
perform a prior assessment of a method could result in substandard despeckling performance, 
which will ultimately affect the oil slick detection capability.  

This study offers a review of the use of a series of common speckle filtering algorithms over a 
set of real SAR images containing confirmed natural marine oil slicks. The objective is to 
provide a quantitative assessment of their effectiveness in suppressing speckle and 
recommendations on which filters to adopt. To the best of our knowledge, only a handful of 
studies have approached this application from the perspective of speckle filtering efficiency 
(Bharaneswari et al., 2015). Specifically, a study by de Souza et al. (2006) appears to be the 
only previous attempt to provide a brief assessment of speckle filter behavior when applied to 
SAR data containing oil slicks. 

In this analysis, the performance of despeckling is assessed only over incoherent SAR data, 
where the expression of noise is found in the amplitude or intensity information. Methods 
pertaining to the use of polarimetric SAR are beyond the scope of this study, although 
polarimetric oil slick detection techniques have received attention in recent years (Migliaccio et 
al., 2015); comprehensive reviews on the effectiveness of these techniques are provided 
elsewhere (Touzi and Lopes, 1994; Jong-Sen Lee et al., 1999, 2009; Lee and Pottier, 2009). A 
selection of speckle filters is presented, together with their literature sources and performance 
metrics. The selection is based on a wide spectrum of definitions as reported in Argenti et al. 
(2013) and a review of the oil spill detection literature. The chosen set of filters captures the 



diversity in the different types of filters available and permits the timely comparison of classical 
filters alongside more modern and complex approaches to evaluate the benefits they may offer. 
The despeckling procedure on two separate datasets (Normalized-Radar Cross Section (NRCS) 
and digital number (DN) intensity) and performance metrics are presented. The results are 
discussed with respect to these performance metrics and a visual analysis.  

DESPECKLING METHODS 

Speckle manifests itself as the distinctive “salt and pepper” appearance on SAR imagery. The 
effect is caused by the presence of multiple elementary scatterers generating electromagnetic 
fading within a single SAR resolution cell. Goodman (1976) explains how the distance between 
the surface scatterers induced by surface microscopic roughness (i.e., at wavelength scale) and 
the SAR system can be translated into a coherent transmission of frequency, but a loss of 
phase coherence. When the returned echoes combine constructively the signal is amplified, and 
conversely, if the waves are out of phase, the signal strength decreases. The pixel-by-pixel 
variation in signal intensity is translated into speckle.  

In the case of marine surfaces, phase decorrelation is caused by the random change of surface 
scatterers, the position of the instrument with respect to the illuminated cell area, and the 
amplitude of each generated wave, which is also dependent on the surface characteristics. In 
general, the speckle model can be described either in relation to the phase or to 
amplitude/intensity, both of which are polarimetric properties. Here, we consider the single 
polarization multiplicative model (Figure 1).  

The hypothesis is that a single resolution cell contains a random distribution of many scatterers 
(Woodhouse, 2017). In this case, the real (Re, zi) and imaginary (Im, zj) components of the 

return SAR signal are Gaussian distributed. The mean is zero and the variance is m/2, where 
m is determined as the average between the individual amplitudes/intensities of each scatterer. 
Oliver and Quegan (2004) propose a normal probability distribution function (PDF), P, used to 

approximate the probability of the zi and zj values to occur at any point location (Equation 1):  

𝑃(𝑧𝑖 , 𝑧𝑗) = (
1

𝜋𝑚
)(−

𝑧𝑖
2+𝑧𝑗

2)

𝑚  ,                                              (1) 

If the result of P is 1, the phase angle is uniformly distributed and all the real and imaginary z 

values are equally likely to occur, with any amplitude, A ∈ [0, ∞]. In the case of SAR scenes 

acquired over land, A follows the Rayleigh distribution (Equation 2) that is defined by the diffuse 

scattering model (Ulaby and Lang, 2014): 

 𝑃(𝐴) =  
2𝐴

𝑚
𝑒−𝐴2/𝑚,   𝐴 ≥ 0                                         (2) 

Since the intensity (I) is the square-root of the amplitude, the value of I can be easily retrieved 

(Equation 3): 

𝑃(𝐼) =  
1

𝑚
𝑒−𝐼/𝑚,    𝐼 ≥ 0                                     (3) 



As the intensity varies exponentially towards 0, the mean and the standard deviation are both 

equal to m. Since m is the expression of the power, it can be translated as the power radiated 

from one target and, when averaged, referred to as the radar cross-section (RCS) (Nezry, 2014; 
Woodhouse, 2017). The RCS will give the value of the target pixel when the SAR image is 
constructed. To understand speckle distribution, knowledge about the power is essential. 
However, since the distribution of the intensities is not Gaussian, but skewed following the 
scattering model, the power estimation has a 0-100% uncertainty signifying a large variation 
(Oliver and Quegan, 2004).  

Ocean speckle mechanisms differ from that for standard land scenes described above. Instead, 
the scattering characteristics over the ocean are explained by the joint contribution of the short 
and long wave spectrum. In this particular case, the K-distribution model is more convenient, 
fitting the theoretical framework of wind-wave relationship and induced electromagnetic 
scattering interaction (Migliaccio et al. 2019). At ocean level, a SAR resolution cell covers an 
area comparable to the scale of long waves, therefore, the measured intensities are combined 
contributions of small- and large-scale roughness. Since the marine surface is in constant 
dynamic, the number of scatterers varies randomly, causing variability in the observed RCS 
values due to minute changes in geometric configuration and radiated power. It is already 
known that the RCS follows a negative exponential distribution model (Equation 3), explicitly, 
the gamma-distribution. Hence, the scattered coherent radiation is K-distributed (Equation 4) for 
explaining the randomness of the intensities (Redding, 1999).  

𝑃(𝐼) =  
2

Γ(𝜈)𝜇𝜈+1
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2 𝐼
𝜈−1

2 𝐾𝜈−1 (
2

𝜇
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Here, the 𝐾𝜈−1(∙) is the modified Bessel function of the second order of 𝜈 − 1, used here for 

explaining the radar signal model, 𝜈 is the shape parameter which explains the non-Gaussian 

distribution of intensities, Γ(∙) is the Gamma density function and 𝜇 refers to the backscatter 
mean local variance. 

To reduce the variation, the spatial distribution of the independent target measurements must 
be equalized. While a simple moving window averaging the various measurements may appear 
sufficient, the precision of it is not sufficient. As the window is moved around the image, different 
targets measurements might be cumulated, resulting in erroneous values, and reducing the 
spatial resolution. An elegant manner for overcoming this issue is to apply a procedure specific 
to SAR systems known as multilooking (Franceschetti and Lanari, 2018), prior to pixel ground 
detection.  
 
Multilooking takes advantage of the multiple “sub-apertures” that synthetically compose the full 
aperture of the SAR. Each “sub-aperture” will register a different measurement of the same 
target in the radar cell at a reduced azimuth resolution, which will be reconstructed into a single 

value composed of multiple “L -looks”. In this manner, same-cell retention is guaranteed. “L -
looks” are recomposed incoherently over the amplitude only, this time. The incoherent average 
is not dependent on the phase angle; thus, it will allow the estimation of the amplitude and 
intensity value without considering the phase shift.  

While multilooking is an effective step for mitigating the speckle present in a SAR image, the 
trade-off is still a reduction in spatial resolution, which will be degraded by the same number of 



looks. To compromise, multilooking is often performed with a lower number of looks as a pre-
processing step.  

To further reduce the variability of speckled images, other methods requiring incoherent 
averaging may follow an initial application of multilooking on Single Look Complex (SLC) 
images. However, SLC SAR data processing results in a change in the speckle model such that 
it no longer follows the initial electromagnetic fading model. Therefore, speckle noise can 
instead be treated as a spatial variation of reflectivity of the illuminated surfaces (changes in 
brightness and contrast), rather than a spatial distribution of coherent signal returns.   

In practice it is convenient to describe power distribution using a multiplicative noise model (Lee 
1980, 1981) as: 

𝑧(𝑖, 𝑗) = 𝑥(𝑖, 𝑗)  ×  𝜈 (𝑖, 𝑗) ,                                              (5) 

where z(i, j) is the amplitude/intensity power of the SAR image for a given image pixel, x(i, j) is 
the reflectance value of the pixel and ν(i, j) is the estimated noise.  

The main objective of speckle filtering is to create a denoised image with enhanced 
amplitude/power and suppressed noise, without sacrificing any of the information content. The 
ideal method should smooth in homogenous areas and preserve boundaries of structural 
elements and textural (fine-detail) patterns (Lee et al., 1994; Nezry, 2014). For marine surfaces 
with oil slicks, the key requirements target the smoothing efficiency and edge and fine-detail 
retention. 
  
Reviews of generic speckle filters used for denoising SAR images are provided by several 
authors (Lee et al., 1994; Zhenghao Shi and Fung, 1994; Touzi, 2002; Argenti et al., 2013; Li et 
al., 2018). Specific novel filters not covered by the reviews are typically presented in standalone 
studies. These filtering techniques are constructed using different combinations across different 
signal domains for speckle estimation, such as in the spatial, homomorphic or wavelet space 
(Argenti et al., 2013).  

Research involving oil spills should consider the specifics of marine spatial speckle, which are 
explained for the polarimetric case by Gambardella (2007), but can be reduced to the single-
look case. Based on an extensive review of the literature, the following filtering techniques were 
identified as being amongst the most commonly utilised: only multilooking (Leberl, 1990), the 
Enhanced Lee Filter (Suresh et al., 2015), Lee filter and a custom morphological filter (Gasull et 
al., 2002), Lee filter (Brekke and Solberg, 2005; de Souza et al., 2006), Median filter (Mera et 
al., 2012), and a succession of Lee filters and Median filters (Karathanassi et al., 2006). From 
this it is evident that filters applied in the spatial domain are the most preferred.  

This study aims to provide a comprehensive evaluation of the performance of a diverse array of 
different types of filters. These chosen filters were selected with the following criteria in mind:  

1. Classical filters: classical techniques that have been widely described and applied in the 
published literature (e.g., Lee Filter, Enhanced Lee Filter, Median filter, Frost Filter, 
Gamma Map). 

2. Refined filters: filters that have undergone subsequent refinement and has improved in 
comparison to the original version (e.g., Enhanced Lee Filter, Refined Lee Filter, 
Enhanced Frost, Lee Sigma). 



3. Emerging filters: new and emerging filters that reflect recent developments in the field 
(e.g., SRAD, Bilateral filtering, SAR-BM3D, i-DWT).  

4. New filters applied to ocean applications: techniques that, to the best of the authors 
knowledge, have not yet been assessed in relation to ocean applications (e.g., SAR-
BM3D, Guided Filter, SRAD, i-DWT) 

5. Accessible filters: widely accessible filters that are commonly implemented in standard 
SAR processing software/toolboxes (e.g., Lee filter and variations, Frost filter, Gamma 
Map). 

6. Non-Bayesian filters: filters that expand the diversity beyond the abundance of 
techniques based on Bayesian statistics in the spatial domain (e.g., Bilateral, Guided 
filter, SAR-BM3D, SRAD). 

Eleven of the filters chosen for comparison in this study operate in the spatial domain using 
Bayesian statistics. Eight of those use linear statistics for estimating noise levels and 
approximate intensities (one simple: Median; seven complex: Lee, Lee Sigma, Enhanced Lee, 
Refined Lee, Frost, Enhanced Frost, Gamma Map), whereas one is defined using a non-linear 
approach (Symmetric Nearest Neighbor). To enhance the diversity and include contemporary 
methods, three common non-Bayesian filters were also considered (Speckle reducing 
anisotropic diffusion – SRAD, Bilateral filtering, Guided Filter). For enhanced 
comprehensiveness, a filter operating in the transform domain, SAR Block Matching 3-D (SAR-
BM3D), a recent and popular multi-resolution method, was chosen for comparison. SAR-BM3D 
is based on integrating wavelets and non-local weighted averaging, Finally, a hybrid Improved 
Discrete Wavelet Transformation (i-DWT) using an implementation proposed by Choi and Jeong 
(2019) was selected for demonstrating the capabilities of combined approaches in the frequency 
domain. 

Bayesian methods in the spatial domain (filters based on linear statistics) 

Median filter 

The Median filter is a simplistic local-statistical technique that does not account for the 
distribution of speckle. A moving window replaces the value of the center pixel with that of the 
median value of all the surrounding pixels in the kernel. The filter has a good smoothing 
capability but is rudimentary when encountering edges. Small windows provide considerable 
edge smoothing and fine-detail loss with little speckle removal (Woodhouse, 2017).  

