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In this Supplemental Material we provide details about the calculations presented in the main text. In Sec. I, we
discuss the tGGE ansatz for the free fermionic hopping Hamilonian, given by Eqs. (8) and (2) of the main text,
respectively. In Sec. II, we specialize the discussion of the reaction-limited tGGE dynamics to the annihilation,
coagulation and contact process reactions. In Sec. III, we eventually prove the mapping between the annihilation and
the coagulation dynamics in Eq. (10) of the main text.

I. REACTION-LIMITED TGGE ANSATZ FOR THE FERMION HOPPING HAMILTONIAN

We consider the free-fermionic hopping Hamiltonian in (2). We take henceforth periodic boundary conditions
cj+L = cj . This choice is without loss of generality as we always consider the thermodynamic limit L → ∞, where
the choice of boundary conditions does not matter. The Hamiltonian is diagonalized by Fourier transformS1

H = −2Ω
∑
kn

cos(kn)n̂kn with n̂k = ĉ†k ĉk, (S1)

and the operators ĉk in Fourier space defined as

ĉkn =
1√
L

L∑
j=1

e−iknjcj , with inverse cj =
1√
L

∑
kn

eiknj ĉkn . (S2)

Here kn = 2πn/L, with n = 1, 2 . . . L, are the quasi-momenta. In the remainder of this Supplemental Material,
we denote summations over the quasi momenta

∑
kn

as
∑

k for simplicity. The Hamiltonian in Eq. (S1) clearly

commutes with n̂k for every k value: [H, n̂k] = 0. The Hamiltonian is integrable and it possesses an extensive number
of conserved charges. The latter are linearly related to the n̂k operators, see, e.g., the discussion in Refs. S2 and S3.
The generalized-Gibbs ensemble ρGGE, describing the relaxation at long times under the unitary dynamics of Eq. (S1),
can be therefore written in terms of the n̂k as in Eq. (8) of the main text. In the reaction limited/weak dissipation
regime Γ/Ω ≪ 1, one promotes the GGE to be time dependent ρGGE → ρGGE(t), as proposed in Refs. S4–S7. It is
then convenient to introduce the adimensional time τ = Γt, in terms of which the tGGE ansatz is formulated as

lim
Γ/Ω→0

ρ(t = τ/Γ) = ρGGE(τ) =
1

Z(τ)
exp

(
−
∑
k

λk(τ)n̂k

)
, with

dρGGE(t)

dt
= D[ρGGE(t)]. (S3)

The last equation follows from [H, ρGGE(t)] = 0. We emphasize that the tGGE describes, in the thermodynamic
limit L → ∞, the slow evolution taking place on the time scale Γ−1 of the full quantum state ρ(t). Within this
limit, the hopping time Ω−1 (diffusion classically) is much smaller than the reaction time Γ−1 so that the reactants
rapidly mix in space rendering an homogeneous locally in (generalized) equilibrium state ρGGE(τ). The state (S3)
is Gaussian and diagonal in momentum space. Its dynamics is therefore entirely encoded in the two-point function

Ck(τ) = ⟨ĉ†k ĉq⟩GGE
(τ) = δk,q/(exp(λq) + 1). In particular, from Eq. (S3), one has

dCq(t)

dt
=

1

2

∑
j,ν

⟨Lν
j
†[n̂q, L

ν
j ]⟩GGE

(t) + ⟨[Lν
j
†, n̂q]L

ν
j ⟩GGE

(t) =
∑
j,ν

⟨Lν
j
†[n̂q, L

ν
j ]⟩GGE

(t), ∀q. (S4)

In the first equality we used the cyclic invariance of the trace, while in the second equality that [n̂q, ρGGE(t)] = 0.
The above equation is recognized as Eq. (9) of the main text. We notice that the dissipation timescale Γ appears
as common factor on the right hand side of Eq. (S4) and the solution Cq(τ) and the tGGE state ρGGE(τ) therefore
depend on the rescaled time τ , as anticipated in the main text.
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II. QUANTUM REACTION-LIMITED DYNAMICS

In this Section we specialize Eq. (9) of the main text to the various reaction processes considered. In Subsec. II A, we
consider the binary annihilation reaction (4). In Subsec. II B, we consider the coagulation reaction (5). In Subsec. II C,
we eventually consider the contact process with binary annihilation in Eqs. (4), (6) and (7).

A. Annihilation

For the annihilation reaction A+A→ ∅ (4), we write the jump operators Lα
j in Fourier space according to Eq. (S2)

as

Lα
j (θ) =