Lee filter and Lee Sigma filter 

The original Lee filter (Lee, 1980, 1981) utilizes the statistical distribution of values in a local 
moving window for estimating the value of the center pixel. An assumption is made that the 
distribution of noise will be Gaussian. The center pixel (DNin) is replaced with a new value 
(DNout) based on the mean and variance of surrounding kernel pixels (Equation 6): 

𝐷𝑁𝑜𝑢𝑡 = 𝜇 + 𝐾(𝐷𝑁𝑖𝑛 − 𝜇), 

𝐾 =
𝑉𝑎𝑟(𝑥)

𝜇2𝜎2+𝑉𝑎𝑟(𝑥)
    ,                                                      (6)                                       



where μ is the mean of the moving window pixels (x), σ is the standard deviation and Var(x) is 
the variance of pixels within the window. The K factor represents a weighting factor. An 
advantage of the Lee filter is that it can preserve edge sharpness while suppressing noise.  

The Lee Sigma filter (Lee, 1983) also assumes a Gaussian distribution of noise, but unlike the 
Lee filter, the presumption is that the samples will fall within 95% of a two standard deviation 
range (Mansourpour et al., 2006). An improved version of the Lee Sigma filter has been 
proposed by Jong-Sen Lee et al. (2009).  

Enhanced Lee filter 

The Enhanced Lee filter represents an adaptation of the Lee filter, as presented by Lopes et al. 
(1990). Similarly, it uses local statistics within a moving window, where local heterogeneity in 
the image is classified according to three possible scenarios: 

1. The area is homogenous, and the center pixel value is replaced by the average in the 
filter window. 

2. The area is heterogenous, and the new value of the center pixel is replaced by the 
weighted average in the filter window. 

3. An area defined by a point target where the initial value of the pixel is preserved. 

 

Refined Lee filter 

The Refined Lee filter is different from the Enhanced Lee filter. The Refined Lee Filter (Lee and 
Pottier, 2009) uses a method adapted to utilise larger moving windows, a computational 
requirement that was difficult to achieve when the Lee filter was first proposed. The window 
used by the Refined Lee filter is non-square, but adapted to fit multiple directions (vertical, 
horizontal and diagonal) across the four possible axes of an image. This adaptation provides an 
increased capacity for detecting edges. Eight possible edge-masks are described in Equation 7.  

[
−1 0 1
−1 0 1
−1 0 1

 ]   ;     [
0 1 1

−1 0 1
−1 −1 0

   ] ;  [
1 1 1
0 0 0

−1 −1 −1
] ; [

1 1 0
1 0 −1
0 −1 −1

]  

[
1 0 −1
1 0 −1
1 0 −1

 ]   ;     [
0 −1 −1
1 0 −1
1 1 0

   ] ;  [
−1 −1 −1
0 0 0
1 1 1

] ; [
−1 −1 0
−1 0 1
0 1 1

]                    (7) 

An original fixed 7x7 (or greater) window is defined with this filter, although when applied, the 
window is subdivided into 3x3 sub-windows where the mean of each is computed. The 
reconstruction of the original window enhances the weighting of pixels closer to the center pixel.  

Frost filter and Enhanced Frost 

The Frost method (Frost et al., 1982) is similar to the Lee filter in that it also possesses 
capabilities for edge preservation. In this method, a circular kernel is used instead of a square 
one. The pixel’s gray level or intensity is estimated by computing the weighted sum of the center 



pixel value, and the mean and variance within the kernel. Unlike the Lee filter, the Frost method 
does not use a simple linear weighted expression.  

The Frost filter is defined as:  

𝑃(𝑖, 𝑗) =  
∑ ∑ 𝑝𝑗 𝑖,𝑗

𝑘𝑖,𝑗𝑖

∑ ∑ 𝑘𝑖,𝑗𝑗𝑖
  , 𝑘𝑖,𝑗 = 𝑒−𝐾𝐶𝐼

2𝑑𝑖,𝑗  ,                                   (8) 

where P(i,j) is the value of the center pixel with the positional attributes i and j, k is the 

weighting factor, CI is the coefficient of variation and d is the distance between pixels in the 

kernel window, centered on the center pixel. Small values of k indicate good speckle 

suppression but a loss in detail. A greater k will reduce the efficiency in smoothing but retain 

texture and edges.   

An enhanced version was also described by Lopes et al. (1990) following a similar rationale as 
that for the case of the Enhanced Lee filter.  

Gamma Map 

The Gamma Maximum A Posteriori (Γ-MAP; Gamma Map) filter developed by Lopes et al. 
(1993) is based on the idea that when the radar reflectivity undergoes significant variation due 
to a large distribution of scatterers and complex structure, linear local statistics computed using 
a moving window are not sufficient. Whereas previous filters assumed a Gaussian distribution of 
values, the Gamma Map filter is based on a Gamma distribution. In SAR scenes that have been 
previously multilooked, the Gamma Map filter is expected to perform better. The filter combines 
a hybrid approach of calculating the local mean and variance statistics in a moving window and 
replacing the center pixel’s value where needed and employing a second geometric assessment 
across edges along the four possible directions (similar to the Refined Lee filter). The Gamma 
Map filter was originally defined to meet the three class division criteria (homogeneity, 
heterogeneity and point target preservation), hence it is by itself an “enhanced” method. 

Bayesian methods in the spatial domain (filters based on non-linear statistics) 

Symmetric Nearest Neighbor (SNN) 

The SNN filter (Hall, 2007) is a non-linear technique that has been designed specifically for 
edge preservation. A moving window is moved across the image, and at each position 
symmetric pixel-pairs are computed around the central pixel. A comparison between each pixel-
pair and the central pixel is performed and the closest value to the center pixel is saved. The 
resulting value of the center pixel is computed by using a sum of all of the closest values. The 
SNN filter originated as a method for smoothing seismic acquisitions, therefore, it assumes that 
there is a coherent signal model.  

Bayesian methods in the transform domain 

Improved Discrete Wavelet Transform (i-DWT) 



Gagnon and Jouan (1997) provide a comprehensive assessment of the capabilities of several 2-
D wavelet filters and their performance compared to a standard spatial-defined technique. On 
the contrary, Hervet et al. (1998) argue that while the wavelet-based methods exhibit several 
advantages over global spatial filters, adaptive spatial despeckling achieves better results. 
Nevertheless, when combined with other methods, wavelet transformation can yield similar 
promising results. 

A series of filtering methods based on discrete wavelet transform (DWT) in the homomorphic 
space are considered here for their complexity and potential efficiency. The rationale behind 
using a DWT method is that it can analyse signal positioning in both the frequency and time 
domains. Filters that incorporate wavelet transformation and edge preserving methods are 
common (Rosa-Zurera et al., 2007; Choi and Jeong, 2019).  

In this study, the Improved DWT (i-DWT) filter (Choi and Jeng, 2019), which is an enhanced 
algorithm using a succession of filtering steps, is utilized with some adjustments. The input 
images are initially denoised using a speckle reducing anisotropic diffusion (SRAD) filter (Yu 
and Acton 2002). Multilevel wavelet decomposition is then performed on the resulting images. 
Daubechies wavelets are shown to produce desired outcomes, however, any other suitable 
fitting-function can be used for approximating the signal fluctuations (Leguizamón, 1997; Argenti 
et al., 2013). Choi and Jeong (2019) do not specify the wavelet method used in their algorithm, 
so in this case an arbitrary wavelet (the Haar wavelet in Pywavelets (Lee et al., 2019) has been 
chosen based on a best-fit analysis. Haar (also known as Daubachies 1 or db1) is a simple 
wavelet constructed as a sequence of rescaled ‘square-shaped’ functions that adapt well to 
sudden transitions in the signal. The SRAD image noise is multiplicative. For the wavelet to 
adapt correctly, the noise model has to be readjusted to an additive format. A simple logarithmic 
transformation is applied for this purpose.  

Wavelet transformation uses a scale parameter and a shift parameter to create a time-
frequency sliding operator. The scale parameter modulates the compressions and expansions 
of the width of the wavelet, without affecting its structure. Larger amplitudes of the signal 
generate larger widths of the wavelet. When the amplitude is low, high-frequency components 
can be isolated. The shifting component determines the slide, namely the position of the wavelet 
on the time axis. A sparse representation containing low and high frequency information is 
stored in distinct coefficients (Mallat, 2009). The number of coefficients fluctuates depending on 
the level of decomposition applied. For a 2-D iteration, there will be 8 coefficients. The first step 
produces an approximation image of the original input, containing the low-frequency information 
(LL1) and three coefficients that encompass the high-frequency information on the vertical 
(LH1), horizontal (HL1) and diagonal (HH1) axes. On the second iteration, the approximation 
image LL1 is further decomposed in a similar fashion, resulting in the LL2 low frequency 
approximation and the LH2, HL2, HH2 high-frequency coefficients. Each step reduces the 
length of the original signal by half.  

The majority of the noise is retained in the high-frequency sub-bands. Smoothing is performed 
on the vertical and horizontal sub-bands (which have similar low energy) using a soft threshold, 
reducing the effect of abrupt peaks resulting from absolute values and preserving the original 
signal. The diagonal and approximation sub-bands are smoothed using a Guided filter. Choi and 
Jeong (2019) propose an improved version of the Guided filter, however, in this implementation 
the original filter is preferred. The Guided filter is employed in order to retain the low and high 
frequency components at edge level. A 2-D wavelet-reconstruction of the image is performed 
using an inverse wavelet decomposition with the Haar wavelet. Finally, an exponential function 



is applied to convert to a multiplicative noise model and the despeckled image is produced. The 
algorithm is documented in Figure 2.  

 

Non-Bayesian methods  

Bilateral 

Contrary to most of the previously outlined methods, the bilateral filter uses non-linear statistics 
(Tomasi and Manduchi, 1998). The technique is known for its good edge preservation and noise 
reducing smoothing. The filter does not use a sliding window, but it can be applied iteratively. 
The intensity of each pixel is replaced by a weighted average of the intensity values of the 
surrounding pixels, as controlled by the spatial and radiative ranges (Equation 9). A notable 
aspect of this filter is that at edge level, differences in contrast (spikes in intensities) will be 
treated as similar. The filter is dependent only on the size of the moving window and the 
contrast between encountered features.  

 

𝐵𝐹[𝐼]𝑝 =
1

𝑊𝑝
∑ 𝐺𝜎𝑠((‖𝑝−𝑞‖

𝑞𝜖𝑆

𝐺𝜎𝑟((‖𝐼𝑝−𝐼𝑞‖)𝐼𝑞
 

𝑊𝑝 = ∑ 𝐺𝜎𝑠((‖𝑝−𝑞‖𝑞𝜖𝑆 𝐺𝜎𝑟((‖𝐼𝑝−𝐼𝑞‖)                                    (9) 

where 𝜎𝑠 and 𝜎𝑟 represent the amount by which the Gaussian function (G) is adjusted in the 

spatial and range dimensions, respectively. The spatial extent is given by the positions of the 

center pixel (p) and the adjacent pixels (q) of the image (I).  As  𝜎𝑟 increases, the bilateral filter 

(BF) becomes a Gaussian filter, averaging by a constant. Increasing 𝜎𝑠 will result in smoothing 

larger areas. Since the weights (𝑾𝒑) are multiplied, the balance between the effects of 

fluctuating Gaussians forces the edge preservation (Paris et al., 2007). The limitations of the 
bilateral filter arise when the edge complexity is too high, resulting in gradient reversal.  

Guided Filter 

The Guided filter was developed by He et al. (2013) as an improvement to the Bilateral filter. 
According to the authors, the method possesses enhanced edge retention capabilities. The 
Guided filter offers an iterative method that implies the use of a “guide” image for matching the 
edges of the original input image. The “guide” can be created using high pass filters or can be 
defined as the original input image itself. A linear relationship exists between the guide and the 
input. A regression model is applied for suppressing noise and maintaining edges. This 
capability was confirmed through experiments conducted by He et al. (2013). 

Speckle reducing anisotropic diffusion (SRAD) 

Anisotropic diffusion filters are based on the partial differential equation delivery of non-linear 
diffusion for smoothing. The principle accounts for the generation of multiple structure-matching 



gradients that change throughout the image iteration, hence large-area blurring and edge 
retention is possible. The speckle model that the technique assumes is that of coherent noise, 
therefore, SRAD can be matched with SAR images. SRAD gradients are built using the 
instantaneous coefficient of variation and a series of Laplacian operators for edge and detail 
isolation. A full description of the algorithm is provided by Yongjian Yu and Acton (2002). A 
shortcoming of SRAD is the unrealistic appearance of images after smoothing, meaning that 
fine detail might be lost without a prior fine tuning of the parameters.   

 

Non-local methods 

SAR-Block-Matching 3-D filter 

The structure of the block-matching 3-D filtering algorithm was proposed by Parrilli et al. (2012). 
The despeckling method is based on the combined concepts of non-local filtering (NL) and 
wavelet filtering. The first operations utilize a NL approach, which implies that throughout 
images, a repetitive representation of the signal can be found. Once these homogeneous 
patches are identified, only these regions are smoothed. This process involves the creation of 
“blocks”; aggregations of pixels with similar brightness formed using the Euclidian distance 
criterion. Furthermore, each block undergoes a wavelet filtering and, in converse to i-DWT, a 
hard thresholding of the high frequency coefficients. Blocks are rearranged to their original 
location. The same step is repeated, but this time the wavelet transformation can differ, and 
hard thresholding is replaced by a Wiener filter. The final image will consist of the newly 
recomposed blocks.  

The downside of BM3D is that it is suited to additive noise, whereas SAR noise is treated as 
multiplicative. Therefore, an adapted method has to be used (SAR-BM3D). Whereas i-DWT 
uses a homomorphic approach by simply converting the multiplicative noise using a logarithm 
function – which has the disadvantage of modifying the dynamic of the data – BM3D forces 
noise conversion through the use of a locally adaptive linear minimum mean squared error.  

Other types of filter 

New and emerging methods for speckle filtering use convolutional neural networks for 
estimating the quantity of noise. These techniques are not yet well-established and have only 
been reported in recent studies. They usually require large computational resources and, 
although they often achieve superior results when compared to traditional methods, the 
resource consumption is not yet compatible with the needs of an operational fast model design 
(Wang et al., 2017; Lattari et al., 2019; Zhang et al., 2020). For this reason, they are not 
included in this comparative study. 

 

METHODOLOGY 

Assessing and validating the performance of speckle filters is a challenging task when applied 
to real SAR imagery. SAR scenes provide a noisy image input within which the real noise 
reflectivity that we wish to quantify is unknown, which makes estimating the ground-truth 
impossible (Argenti et al., 2013; Zhang et al., 2020). Typical performance assessment 



approaches use a sample noise-free dataset of non-SAR imagery to which noise is added 
synthetically and then a despeckling filter applied. This practice allows for the control of the 
speckle patterns introduced and a straightforward case for inspecting smoothing and edge and 
texture preservation.  

In this study, the intention is not to evaluate the intrinsic performance of speckle filters, but to 
assess their specific capacity to perform denoising of SAR data acquired over marine surfaces 
where natural oil slicks are present. In theory, a simulated SAR image can be used to mimic a 
real SAR acquisition. However, dynamic sea conditions can substantially change the noise 
reflectivity pattern, hence the statistical properties chosen for the simulated image will differ from 
the actual ground-truth. Consequently, to capture the true sea conditions, the speckle filters are 
applied to real SAR imagery. 

Dataset 

Five Copernicus Sentinel-1 High resolution, Level-1 Ground Range Detected (GRD) SAR 
scenes in interferometric wide (IW) swath mode were selected, covering two different locations 
at multiple time points in order to capture a range of dynamic sea conditions. The original 20 m 
x 22 m scene resolution in range and azimuth, as reported in the Sentinel-1 Product definition 
(Collecte Localisation Satellites 2016), was maintained for each scene. All scenes were subset 
to preserve only the vertical transmitted-vertical received (VV) polarization.  
 
The scenes cover areas in the Black Sea, where known persistent and productive natural 
seepage activity has been well documented (Körber et al., 2014). These areas are portrayed in 
Figure 3 as ‘1’) the coastal area of the town of Çayeli (Turkey) – the Rize oil seep; and ‘2’) the 
area of the Kobuleti Ridge (off-shore Georgia), where the Colkheti and Pechori sea mounds 
provide a cluster of natural oil seeps. The Sentinel-1 SAR data were acquired in ascending and 
descending modes and on different dates in order to provide sufficient variability in the sea 
surface conditions (Table 1). Each image was sampled separately, and four regions of interest 
(ROI) were created: one including the outline of the known seep slick, one including faint slick-
like structures, and two homogenous areas where the incidence angle varies with the SAR view 
(Figure 4). The ROIs were subset to localised areas in order to focus on the characteristics of 
important slick/dark structures, and as a trade-off between computational requirements and 
processing time associated with extensive experimentation using the array of filters. 
Nonetheless, whilst expanding the size of the area to a full scene increases the processing time 
and the computational requirements, initial tests indicated that this does increase the 
performance of the results due to a larger statistical sample size. 

Pre-processing 

Data was pre-processed using the existing well-established workflow of Suresh et al. (2015), as 
depicted in Figure 5. The workflow was chosen for its design, which allows the exploitation of a 
SAR acquisition in two distinct manners: as grey-level estimation (DNs) and radiometrically 
calibrated data (NRCS). Therefore, the effects of speckle filtering over the two common types of 
pre-processed images (radiance and “reflectance”) can be assessed. First, precise orbit 
ephemerides were applied for accurate orbit determination and correcting geo-positioning 
anomalies. It is to be noted that speckle levels are already reduced through an initial 
multilooking process during the SLC (Single Look Complex) to GRD conversion (Collecte 
Localisation Satellites 2016). Next, the two approaches for pre-processing were followed:  



1. Grey-level estimation – where resulting pixels contain real SAR numbers (digital 
numbers).   

2. Normalized radar cross section estimation – where the amplitude and intensity levels are 
computed.  

The resulting ROIs were divided into images where reflectivity information is described by digital 
numbers (DN) and images where the normalized radar cross-section (NRCS) was outputted 
after radiometric calibration. The goal was to analyze how denoising performs when applied to 
each case, as a next logical step towards future optimized algorithm development. 

Filtering 

Various speckle filters are available in numerous variants in SAR processing software or as 
freely distributed code packages. To enhance the accessibility and wider implications of the 
study, the most common implementations of the despeckling methods were used. Hence, for 
this processing, two popular open platforms were utilised: the Sentinel Application Platform 
(SNAP) and the Python programming language. The preference was placed on SNAP since it 
already has most of the filters implemented and it is arguably more widely accessible as no 
programming experience is required. 

The speckle filters were applied by maintaining the same parameters over all image ROIs. An 
initial evaluation of code implementations in SNAP v.7.04 (SNAP - ESA Sentinel Application 
Platform v7.0.4 n.d.) was performed to ensure compliance with their original definition. The Java 
implementation in the Sentinel-1 Toolbox (component of SNAP) was compared to the filter’s 
mathematical body in the definition paper. If the algorithm was respected, the filter was 
considered to be correct. However, this evaluation revealed that whilst the majority of the filters 
offered in SNAP were correctly implemented, a popular choice, the Lee filter was corrupt in that 
it was not functioning as expected. The Gamma Map, Frost, Median, Lee Sigma (v. 2009) and 
Refined Lee were applied using SNAP, which is provided as free and open software by the 
European Space Agency.  

The remaining filters, including the corrupt Lee filter, were implemented independently using a 
Python 3.7 version in an Anaconda v.4.8.3 distribution custom environment. Python-based 
filters were coded following the original source manuscript or by using embedded library 
functions (Bradski, 2000; Bianco et al., 2020; SciPy 1.0 Contributors et al., 2020) and openly 
distributed independent implementations (e.g., SAR-BM3D by Makinen et al. (2019)).  

A generic moving window size of 5x5 was maintained where appropriate, although the Refined 
Lee filter inherently uses a 7x7 kernel. Other filters, such as the Guided filter, SAR-BM3D and 
the i-DWT estimate appropriate kernel sizes. Various computation parameters specific to each 
method were trialed beforehand. The trials were run individually in order to select the values 
that provide the optimum result for every filter. The selected parameter values allow for a trade-
off of computational performance and changes in the statistical variation of the values within 
each moving kernel. Generally, a 5x5 moving window was found to be ideal in producing a 
sufficient degree of smoothing whilst ensuring edge retention. A final list of the respective 
parameters is provided in Table 2.  
 
Performance Assessment 



In order to evaluate the performance of the speckle filters, a set of complementary quantitative 
metrics were selected. These were chosen specifically to evaluate the despeckling process, 
based on a review of popular, well-established indices (Mansourpour et al., 2006; Argenti et al., 
2013; Choi and Jeong, 2019). These indices can be divided into “with-reference indices” – 
typically used with a reference image that is previously known and “without-reference indices” – 
that do not require a priori complete knowledge of the reflectivity (Argenti et al., 2013). The 
chosen methods (described below) estimate the statistical effects of noise over the image 
structure, the global performance of the filter and the capability of the denoising technique to 
smooth over homogeneous areas and retain edges. The selection combines “with-reference” 
and “without-reference indices” as a means to ensure that the effects of each filter can be 
rigorously assessed.  

Peak Signal to Noise Ratio (PSNR) 

The Peak Signal-to-Noise Ratio (PSNR) (Walessa and Datcu, 2000) evaluates the qualitative 
properties of the denoised image and the ground-truth image using the Mean Squared Error 
(MSE) (Equation 10). The error quantifies the amount by which the values in the original image 
differ from the noisy image. PSNR is defined as the ratio between the maximum possible value 
(power) of a signal and the power of the noise (Equation 11). The signal has a wide dynamic 
range; therefore, the ratio values are adjusted using a logarithmic scale (dB). Larger PSNR 
values imply a better despeckling capability. 

𝑀𝑆𝐸 = 𝐸(𝑓 − 𝑓)
2

                                                                 (10)   

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10 [
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where 𝑓 and 𝑓 are the original and the despeckled image, respectively, 𝑓𝑃𝐸𝐴𝐾
  is the maximum 

value that can be attributed to samples in their dynamic range and 𝑣𝑎𝑟[𝑓] is the speckle-free 
image variance. In the absence of a “true” reflectivity model, the denoised image is used as the 
ground-truth and the original image is used for estimating the noise.    

Mean Structural Similarity Index Measurement (MSSIM) 

While the MSE describes the global performance of filters, the mean structural similarity index 
measurement (MSSIM) is used for assessing changes that occur at a higher structural level 
(Wang et al., 2004). As such, it offers a better discrimination between images with similar MSE. 
The MSSIM index is defined in Equation 12 The index takes values in the [0;1] interval, with 0 
indicating no structural similarity and 1, perfect similarity.  
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where  𝑓𝑝 , 𝑓𝑝 are the original and despeckled image patched areas determined by p = (0; M-1) 

where p ∈ ℤ, and M, which is the size of the kernel matrix. C1 and C2 are constants. As for 
PSNR, the despeckled image is considered to reflect the ground-truth and the noisy image is 
used to estimate noise estimate. 



Equivalent Number of Looks (ENL) 

Unlike PSNR and MSSIM, the equivalent number of looks (ENL) index is a “without-reference” 
method used in the evaluation of speckle filter performance in the homogeneous regions of the 

image. Therefore, only the despeckled image (𝑓)  serves as an input. The ratio between the 

squared mean (𝜇𝑓̂
2) and the squared standard deviation (𝜎𝑓̂

2) (Equation 13) reveals if the nominal 

number of looks has increased after filtering. An initial 4.4 ENL corresponds to Ground Range 
Detected High Resolution (GRD-HR) Copernicus Sentinel-1 products (Collecte Localisation 
Satellites, 2016). In the multilooking step during the pre-processing, the slant-to-ground range 
conversion of the SAR pixels has been done at a 1x1 ENL in range and azimuth for preserving 
spatial resolution. Larger ENL values represent better smoothing capabilities of the filter.  

𝐸𝑁𝐿 =  
𝜇

𝑓̂
2

𝜎
𝑓̂
2                                                         (13) 

 

Edge Correlation (EC) and the Edge Preservation Index (EPI) 

Edge retaining capabilities are a key requirement for a speckle filtering technique, given that 
real SAR data exhibits a higher structural complexity of features than synthetically generated 
data or dummy imagery. In oceanic environments, these structures vary from slicks to footprints 
of the metocean  phenomena. An essential condition is for the despeckle method to have the 
capacity to resolve sudden changes in the signal, retaining the edge boundary as unaltered as 
possible. Oil slicks usually induce a variability in contrast, which translates into an abrupt 
peaking of the signal. However, when local meteorological conditions are unfavorable, faint 
expressions of the slick do not produce an equally strong peak. The goal is for the despeckling 
method to provide sufficient smoothing of the surrounding homogeneous area while maintaining 
the less-developed structures. To evaluate the capability of each speckle filtering method in this 
regard, two key indexes were computed.  

The edge correlation (EC) index (Equation 14) was proposed by Sattar et al. (1997) as a 
method for assessing echographic images and later adapted to SAR imagery by Achim et al. 
(2003). The method makes use of an additional high-pass filter to obtain an edge-map of the 
original image and the despeckled image. The correlation coefficient is calculated between the 
two images. Values of EC closer to unity indicate a better performance.  

𝐸𝐶 =  
𝐶𝑜𝑣 [𝑓𝐻𝑓̂𝐻]

√𝑉𝑎𝑟[𝑓𝐻]×𝑉𝑎𝑟[𝑓̂𝐻]

   ,                                           (14) 

where 𝑓𝐻 , 𝑓𝐻 are the high-pass filtered original and despeckled images. The original SAR image 
is used for estimating noise, while the despeckled image approximates the ground-truth. 
Mansourpour et al. (2006) and Gonzalez and Woods (2008) propose a custom high-pass 
Laplacian kernel, however, in this current study a Sobel operator (Sobel and Feldman, 1968) 
was used for heightened edge emphasis.  



The edge correlation method is prone to distortion caused by any residual noise (Argenti et al., 
2013), therefore, a second quantitative method was utilized to confirm filter efficiency. The Edge 
Preservation Index (EPI), or the Edge Saving Index (ESI), originated as an evaluation method in 
medical image processing (Joseph et al., 2017) and has been adopted as an evaluation index in 
other studies (Wu and Yuan, 2008; Zhang et al., 2020). In similarity to the EC method, EPI uses 
a non-linear spatial filter for denoising the original and despeckled images and obtaining a 
binary edge-map (Equation 15). The two edge maps are then correlated. EPI range is [0,1], 
where 1 is defined as perfect correlation.  

𝐸𝑃𝐼 =
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0

∑ | 𝑝𝑜(𝑖,𝑗)− 𝑝𝑜(𝑖+1,𝑗)|+| 𝑝𝑜(𝑖,𝑗)− 𝑝𝑜(𝑖,𝑗+1)|𝑀−1
0

 ,                            (15) 

where M is the size of the moving window matrix,  𝑝(𝑖,𝑗), 𝑝(𝑖+1,𝑗) are adjacent vertical pixels and  

𝑝(𝑖,𝑗), 𝑝(𝑖,𝑗+1) are adjacent horizontal pixels of the despeckled (s) and original images (o). 

RESULTS AND DISCUSSION 

To assess the performance of the 14 selected speckle filters, the quality indices were computed 
and compared across the different filters and the two pre-processing approaches. In total, 40 
denoised subsets were generated (20 DN and 20 NRCS) for both Kobuleti and Rize. Each initial 
ROI was compared against its corresponding despeckled ROI. These results are shown in 
Tables 3-11, with the best filtering method highlighted in red and the second and third in blue.  

PSNR 

The results evaluating the qualitative properties with PNSR (dB) are shown in Table 3 for DN 
images and in Table 4 for NRCS images. Larger PSNR values are associated with better 
despeckling capabilities, marking the prevalence of the signal in the waveform compared to the 
amount of noise. PSNR offers an absolute estimate and does not provide any information about 
structural preservation. 

For the DN images, the best performance is achieved using the Enhanced Frost filter over 90% 
of the samples. The range of values obtained in all cases sets the PSNR for the Enhanced Frost 
filter between 45.91 dB and 50.14 dB where sudden changes in contrast and texture are found 
(all ROIs 1), 31.97–100 dB in all ROIs 2 where fine details introduce a slight change in contrast, 
and 37.01–59.74 dB in homogenous areas (all ROIs 3 and 4). The Refined Lee and SAR-BM3D 
methods also provide satisfactory results. For the SAR-BM3D, the range of values varies 
between 23.82–32.80 dB in ROIs1, 22.70–32.98 dB in ROIs2 and 23.35–38.64 dB in ROIs 3 
and ROIs 4. The Refined Lee filter’s performs consistently across all ROIs, varying between 
24.26 dB and 28.45 dB. In this case, the filter performs slightly better in non-homogenous areas 
than in regions where ocean features are included in the ROI. 

For the NRCS images, the best results are achieved for the Lee filter, the Refined Lee and the 
SNN filter in both study area ROIs. The Lee filter is effective for almost all of the analyzed ROIs, 
demonstrating its consistent behavior. For the heterogeneous regions at both locations and at 
all time points (ROIs 1), the Lee filter PSNR values span a range of 29.31–32.2 dB, while in the 
textured regions (ROIs 2) they show a slight decrease (26.75–29.67 dB). In homogenous areas, 
the filter displays similar values (26.47–33.11 dB) which only vary if the texture of the image is 



more enhanced. Both Refined Lee and SNN filter exhibit PSNR values lower, but close, to the 
Lee filter (between 20–25 dB) and a similar variation over all the ROIs.  

On the other side of the spectrum, the lowest performing filters can be categorized as follows:  

- When applied to DN images, anisotropic diffusion-based filters (SRAD and i-DWT), the 
Enhanced Lee filter and the Frost filter do not show a strong denoising performance. It 
was suggested previously that the Frost filter in its original definition does not 
necessarily produce satisfactory results (Mascarenhas, 1997). It was however expected 
to exhibit better results for the Enhanced Lee filter as recommended by Suresh et al. 
(2015). In fact, they produce low PSNR values (in the range of 18–22 dB). Low values 
are also generated by the Lee Filter (20–23 dB) and the Gamma Map, Median and the 
Lee Sigma (20–22 dB). When compared to other filters from the Lee family, the reason 
for the Refined Lee filter achieving higher PSNR might be attributed to the larger moving 
window at which it operates.  

- PSNR values for NRCS images are lowest for the SAR-BM3D, the Enhanced Frost filter 
and the Median filter. This suggests that the three algorithms do not produce a good 
enhancement in denoising, altering the overall image aspect.  

 

MSSIM  

MSSIM offers a complementary perspective to PSNR, as it helps to understand the extent to 
which the structure of the image was altered considerably by the filter. In Table 5, the similarity 
at structural level is quantified using the MSSIM. The index is assessed over the DN images 
only, as the low range of backscatter values does not produce significant variation for a 
consistent analysis for the NRCS images.  

Similarly to the PNSR, the Enhanced Frost, Refined Lee and SAR-BM3D filters manage to best 
retain the structural composition of the image, offering the highest degree of similarity. The 
Enhanced Frost filter exhibits very high structural similarity and, in some cases, perfect 
alignment with the original image, with values ranging between 0.969 and 1. Such high similarity 
signifies excellent preservation of image structure. Indeed, the Frost filter, a precursor of the 
Enhanced Frost filter, despite performing poorly in this analysis, has been successfully used in 
the past for simultaneously despeckling scenes and preserving texture (European Space 
Agency, 2000). The enhanced version of the Frost filter was expected to generate better results 
by treating speckle variation more in-depth.  

The SAR-BM3D algorithm results also indicate good structural similarity, with most values being 
between of 0.887–0.949 over heterogeneous areas for both Kobuleti and Rize (ROIs 1 and 2). 
Slightly higher correlation is observed in the homogeneous areas (0.928–0.985) which are the 
ROIs 3 and 4. One exception is given by the ROIs from the Rize image (20.07.2019), the SNN 
filter provides a better performance (0.731 ROI1, 0.727 ROI2, 0.723 ROI3, 0.744 ROI4 when 
compared to the 0.57 ROI1, 0.538 ROI2, 0.693 ROI3, 0.612 ROI4 values produced by SAR-
BM3D). The explanation for the loss of performance in preserving the local structural elements 
can be explained by perhaps a stronger degradation of the samples due to the existence of 
either more similar pixel areas or fine detail when compared to the other ROI samples. The 
existence of pronounced demarcation is supported by the higher performance of the SNN on 
the image samples from the Rize image (20.07.2019) The Refined Lee filter is the third best 



performing method following the SAR-BM3D and the Enhanced Frost filters. For the Refined 
Lee, the MSSIM was calculated as between 0.757 and 0.798 in heterogeneous areas (all ROIs 
1 and ROIs 2). In homogeneous regions, the Refined Lee performed consistently, achieving 
values of 0.748–0.812 (all ROIs 3 and ROIs 4).  

Low structural similarity is showcased by the i-DWT filter, which has an anomalous range of 
very low values (<0.06 in all samples). This behavior strongly suggests very low preservation of 
local structure and heavy alteration of the image. Median, Enhanced Lee, Lee Sigma and the 
Gamma Map filters also perform poorly (0.200–0.350 in all samples) when compared to other 
methods, highlighting that the algorithms only rely on the calculation of local statistics tend to 
overestimate the noise levels. Another possible explanation might be related to the small sliding 
window that was used for this assessment, which could reduce the overall effectiveness of a 
filter by reducing the area of estimation. 

ENL 

Table 6 and Table 7 show the results associated with the equivalent number of looks (ENL) in 
homogeneous areas at all locations (Rize and Kobuleti) and time points (ROIs 3 and 4) and the 
analysed values refer to all the samples.  For DN subsets, the improved Discrete Wavelet 
Transformation (i-DWT) method produces very high values of ENL (in the range of 482.35–
3576.02), which indicates an overestimation of the signal and a poor performance. Other high 
ENL producers are the Lee filter (86.27–133.14) and SRAD (154.3–281.89). A higher number of 
looks is displayed by the Guided filter only in the case of the samples from the Rize 
(20.07.2019) image. In general, such an elevated ENL is associated with alteration of the 
image.  

Low DN ENL values are provided by the Enhanced Frost filter (9.07–18.08), the SAR-BM3D 
(18.30–56.64), Refined Lee (41.99–52.89) and the SNN (37.17–48.55). When analyzed 
together with the MSSIM and PSNR figures, the lower ENL can signify that the samples were 
not highly altered. Indeed, the ENL level is closer to original ROIs ENL values, with an average 
value of 17, which suggests that the overall denoising performance was not exaggerated.  

For the NRCS pre-processing, the values indicate that the Guided filter is the best performing 
filter at smoothing homogeneous area (8.2–56.64), closely followed by the Frost methods 
(Enhanced Frost and Frost) whose values are between 12.46–18.15 ENL. Again, contrary to the 
presumption that a high ENL means better performance, the high values can suggest that these 
filters are overestimating the level of noise. An average level of 2.5 ENL has been computed for 
all ROIs. Moreover, algorithms that exhibit lower ENL figures (less than 10 ENL for the Lee, 
Refined Lee and SNN filters), were also found to produce better PSNR and MSSIM results.  

 

EC and EPI 

In order to evaluate the edge retention capabilities, the edge correlation (EC) and edge 
preservation index (EPI) were computed. Table 8 and Table 9 show the EC values for DN and 
NRCS, and Table 10 and Table 11 for EPI values, respectively.  

In DN subsets, high edge retention is exhibited by the Enhanced Frost Filter, the Guided Filter, 
and the SAR-BM3D. The EC values for the Enhanced Frost filter are elevated (between 0.982–



1 in all ROIs), while for the Guided Filter the values are slightly lower at 0.939–0.985 for ROIs 1, 
0.941–0.992 for ROIs 2, and 0.948–0.995 for homogenous ROIs 3 and 4. The SAR-BM3D 
algorithm produces similar values as the Guided Filter (0.796–0.971 for ROIs 1, 0.782–0.987 for 
ROIs 2, and 0.813–0.986 for ROIs 3 and ROIs 4). The lower range of values is associated with 
the Rize 20.07.2019 samples, indicating the same loss of structure as for the MSSIM. Although 
not highlighted as best performing, it is notable that the Refined Lee displays consistent high 
correlation values, which are slightly lower than previously mentioned algorithms (0.911–0.932 
for all ROIs).  

The lowest EC values for DN ROIs are given by the i-DWT filter (>0.300) and the Enhanced Lee 
filter (>0.400) further supporting the notion of increased image alteration. Deficient edge 
correlation is also seen for the Lee Sigma, SRAD, Frost, Gamma Map and Median filters as all 
the values fall within the 0.300–0.450 interval.  

The EPI displays a similar behavior for the Enhanced Frost Filter (0.991–0.999 for ROIs 1, 
0.99–1 for ROIs 2, and 0.994–0.999 for ROIs 3 and ROIs 4) and the Guided filter (0.97–0.99 for 
ROIs 1, 0.992–0.993 for ROIs 2, and 0.981–0.995 for ROIs 3 and ROIs 4). However, in this 
case, the Lee filter outperforms SAR-BM3D for most of the heterogeneous samples (e.g., 0.84–
0.89 for the Lee filter in ROIs 1 compared to 0.54–0.85 for SAR-BM3D on the same samples), 
while performing similarly in some homogeneous regions (both filters display values in the range 
of 0.82–0.94). Once again, lower edge preservation is associated with the SAR-BM3D over the 
Rize imagery (20.07.2019) ROIs, confirming the presumption that edge structure was not 
preserved correctly. The Refined Lee filter and the SNN filter, which are performing well for 
other indices, have only modest capability in fully conserving fine detail and edges (0.600–0.750 
across all samples).  

Similar to what has been described for the EC index, accentuated loss of edge retention is 
indicated by the very low EPI values of the SRAD, Enhanced Lee, Gamma Map and Frost filters 
(<0.200 for all ROIs). Moreover, edge loss is also apparent with the i-DWT and Lee Sigma filters 
(<0.100 for all ROIs).  

With regards to the NRCS images, the best edge correlation (EC) is achieved with the Lee filter 
(0.982–0.991 for ROIs 1, 0.982–0.993 for ROIs 2, and 0.978–0.986 for ROIs 3 and ROIs 4), 
followed by the Guided filter (0.593–0.988 across all ROIs) and the Refined Lee filter (0.900–
0.930 across all ROIs). The same performance trend is observed in Edge preservation with the 
Lee filter achieving the highest EPI (0.985–0.9926 for ROIs 1, 0.984–0.993 for ROIs 2, and 
0.981–0.987 for ROIs 3 and ROIs 4), followed by the Guided filter (0.921–0.987 for all regions) 
and the Refined Lee filter (0.713–0.736 for all ROIs). Notably, the worst performing methods are 
the Frost, Enhanced Frost and Lee Sigma filters, with EC values of 0.300–0.400 in all ROIs. 
This lack of high correlation for these filters is also supported by their very low EPI values 
(<0.200). Poor edge retention is also apparent for the Gamma Map, Median and Bilateral filters 
(<0.200 EPI).  

Visual Analysis and Overall Performance 

A visual analysis of the image was also conducted in order to verify the quantitative analysis. 
Examples of the filtered ROIs are provided for DN (Figures 6, 8, 10, 12) and NRCS images 
(Figures 7, 9, 11, 13). For DN images, in heterogeneous areas, the Enhanced Frost (Figure 
6h,8h), Refined Lee (Figure 6f, 8f) and SAR-BM3D (Figure 6n,8n) filters exhibit satisfactory 
smoothing and edge retention when analyzed from both a quantitative and visual perspective. 



The Enhanced Frost filter produces a smoothed image that succeeds at preserving the 
statistical information from the original input (as confirmed by the PSNR and MSSIM values) 
and uses a limited amount of looks (low ENL). The filter also displays maximum edge 
correlation and preservation, which is supported by the lack of a smudge effect at oil slick 
boundaries. SAR-BM3D despeckled images also display good textural preservation, where 
homogenous areas retain the statistical distribution of values, but the aspect is overall improved 
(i.e., high PSNR and MSSIM). A slight increase in the number of dark pixels can be observed 
when visually compared to the original image. This could be due to the manner in which block 
aggregation is formed during filtering. The high values of the EC and EPI indices are reinforced 
by the sharp aspect of the feature edges, as well as the preservation of fine details where the 
difference in contrast is not evident. The Refined Lee filter also displays a higher degree of 
smoothing, however, textural information is preserved and the blur effect is not intense. Based 
on an analysis of the PSNR and MSSIM indices for the Refined Lee filter, the extracted values 
indicate a satisfactory performance of the filter. The edge preservation parameters show that 
the Refined Lee filter is capable of resolving the sharp contrast change, which is evident through 
a visual analysis, although some loss of detail is observable where faint details were present in 
the original image. Similar to the results produced by the Refined Lee filter, the SNN filter 
(Figures 6i, 8i) exhibits textural preservation and low blur levels. Edge smudging is not visible in 
this case either, with visible slick boundaries and good separation between the slick feature and 
the surrounding sea at both the Rize and Kobuleti study areas. The Guided filter (Figure 6k, 8k) 
offers a high degree of blurring, although it still manages to retain edges.   

The Enhanced Lee (Figure 6e, 8e), Lee Sigma (Figures 6d, 8d), Frost (Figures 6g, 8g), Gamma 
Map (Figures 6o, 8o) and SRAD (Figures 6l, 8l) filters all introduce visible blur to the image, as 
confirmed by their low MSSIM, EC and EPI values. A high level of image alteration is seen in 
the SRAD images, supported by the good overall performance with respect to PSNR, and low 
MSSIM, EC and EPI. A small number of artefacts are visible in the final Lee Sigma and 
Enhanced Lee images, perhaps induced by small point targets. The same two filters produce an 
increase in image contrast, therefore an overestimation of the dark pixels and different 
distribution of the image statistics. The i-DWT filter severely alters the structure of the image 
(Figure 6m, 8m), as corroborated quantitatively by the very low MSSIM, very high ENL and the 
loss of in EC and EPI.  

In homogenous regions of the DN images, the same observations highlighted above also apply. 
The Enhanced Frost filter (Figure 10h, 12h) produces very good textural and structural 
preservation of the signal, as confirmed by the high PSNR and MSSIM, with a low ENL. 
However, some structural degradation is visible for the SAR-BM3D (Figure 10n, 12n) and the 
Refined Lee (Figure 10f, 12f). The SNN filter (Figure 10i, 12i) offers good textural preservation 
and enhancement of contrasting pixels. A finer estimation of the speckle levels in the 
homogenous areas within the sample is given by the Guided Filter (Figure 10k, 12k), confirming 
the good indices performance and higher ENL.  

It is to be noted that, whilst the SAR-BM3D filter produces good results in terms of PSNR, 
MSSIM, EC and EPI, the algorithm was found to require significantly more computational 
resources during the processing than any of the other methods (e.g., the Guided Filter, 
Enhanced Frost, Lee filter, Refined Lee filter). This concurs with the observations of Argenti et 
al. (2013), and somewhat limits its use in an operational capacity.  

The same blurring effect observed for heterogeneous regions is also observed for the 
homogeneous ROIs filtered with Enhanced Lee (Figure 10e, 12e), Lee Sigma (Figure 10d, 12d), 



Frost (Figure 10g, 12g), Bilateral (Figure 10j, 12j) and Gamma Map (Figure 10o, 12o). Contrast 
levels are higher, and artefacts are present in the Lee Sigma and Enhanced Lee filter. The 
SRAD (Figure 10l, 12l) produces a highly blurred effect, which gives it a high ENL. Ultimately, a 
visual inspection of the i-DWT filtering results (Figure 10m, 12m) confirms its overall poor 
performance, by rendering a structurally altered image. 

Local statistics-based filters such as Lee (Figure 7c, 9c), the Refined Lee (Figure 7f, 9f) and 
SNN (Figure 7i, 9i) approximate the level of multiplicative noise in NRCS images very well. Their 
overall visual appearance is supported by their high PSNR values. The Lee filter provides the 
best quantitative and qualitative results, through its smoothing of the homogenous areas, edge 
sharpening and its good preservation of the signal, which are further confirmed by the highest 
values for the PSNR, EC and EPI indices. The Refined Lee and the SNN filters also exhibit 
good textural retention, especially visible in the sea area, and good edge retention at the slick 
boundary.  

Enhanced smoothness and contrast is observed in the Enhanced Lee (Figure 7e, 9e) and Lee 
Sigma (Figure 7d, 9d) filtered images, however, the blurring effect is pronounced (poor edge 
correlation and retention confirmed by EC and EPI values), and artefacts are present in the 
images. The Guided filter (Figure 7k, 9k) provides general blurred homogenization whilst 
managing edge retention, although it alters the signal significantly and loses fine detail. The 
SAR-BM3D filtering (Figure 7n, 9n) produces anomalous results for NRCS images, rendering a 
highly smoothed representation of the original image. This effect is most likely associated with 
the sub-unitary range of values of the NRCS. Unexpectedly, the good quantitative result 
produced with the i-DWT filter was not confirmed by the visual appearance of the images 
(Figure 7m, 9m). The homogenous areas are clustered, leading to contrasting pixel isolation. 
The low degree of edge retention is supported by the altered look of slick and other feature 
edges. This effect is more evident in the case of ROI2 (Figure 9m), where overestimation in 
homogenous areas is considerable. Furthermore, the SRAD filter (Figure 7l, 9l) also exhibits 
similar behavior as the i-DWT, which is not directly apparent through the quantitative analysis. 
The performance of the filters for the homogeneous NRCS ROIs (Figures 11, 13) is consistent 
with that for the heterogeneous areas.  

When comparing the filters’ performance on the Rize samples and the Kobuleti samples, no 
significant differences are encountered. Both sites display fairly consistent behavior that relates 
to the metocean conditions at the time of the acquisition: all samples were acquired during the 
summer months and episodes of calm sea state and no significant biological activity. However, 
these conditions are greatly dynamic and subsequent scenes might display a different statistical 
distribution of the pixels, indicating diverse marine and atmospheric processes (e.g., rain cells, 
upwelling events, algal blooms). Nevertheless, we anticipate that even though the statistical 
variation of the values would change, the computational efficiency of each filtering method 
should remain similar.  

CONCLUSIONS 

This study has presented an evaluation of the performance of a variety of different speckle 

filters applied to Sentinel-1 SAR images. The results demonstrate that the process of 

despeckling Sentinel-1 SAR imagery containing natural oil slicks is beneficial. This is because 

speckle-contaminated imagery can be effectively processed in order to reduce the strong 

backscatter variation in the image. As a result, this can decisively improve the visual quality of 



the imagery, which has the potential to enhanced subsequent segmentation and dark formation 

extraction.  

However, a number of aspects regarding despeckling have to be taken into consideration. The 

nature of the SAR data acquisition and image formation induces a specific pattern of signal and 

noise distribution within the data. Speckle cannot be treated as ordinary noise since much of the 

useful radiometric information is embedded within it. Preserving this information as much as 

possible is one of the main objectives of despeckling. To achieve this, the desired method 

needs to perform with minimum invasiveness.  

It is clear that prior to despeckling, pre-processing through multilooking can offer a good quality 

input image in preparation for denoising. However, as multilooking comes at the expense of 

spatial resolution, the procedure needs to be kept to a minimum and a second type of 

despeckling step should be considered. An important argument is that speckle filtering is further 

degrading the spatial resolution of the imagery through changing image statistics. Therefore , a 

careful selection of filter parameter settings must be made prior to the operation. A moving 

window of 5x5 or 7x7 was considered to be sufficient for this evaluation as they ensure the filter 

is computationally efficient and introduces enough smoothing while being able to estimate edge 

statistics without much altering them significantly. 

From both the quantitative and qualitative assessments it is clear that denoising radiometrically 

distinct images requires separate workflows depending on the nature of the pre-processing. 

Traditional filters (Enhanced Frost, Refined Lee, Lee filter) were found to perform well on both 

types of pre-processed images (DN and NRCS). Adaptive filtering using local statistics is 

simple, effective and computationally efficient, unlike wavelet-based methods. If used in an 

operational context, filters like Lee or the Refined Lee are adequate for efficient denoising and in 

retaining the signal structural information that is critical for the next processing steps in an oil 

slick detection workflow. These filters also perform well at feature boundary level, hence in 

scenarios covering edge separation and segmentation, they will offer a satisfactory result.  

If image speckle is treated in acquired amplitude/power (DN) datasets, an Enhanced Frost filter 

or a filter from the Lee class (Lee or Refined Lee) is recommended for despeckling. Larger 

window sizes (7x7) and a higher number of looks increase the performance of the algorithm but 

contribute to a reduced spatial resolution of the resulting image. If analyzing a small number of 

images, then the SAR-BM3D model is recommended for improved contrast and fine detail 

preservation. For cases where the images have been radiometrically calibrated (i.e., NRCS), the 

Lee class filters provide the best solution. Moreover, in any despeckling scenario, the use of 

several denoising steps may yield better efficiency. For example, this could include applying the 

same filter or a combination of filters for more than one iteration and with different window sizes 

(e.g., Lee 5x5 + Lee 3x3 or Lee 5x5 + Guided Filter 3x3).  

Overall, this study confirms the general consensus that filters based on linear statistics provide 

fast, effective, and resource-friendly solutions for despeckling Copernicus Sentinel-1 SAR 

images containing oil slicks and metocean phenomena. Further work is needed to determine an 

optimum combination of filters that could be used successfully on a large dataset, based on the 

required computational resources and image denoising performance. Additionally, with future 

advances in computing efficiency, the potential use of convolutional neural networks in an 

operational capacity should also be explored. The findings of this study are likely to be 

applicable to other C-band sensors, such as ERS-1, ENVISAT, RADARSAT or new generation 



sensors, although the performance of speckle filters on data for oil slicks captured using other 

radar wavebands requires further attention. Finally, while the present study focusses on seeps 

in the Black Sea, the method used in the evaluation and the findings are applicable to similar 

marine environments, provided that the metocean dynamic conditions and surfactant presence 

combine to produce a similar level of signal variability within the scene. 
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Table 1. Sentinel-1 SAR data product details 

Name SAR Dataset 
Acquisition 

Date 
Orbit 

Kobuleti_25_07_2018 
S1A_IW_GRDH_1SDV_20180725T032439_20180725T032504_022945_02
7D64_42BA.SAFE 

25.07.2018 DESCENDING 

Rize_25_07_2018 
S1A_IW_GRDH_1SDV_20180725T032504_20180725T032529_022945_02
7D64_B9F7.SAFE 

25.07.2018 DESCENDING 

Rize_31_08_2018 
S1A_IW_GRDH_1SDV_20180831T151017_20180831T151042_023492_02
8EBF_1D2A.SAFE 

31.08.2018 ASCENDING 

Kobuleti_20_07_2019 
S1A_IW_GRDH_1SDV_20190720T032445_20190720T032510_028195_03
2F5B_1B62.SAFE 

20.07.2019 DESCENDING 

Rize_20_07_2019 
S1B_IW_GRDH_1SDV_20190720T151738_20190720T151803_017219_02
0623_C67C.SAFE 

20.07.2019 ASCENDING 

 

Table 2. Speckle filtering input parameters 

Speckle filtering method Kernel size Computation parameters 
Guided Filter Estimated r = 4, ε = 2e-103 

SAR-BM3D Estimated 
σ = 10 for DN images 

σ = 0.1 for NRCS images 

Enhanced Lee Filter 5x5 NLOOKS= 4.4, damping factor = 1 

Improved DWT Estimated 

DWT: HAAR 
SRAD: k= 30, m= 0.5, q0 = 1, ρ=1, ϐ=0.05, 

number of iterations=150 
Guided Filter r = 4, ε = 2e-103 

Soft threshold:  0.02 for Level 1, 0.06 at Level 
2 

Refined Lee 7x7 (default) N/A 

Lee Sigma Kernel = 5x5, Target window= 5x5 σ = 0.9. NLOOKS=1, 

Frost 5x5 Damping factor =1 

Gamma Map 5x5 N/A 

Median 5x5 N/A 

Enhanced Frost 5x5 NLOOKS= 4.4, damping factor = 1 

Lee 5x5 NLOOKS= 4.4, damping factor = 1 

Bilateral 5x5 σ = 80 

SNN 5x5 N/A (geometric method) 

SRAD Estimated 
k= 30, m= 0.5, q0 = 1, ρ=1, ϐ=0.05, number of 

iterations=150 



Table 3. PSNR values for DN images 

SAR data 
name DN 

ROI 
Guided 
Filter 

SAR-
BM3D 

Enhanced 
Lee 

i-DWT 
Refined 

Lee 
Lee 

Sigma 
Frost 

Gamma 
Map 

Median 
Enhanced 

Frost 
Lee Bilateral SNN SRAD 

Kobuleti 
25.07.2018 

ROI1 25.28 30.71 21.80 20.48 26.14 21.89 21.89 21.80 21.76 47.46 22.94 24.01 25.51 21.22 

 
ROI2 25.15 30.99 21.61 20.22 25.89 21.68 21.70 21.62 21.59 48.68 22.72 23.83 25.36 21.00 

 
ROI3 25.73 32.31 21.88 20.42 26.35 21.95 21.97 21.88 21.86 47.65 22.89 24.28 25.62 21.22 

 
ROI4 30.49 38.64 23.91 22.43 28.45 24.00 24.00 23.91 23.88 59.74 25.00 26.83 27.64 23.24 

Kobuleti 
20.07.2019 

ROI1 26.23 30.96 23.21 21.90 27.52 23.32 23.30 23.21 23.17 45.91 24.38 25.34 26.91 22.66 

 
ROI2 25.95 32.98 21.16 19.70 25.54 21.24 21.25 21.16 21.14 50.40 22.22 23.65 24.90 20.52 

 
ROI3 24.33 29.72 21.18 19.87 25.40 21.24 21.26 21.18 21.15 45.74 22.29 23.30 24.89 20.60 

 
ROI4 25.98 32.69 21.46 20.07 25.83 21.55 21.55 21.47 21.45 53.60 22.52 23.87 25.21 20.84 

Rize 
20.07.2019 

ROI1 22.16 23.82 21.57 20.46 25.67 21.63 21.65 21.57 21.51 33.97 22.83 23.21 25.16 7.54 

 
ROI2 21.21 22.70 20.71 19.61 24.77 20.75 20.80 20.72 20.66 31.97 21.99 22.33 24.31 20.30 

 
ROI3 21.51 23.82 20.33 19.30 24.26 20.37 20.42 20.34 20.27 37.01 21.65 22.00 23.96 19.94 

 
ROI4 21.31 23.35 20.89 19.60 25.02 20.95 20.98 20.89 20.84 31.76 22.07 22.67 24.53 20.35 

Rize 
25.07.2018 

ROI1 26.70 32.08 22.78 21.48 27.03 22.86 22.86 22.78 22.75 50.14 23.90 24.92 26.51 22.22 

 
ROI2 24.72 30.73 20.64 19.34 24.61 20.69 20.73 20.65 20.61 100.00 21.72 22.80 24.34 20.09 

 
ROI3 23.86 29.26 20.43 19.19 24.58 20.49 20.51 20.43 20.40 49.70 21.52 22.51 24.14 19.90 

 
ROI4 24.63 31.22 20.72 19.19 25.07 20.80 20.81 20.72 20.72 45.45 21.68 23.09 24.51 20.00 

Rize 
31.08.2018 

ROI1 25.20 30.24 22.14 20.83 26.45 22.21 22.22 22.14 22.10 47.32 23.26 24.23 25.85 21.56 

 
ROI2 23.55 28.43 20.69 19.38 24.80 20.74 20.77 20.69 20.64 44.44 21.81 22.68 24.38 20.13 

 
ROI3 25.01 31.32 21.55 20.01 25.87 21.65 21.64 21.55 21.51 48.81 22.56 23.91 25.32 20.85 

 
ROI4 25.33 32.14 20.79 19.40 25.04 20.86 20.88 20.79 20.76 49.20 21.84 23.18 24.53 20.16 

  



Table 4. PSNR values for NRCS images 

SAR data name 
NRCS 

ROI 
Guided 
Filter 

SAR-
BM3D 

Enhanced 
Lee 

i-DWT 
Refined 

Lee 
Lee 

Sigma 
Frost 

Gamma 
Map 

Median 
Enhanced 

Frost 
Lee Bilateral SNN SRAD 

Kobuleti 25.07.2018 ROI1 
24.27 21.29 23.81 24.27 26.54 22.87 23.22 22.90 22.51 22.68 29.31 24.46 26.17 25.23 

 
ROI2 

23.98 20.97 23.38 23.71 26.24 22.54 22.91 22.87 22.24 22.40 28.77 24.18 25.91 24.66 

 
ROI3 

26.53 22.73 24.85 24.89 28.23 24.26 24.59 25.58 23.97 24.12 29.96 26.04 27.66 25.82 

 
ROI4 

33.17 25.85 27.98 27.99 31.34 27.37 27.66 27.69 26.98 27.16 33.11 29.19 30.63 28.96 

Kobuleti 20.07.2019 ROI1 
26.54 23.80 26.57 27.12 29.14 25.58 25.90 25.41 25.17 25.34 32.12 27.11 28.82 28.08 

 
ROI2 

24.53 20.10 22.33 22.58 25.40 21.61 21.95 21.89 21.30 21.44 27.64 23.34 24.96 23.50 

 
ROI3 

22.66 20.04 22.94 23.66 25.12 21.63 22.09 22.02 21.34 21.49 28.68 23.22 25.01 24.74 

 
ROI4 

24.77 20.74 22.98 23.25 25.96 22.21 22.57 22.59 21.92 22.06 28.33 23.90 25.58 24.23 

Rize 20.07.2019 ROI1 
21.95 18.50 25.00 26.18 25.88 22.64 23.22 22.80 22.27 22.49 31.11 23.99 25.87 27.61 

 
ROI2 

20.28 16.60 23.50 24.72 24.19 20.96 21.61 21.25 20.63 20.86 29.67 22.33 24.24 26.26 

 
ROI3 

19.87 17.18 23.02 24.25 19.92 20.22 20.89 20.53 19.85 20.10 29.22 21.53 23.49 25.87 

 
ROI4 

20.31 16.62 22.34 22.97 24.68 21.20 21.62 21.54 20.87 21.05 28.05 22.73 24.51 24.04 

Rize 25.07.2018 ROI1 
27.00 23.18 25.53 25.99 28.23 24.64 24.98 24.55 24.32 24.46 31.02 26.12 27.98 26.94 

 
ROI2 

22.79 19.06 21.27 21.73 23.80 20.41 20.83 20.75 20.19 20.33 26.75 21.98 23.83 22.69 

 
ROI3 

21.40 18.61 20.95 21.44 23.54 20.04 20.43 20.51 19.77 19.90 26.47 21.59 23.44 22.41 

 
ROI4 

22.91 19.03 21.05 20.91 24.43 20.62 20.91 21.02 20.36 20.48 25.99 22.35 24.10 21.82 

Rize 31.08.2018 ROI1 
24.46 21.89 24.40 24.85 27.18 23.49 23.86 23.63 23.18 23.35 29.90 25.07 26.85 25.82 

 
ROI2 

21.25 18.93 21.67 22.26 24.04 20.58 21.01 20.96 20.29 20.46 27.31 22.11 23.96 23.29 

 
ROI3 

23.74 20.52 23.19 23.53 25.86 22.26 22.64 22.59 21.90 22.07 28.63 24.00 25.64 24.54 

 
ROI4 

23.61 19.40 21.52 21.62 24.57 20.85 21.20 21.28 20.56 20.72 26.73 22.54 24.23 22.58 

 



Table 5. MSSIM values for DN images 

SAR data name 
DN 

ROI 
Guided 
Filter 

SAR- 
BM3D 

Enhanced 
Lee 

i-DWT 
Refined 

Lee 
Lee 

Sigma 
Frost 

Gamma 
Map 

Median 
Enhanced 

Frost 
Lee Bilateral SNN SRAD 

Kobuleti 
25.07.2018 

ROI1 
0.706 0.921 0.317 0.064 0.793 0.360 0.330 0.317 0.326 0.998 0.467 0.615 0.757 0.177 

 
ROI2 

0.724 0.942 0.316 0.042 0.793 0.354 0.330 0.316 0.329 0.999 0.463 0.620 0.760 0.167 

 
ROI3 

0.745 0.956 0.319 0.031 0.802 0.356 0.332 0.319 0.335 0.999 0.447 0.636 0.761 0.160 

 
ROI4 

0.883 0.985 0.329 0.035 0.812 0.391 0.343 0.329 0.342 1.000 0.475 0.694 0.765 0.169 

Kobuleti 
20.07.2019 

ROI1 
0.658 0.887 0.317 0.064 0.792 0.378 0.331 0.317 0.327 0.997 0.477 0.609 0.757 0.179 

 
ROI2 

0.800 0.968 0.319 0.037 0.798 0.349 0.331 0.317 0.332 1.000 0.453 0.643 0.759 0.164 

 
ROI3 

0.680 0.928 0.293 0.025 0.781 0.325 0.306 0.292 0.309 0.999 0.443 0.596 0.749 0.146 

 
ROI4 

0.783 0.963 0.306 0.029 0.793 0.338 0.319 0.306 0.322 1.000 0.444 0.629 0.755 0.155 

Rize 20.07.2019 ROI1 
0.334 0.570 0.263 0.035 0.763 0.304 0.276 0.263 0.273 0.975 0.444 0.524 0.731 0.000 

 
ROI2 

0.312 0.538 0.254 0.025 0.757 0.277 0.267 0.253 0.262 0.971 0.438 0.518 0.727 0.134 

 
ROI3 

0.412 0.693 0.240 0.019 0.748 0.266 0.253 0.240 0.251 0.990 0.430 0.513 0.723 0.123 

 
ROI4 

0.330 0.612 0.285 0.027 0.775 0.313 0.299 0.285 0.297 0.969 0.446 0.555 0.744 0.147 

Rize 25.07.2018 ROI1 
0.728 0.923 0.306 0.056 0.786 0.366 0.319 0.306 0.319 0.999 0.466 0.605 0.755 0.167 

 
ROI2 

0.746 0.949 0.284 0.032 0.770 0.308 0.296 0.283 0.294 1.000 0.433 0.593 0.743 0.145 

 
ROI3 

0.696 0.931 0.281 0.022 0.774 0.306 0.293 0.281 0.294 1.000 0.427 0.584 0.743 0.140 

 
ROI4 

0.753 0.957 0.329 0.031 0.802 0.355 0.342 0.329 0.346 0.999 0.449 0.640 0.766 0.162 

Rize 31.08.2018 ROI1 
0.669 0.910 0.308 0.046 0.787 0.350 0.319 0.306 0.317 0.998 0.455 0.599 0.753 0.164 

 
ROI2 

0.650 0.910 0.288 0.026 0.776 0.314 0.301 0.287 0.298 0.998 0.437 0.580 0.745 0.145 

 
ROI3 

0.722 0.949 0.330 0.033 0.803 0.366 0.343 0.330 0.342 1.000 0.457 0.640 0.765 0.168 

 
ROI4 

0.784 0.965 0.303 0.026 0.787 0.330 0.316 0.302 0.315 0.999 0.440 0.626 0.754 0.147 

 

 



Table 6. ENL values over homogenous DN subsets 

SAR data name 
DN 

ROI 
Guided 
Filter 

SAR- 
BM3D 

Enhanced 
Lee 

i-DWT 
Refined 

Lee 
Lee 

Sigma 
Frost 

Gamma 
Map 

Median 
Enhanced 

Frost 
Lee Bilateral SNN SRAD 

Kobuleti 
25.07.2018 

ROI3 67.95 22.43 84.36 741.94 41.99 76.27 83.59 84.49 73.76 17.68 101.44 52.25 41.03 185.96 

 
ROI4 39.04 18.30 74.04 482.35 37.59 64.71 73.28 74.10 65.74 16.33 86.27 44.36 37.17 154.30 

Kobuleti 
20.07.2019 

ROI3 92.86 25.55 101.15 3545.55 47.59 90.06 100.15 101.35 86.28 18.08 122.49 60.24 45.32 261.80 

 
ROI4 62.80 22.03 91.52 1842.81 44.23 80.57 90.69 91.73 79.04 17.83 110.43 54.71 42.93 218.06 

Rize 20.07.2019 ROI3 208.95 48.02 110.91 2514.65 52.89 103.07 110.05 111.31 94.04 17.57 127.89 67.94 48.20 271.16 

 
ROI4 221.41 53.84 90.16 2033.04 45.07 82.02 89.41 90.43 78.55 16.17 104.75 57.38 42.04 206.45 

Rize 25.07.2018 ROI3 
92.30 26.44 108.19 3576.02 51.23 96.15 107.46 108.64 93.22 18.90 133.14 64.39 48.55 281.89 

 
ROI4 

69.92 22.80 88.77 1850.42 43.62 78.65 88.05 89.07 76.64 18.05 108.91 53.68 41.80 215.12 

Rize 31.08.2018 ROI3 92.30 26.44 108.19 1960.80 51.23 96.15 107.46 108.64 93.22 18.90 133.14 64.39 48.55 281.89 

 
ROI4 69.92 22.80 88.77 1893.84 43.62 78.65 88.05 89.07 76.64 18.05 108.91 53.68 41.80 215.12 

 

 

 

Table 7. ENL values over homogenous NRCS subsets 

SAR data name 
NRCS 

ROI 
Guided 
Filter 

SAR- 
BM3D 

Enhanced 
Lee 

i-DWT 
Refined 

Lee 
Lee 

Sigma 
Frost 

Gamma 
Map 

Median 
Enhanced 

Frost 
Lee Bilateral SNN SRAD 

Kobuleti 
25.07.2018 

ROI3 18.40 9.03 14.33 17.30 8.51 13.76 15.41 9.90 13.94 16.50 8.35 10.65 7.79 11.23 

 
ROI4 8.20 6.44 12.75 15.70 7.87 11.78 13.84 12.37 12.91 14.78 7.65 9.76 7.36 10.10 

Kobuleti 
20.07.2019 

ROI3 27.27 12.47 10.89 8.84 7.74 12.41 13.55 11.53 11.90 14.97 5.96 9.36 6.50 6.59 

 
ROI4 16.65 10.71 13.43 4.54 8.38 13.34 15.01 13.05 13.54 16.18 7.54 10.32 7.49 9.50 

Rize 20.07.2019 ROI3 46.78 8.28 6.51 9.89 16.99 11.02 10.82 9.93 9.07 12.46 3.76 7.77 5.03 3.58 

 
ROI4 56.64 8.76 11.15 12.89 7.82 12.10 13.33 11.73 12.02 14.53 6.17 9.36 6.70 7.06 

Rize 25.07.2018 ROI3 28.57 13.45 13.97 15.22 9.11 14.55 16.26 13.26 14.54 17.62 7.49 11.04 7.77 9.07 

 
ROI4 20.39 12.17 16.25 22.67 9.43 15.04 17.05 14.78 15.18 18.15 9.50 11.59 8.40 13.70 

Rize 31.08.2018 ROI3 20.35 9.67 11.13 10.73 7.50 11.47 12.90 11.25 11.93 14.04 6.53 9.00 6.59 7.75 

 
ROI4 17.14 12.91 14.94 17.46 9.14 14.73 16.41 14.08 15.02 17.64 8.35 11.15 8.07 11.12 

 



Table 8. EC values for DN images 

SAR data 
name DN 

ROI 
Guided 
Filter 

SAR -
BM3D 

Enhanced 
Lee 

DWT 
Refined 

Lee 
Lee 

Sigma 
Frost 

Gamma 
Map 

Median 
Enhanced 

Frost 
Lee Bilateral SNN 

SRAD 
 

Kobuleti 
25.07.2018 

ROI1 0.984 0.971 0.360 0.224 0.923 0.389 0.392 0.361 0.364 0.999 0.796 0.801 0.893 0.379 

 
ROI2 0.989 0.975 0.376 0.240 0.923 0.396 0.407 0.377 0.387 1.000 0.805 0.802 0.898 0.393 

 
ROI3 0.991 0.980 0.390 0.260 0.928 0.408 0.419 0.390 0.399 0.999 0.797 0.817 0.897 0.405 

 
ROI4 0.995 0.994 0.371 0.259 0.932 0.403 0.405 0.371 0.386 1.000 0.806 0.860 0.897 0.406 

Kobuleti 
20.07.2019 

ROI1 0.978 0.957 0.355 0.264 0.923 0.391 0.387 0.356 0.362 0.999 0.805 0.795 0.893 0.389 

 
ROI2 0.992 0.987 0.383 0.270 0.924 0.411 0.414 0.384 0.393 1.000 0.801 0.826 0.896 0.401 

 
ROI3 0.989 0.968 0.369 0.239 0.921 0.389 0.400 0.370 0.373 0.999 0.807 0.795 0.895 0.397 

 
ROI4 0.992 0.985 0.381 0.255 0.925 0.406 0.412 0.382 0.392 1.000 0.800 0.821 0.897 0.401 

Rize 
20.07.2019 

ROI1 0.939 0.796 0.326 0.227 0.917 0.352 0.360 0.328 0.329 0.875 0.800 0.742 0.887 0.401 

 
ROI2 0.941 0.782 0.320 0.226 0.915 0.354 0.612 0.325 0.982 0.801 0.739 0.887 0.779 0.375 

 
ROI3 0.970 0.854 0.325 0.221 0.911 0.347 0.359 0.326 0.328 0.995 0.815 0.742 0.886 0.374 

 
ROI4 0.948 0.813 0.344 0.238 0.919 0.364 0.378 0.345 0.348 0.982 0.805 0.755 0.893 0.383 

Rize 
25.07.2018 

ROI1 0.983 0.974 0.368 0.234 0.922 0.393 0.398 0.369 0.374 1.000 0.802 0.797 0.894 0.384 

 
ROI2 0.991 0.980 0.357 0.288 0.913 0.369 0.389 0.359 0.360 1.000 0.803 0.793 0.893 0.391 

 
ROI3 0.990 0.973 0.351 0.216 0.918 0.375 0.383 0.353 0.360 1.000 0.798 0.789 0.894 0.391 

 
ROI4 0.991 0.981 0.404 0.264 0.925 0.423 0.433 0.406 0.415 0.999 0.801 0.815 0.899 0.413 

Rize 
31.08.2018 

ROI1 0.985 0.964 0.364 0.238 0.925 0.389 0.395 0.365 0.369 0.999 0.805 0.793 0.895 0.389 

 
ROI2 0.987 0.960 0.374 0.235 0.917 0.388 0.404 0.375 0.373 0.999 0.801 0.783 0.894 0.390 

 
ROI3 0.989 0.976 0.420 0.262 0.922 0.442 0.448 0.420 0.421 1.000 0.801 0.816 0.901 0.422 

 
ROI4 0.993 0.986 0.393 0.241 0.924 0.412 0.425 0.395 0.402 1.000 0.806 0.821 0.899 0.403 

 



Table 9. EC values for NRCS 

 

 

SAR data 
name NRCS 

ROI Guided 
Filter 

SAR- 
BM3D 

Enhanced 
Lee 

DWT Refined 
Lee 

Lee 
Sigma 

Frost Gamma 
Map 

Median Enhanced 
Frost 

Lee Bilateral SNN SRAD 

Kobuleti 
25.07.2018 

ROI1 0.958 0.108 0.644 0.755 0.917 0.417 0.531 0.433 0.360 0.356 0.982 0.755 0.897 0.800 

 
ROI2 0.964 0.105 0.630 0.735 0.918 0.417 0.538 0.521 0.387 0.375 0.982 0.757 0.900 0.785 

 
ROI3 0.975 0.103 0.593 0.687 0.927 0.435 0.540 0.693 0.406 0.398 0.978 0.774 0.902 0.747 

 
ROI4 0.988 0.101 0.596 0.707 0.930 0.428 0.527 0.534 0.387 0.369 0.978 0.787 0.901 0.758 

Kobuleti 
20.07.2019 

ROI1 0.940 0.100 0.656 0.763 0.915 0.426 0.532 0.376 0.358 0.351 0.983 0.753 0.896 0.809 

 
ROI2 0.961 0.095 0.696 0.719 0.911 0.408 0.554 0.522 0.372 0.365 0.986 0.146 0.897 0.837 

 
ROI3 0.976 0.105 0.624 0.792 0.918 0.426 0.541 0.539 0.396 0.382 0.981 0.767 0.900 0.781 

 
ROI4 0.977 0.103 0.616 0.727 0.918 0.537 0.733 0.395 0.382 0.981 0.162 0.769 0.899 0.770 

Rize 
20.07.2019 

ROI1 0.639 0.104 0.797 0.873 0.902 0.379 0.569 0.431 0.321 0.318 0.991 0.724 0.891 0.906 

 
ROI2 0.593 0.102 0.807 0.881 0.900 0.350 0.569 0.448 0.315 0.308 0.992 0.718 0.891 0.913 

 
ROI3 0.812 0.096 0.824 0.889 0.327 0.372 0.585 0.469 0.319 0.316 0.993 0.712 0.891 0.921 

 
ROI4 0.644 0.101 0.670 0.778 0.909 0.393 0.534 0.502 0.348 0.344 0.985 0.741 0.897 0.825 

Rize 
25.07.2018 

ROI1 0.965 0.102 0.635 0.743 0.915 0.416 0.530 0.396 0.369 0.363 0.983 0.742 0.897 0.794 

 
ROI2 0.976 0.090 0.613 0.733 0.902 0.376 0.520 0.492 0.360 0.354 0.983 0.736 0.896 0.788 

 
ROI3 0.968 0.094 0.631 0.740 0.909 0.397 0.525 0.532 0.359 0.350 0.983 0.742 0.897 0.796 

 
ROI4 0.977 0.102 0.560 0.652 0.919 0.436 0.534 0.552 0.417 0.404 0.976 0.767 0.903 0.718 

Rize 
31.08.2018 

ROI1 0.950 0.097 0.638 0.745 0.919 0.411 0.532 0.458 0.370 0.364 0.983 0.752 0.899 0.796 

 
ROI2 0.949 0.108 0.668 0.765 0.907 0.407 0.548 0.523 0.372 0.372 0.984 0.744 0.898 0.815 

 
ROI3 0.966 0.121 0.670 0.747 0.913 0.461 0.576 0.556 0.423 0.421 0.982 0.774 0.905 0.800 

 
ROI4 0.980 0.097 0.610 0.694 0.920 0.432 0.545 0.555 0.405 0.395 0.980 0.766 0.901 0.759 



Table 9. EPI values for DN 

Table 10. EPI values for DN 

SAR Data 
Name DN 

ROI 
Guided 
Filter 

SAR -
BM3D 

Enhanced 
Lee 

i-DWT 
Refined 

Lee 
Lee 

Sigma 
Frost 

Gamma 
Map 

Median 
Enhanced 

Frost 
Lee Bilateral SNN SRAD 

Kobuleti 
25.07.2018 

ROI1 0.9882 0.8514 0.2007 0.0289 0.7416 0.0786 0.1574 0.2023 0.0875 0.9958 0.8904 0.3309 0.6462 0.1641 

 
ROI2 0.9930 0.8617 0.1938 0.0255 0.7382 0.0928 0.1504 0.1955 0.0768 0.9970 0.8917 0.3415 0.6452 0.1689 

 
ROI3 0.9928 0.8867 0.1998 0.0311 0.7372 0.0969 0.1544 0.2009 0.0758 0.9952 0.8834 0.4017 0.6199 0.1812 

 
ROI4 0.9955 0.9469 0.1922 0.0305 0.7373 0.0671 0.1431 0.1930 0.0702 0.9995 0.8974 0.5516 0.6151 0.1872 

Kobuleti 
20.07.2019 

ROI1 0.9777 0.8168 0.2031 0.0295 0.7418 0.0587 0.1598 0.2043 0.0888 0.9916 0.8883 0.2971 0.6494 0.1623 

 
ROI2 0.9939 0.9102 0.1989 0.0253 0.7375 0.0784 0.1544 0.2000 0.0787 0.9979 0.8942 0.4380 0.6309 0.1766 

 
ROI3 0.9925 0.8416 0.1954 0.0291 0.7405 0.1011 0.1538 0.1976 0.0861 0.9943 0.8905 0.2988 0.6467 0.1644 

 
ROI4 0.9940 0.9000 0.1918 0.0254 0.7409 0.0793 0.1476 0.1929 0.0722 0.9990 0.8931 0.4055 0.6375 0.1731 

Rize 
20.07.2019 

ROI1 0.9816 0.5418 0.2204 0.0276 0.7515 0.1015 0.1791 0.2219 0.1065 0.9400 0.8429 0.0622 0.6737 0.1246 

 
ROI2 0.9847 0.5353 0.2275 0.0259 0.7505 0.1105 0.1857 0.2285 0.1079 0.9074 0.8365 0.0621 0.6719 0.1432 

 
ROI3 0.9881 0.6271 0.2286 0.0275 0.7480 0.1374 0.1902 0.2322 0.1137 0.9704 0.8725 0.0835 0.6837 0.1431 

 
ROI4 0.9838 0.5658 0.2130 0.0196 0.7413 0.1065 0.1699 0.2158 0.0989 0.8915 0.8283 0.1301 0.6505 0.1608 

Rize 
25.07.2018 

ROI1 0.9839 0.8639 0.1896 0.0248 0.7454 0.0689 0.1493 0.1913 0.0818 0.9972 0.8986 0.3185 0.6629 0.1574 

 
ROI2 0.9929 0.8810 0.1944 0.0314 0.7394 0.1106 0.1555 0.1975 0.0865 1.0000 0.8959 0.3267 0.6568 0.1609 

 
ROI3 0.9929 0.8492 0.2056 0.0241 0.7459 0.1003 0.1663 0.2074 0.0948 0.9981 0.8916 0.2894 0.6602 0.1579 

 
ROI4 0.9933 0.8883 0.1812 0.0280 0.7350 0.0776 0.1393 0.1842 0.0683 0.9942 0.8836 0.3874 0.6249 0.1837 

Rize 
31.08.2018 

ROI1 0.9880 0.8282 0.1952 0.0287 0.7467 0.0810 0.1530 0.1962 0.0869 0.9952 0.8903 0.2832 0.6537 0.1627 

 
ROI2 0.9924 0.8150 0.1849 0.0130 0.7463 0.1031 0.1461 0.1885 0.0820 0.9938 0.8901 0.2532 0.6602 0.1575 

 
ROI3 0.9918 0.8716 0.1954 0.0210 0.7295 0.0660 0.1521 0.1988 0.0758 0.9969 0.8797 0.3887 0.6192 0.1837 

 
ROI4 0.9946 0.9034 0.1845 0.0278 0.7414 0.0877 0.1420 0.1868 0.0727 0.9975 0.8941 0.4075 0.6401 0.1743 

 

 

 



 

Table 11. EPI values for NRCS 

SAR Data 
Name NRCS 

ROI 
Guided 
Filter 

SAR -
BM3D 

Enhanced 
Lee 

i-DWT 
Refined 

Lee 
Lee 

Sigma 
Frost 

Gamma 
Map 

Median 
Enhanced 

Frost 
Lee Bilateral SNN SRAD 

Kobuleti 
25.07.2018 

ROI1 
0.9676 0.0188 0.4172 0.4163 0.7279 0.0189 0.1006 0.0104 0.0857 0.2052 0.9853 0.1222 0.6470 0.5103 

 ROI2 0.9748 0.0179 0.3709 0.3859 0.7295 0.0098 0.0917 0.1342 0.0726 0.1963 0.9848 0.1289 0.6445 0.4797 

 ROI3 0.9786 0.0214 0.2646 0.3261 0.7292 0.0077 0.0703 0.3850 0.0685 0.1970 0.9824 0.1906 0.6193 0.4199 

 ROI4 0.9878 0.0223 0.2882 0.3378 0.7335 0.0213 0.0775 0.1432 0.0668 0.1987 0.9813 0.2280 0.6130 0.4261 

Kobuleti 
20.07.2019 

ROI1 
0.9461 0.0132 0.4487 0.4374 0.7257 0.0472 0.1100 0.1369 0.0871 0.2069 0.9854 0.1172 0.6491 0.5306 

 ROI2 0.9795 0.0197 0.3284 0.3692 0.7286 0.0257 0.0756 0.1098 0.0760 0.2057 0.9842 0.1757 0.6291 0.4601 

 ROI3 0.9740 0.0198 0.5098 0.4702 0.7156 0.0223 0.1384 0.1585 0.0837 0.2011 0.9884 0.1046 0.6525 0.5713 

 ROI4 0.9800 0.0219 0.3492 0.3704 0.7280 0.0095 0.0896 0.1501 0.0698 0.1967 0.9847 0.1533 0.6370 0.4669 

Rize 
20.07.2019 

ROI1 
0.9219 0.0176 0.6986 0.6148 0.7326 0.0026 0.2247 0.0614 0.1032 0.2181 0.9926 0.0069 0.6895 0.7163 

 ROI2 0.9238 0.0164 0.7176 0.6272 0.7368 0.0629 0.2364 0.1136 0.1023 0.2220 0.9934 0.0029 0.6940 0.7328 

 ROI3 0.9538 0.0177 0.7460 0.6463 0.0267 0.0412 0.2581 0.1353 0.1040 0.2143 0.9939 0.0220 0.7082 0.7527 

 ROI4 0.9228 0.0206 0.4653 0.4431 0.7271 0.0102 0.1098 0.1292 0.0983 0.2194 0.9876 0.0751 0.6537 0.5472 

Rize 
25.07.2018 

ROI1 
0.9648 0.0187 0.4148 0.4155 0.7268 0.0220 0.0972 0.1063 0.0819 0.1952 0.9859 0.0726 0.6625 0.5135 

 ROI2 0.9783 0.0192 0.3801 0.3923 0.7176 0.0567 0.0809 0.1020 0.0870 0.1986 0.9860 0.0677 0.6607 0.4894 

 ROI3 0.9780 0.0170 0.3994 0.4108 0.7218 0.0259 0.0833 0.1750 0.0959 0.2127 0.9867 0.0806 0.6606 0.5116 

 ROI4 0.9812 0.0182 0.1915 0.2893 0.7235 0.0130 0.0503 0.1497 0.0655 0.1866 0.9812 0.1668 0.6260 0.3839 

Rize 
31.08.2018 

ROI1 
0.9616 0.0188 0.4059 0.4076 0.7306 0.0007 0.0941 0.0373 0.0845 0.1997 0.9861 0.0947 0.6538 0.5054 

 ROI2 0.9720 0.0207 0.4604 0.4335 0.7261 0.0174 0.1202 0.1496 0.0787 0.1909 0.9875 0.0694 0.6643 0.5339 

 ROI3 0.9724 0.0267 0.3915 0.3827 0.7117 0.0150 0.1090 0.1305 0.0748 0.2006 0.9845 0.1949 0.6262 0.4866 

 ROI4 0.9832 0.0203 0.3086 0.3470 0.7309 0.0119 0.0776 0.1715 0.0705 0.1896 0.9837 0.1502 0.6412 0.4428 

 

 



Figure captions 

 

Figure 1.  Single-polarization multiplicative speckle model. 

Figure 2.  The i-DWT workflow for constructing the improved wavelet transformation filter. 

Figure 3. Location of the Rize oil seep and the Kobuleti ridge seepage cluster on a SAR Copernicus Sentinel-1 

image (31.08.2018). 

Figure 4.  (a) ROI1 containing heterogeneous water-oil slick area. (a) ROI2 containing heterogeneous water-oceanic 

structure area. (c) ROI3 containing homogeneous area. (d) ROI4 containing homogeneous area. 

Figure 5.  The general processing workflow for natural oil slick detection and mapping. The framework has been 

proposed by Suresh et al. (2015) as the Automatic Seep Location Estimator (ASLE). Pre-processing of current 

images includes orbit corrections with precise orbit vectors and multilooking for obtaining DN images and, in addition, 

radiometric calibration for extracting the NRCS values. 

Figure 6. Speckle filtering results on the DN Rize 25.07.2018 ROI1 image using (a) Original Image. (b) Median filter 

(c) Lee filter. (d) Lee Sigma. (e) Enhanced Lee filter. (f) Refined Lee filter. (g) Frost filter. (h) Enhanced Frost filter. (i) 

Symmetric Nearest Neighbor filter. (j) Bilateral filter. (k) Guided filter. (l) Speckle reducing anisotropic diffusion filter. 

(m) Improved Discrete Wavelet Transform filter. (n) SAR-BR3D filter, (o) Gamma Map. 

Figure 7. Speckle filtering results on the NRCS Rize 25.07.2018 ROI1 image using (a) Original Image. (b) Median 

filter (c) Lee filter. (d) Lee Sigma. (e) Enhanced Lee filter. (f) Refined Lee filter. (g) Frost filter. (h) Enhanced Frost 

filter. (i) Symmetric Nearest Neighbor filter. (j) Bilateral filter. (k) Guided filter. (l) Speckle reducing anisotropic 

diffusion filter. (m) Improved Discrete Wavelet Transform filter. (n) SAR-BR3D filter, (o) Gamma Map. 

Figure 8. Speckle filtering results on the DN Rize 25.07.2018 ROI2 image using (a) Original Image. (b) Median filter 

(c) Lee filter. (d) Lee Sigma. (e) Enhanced Lee filter. (f) Refined Lee filter. (g) Frost filter. (h) Enhanced Frost filter. (i) 

Symmetric Nearest Neighbor filter. (j) Bilateral filter. (k) Guided filter. (l) Speckle reducing anisotropic diffusion filter. 

(m) Improved Discrete Wavelet Transform filter. (n) SAR-BR3D filter, (o) Gamma Map. 

Figure 9. Speckle filtering results on the NRCS Rize 25.07.2018 ROI2 image using (a) Original Image. (b) Median 

filter (c) Lee filter. (d) Lee Sigma. (e) Enhanced Lee filter. (f) Refined Lee filter. (g) Frost filter. (h) Enhanced Frost 

filter. (i) Symmetric Nearest Neighbor filter. (j) Bilateral filter. (k) Guided filter. (l) Speckle reducing anisotropic 

diffusion filter. (m) Improved Discrete Wavelet Transform filter. (n) SAR-BR3D filter, (o) Gamma Map. 

Figure 10. Speckle filtering results on the DN Rize 25.07.2018 ROI3 image using (a) Original Image. (b) Median filter 

(c) Lee filter. (d) Lee Sigma. (e) Enhanced Lee filter. (f) Refined Lee filter. (g) Frost filter. (h) Enhanced Frost filter. (i) 

Symmetric Nearest Neighbor filter. (j) Bilateral filter. (k) Guided filter. (l) Speckle reducing anisotropic diffusion filter. 

(m) Improved Discrete Wavelet Transform filter. (n) SAR-BR3D filter, (o) Gamma Map. 

Figure 11. Speckle filtering results on the NRCS Rize 25.07.2018 ROI3 image using (a) Original Image. (b) Median 

filter (c) Lee filter. (d) Lee Sigma. (e) Enhanced Lee filter. (f) Refined Lee filter. (g) Frost filter. (h) Enhanced Frost 

filter. (i) Symmetric Nearest Neighbor filter. (j) Bilateral filter. (k) Guided filter. (l) Speckle reducing anisotropic 

diffusion filter. (m) Improved Discrete Wavelet Transform filter. (n) SAR-BR3D filter, (o) Gamma Map. 

Figure 12. Speckle filtering results on the DN Rize 25.07.2018 ROI4 image using (a) Original Image. (b) Median filter 

(c) Lee filter. (d) Lee Sigma. (e) Enhanced Lee filter. (f) Refined Lee filter. (g) Frost filter. (h) Enhanced Frost filter. (i) 

Symmetric Nearest Neighbor filter. (j) Bilateral filter. (k) Guided filter. (l) Speckle reducing anisotropic diffusion filter. 

(m) Improved Discrete Wavelet Transform filter. (n) SAR-BR3D filter, (o) Gamma Map. 

Figure 13. Speckle filtering results on the NRCS Rize 25.07.2018 ROI4 image using (a) Original Image. (b) Median 

filter (c) Lee filter. (d) Lee Sigma. (e) Enhanced Lee filter. (f) Refined Lee filter. (g) Frost filter. (h) Enhanced Frost 

filter. (i) Symmetric Nearest Neighbor filter. (j) Bilateral filter. (k) Guided filter. (l) Speckle reducing anisotropic 

diffusion filter. (m) Improved Discrete Wavelet Transform filter. (n) SAR-BR3D filter, (o) Gamma Map. 
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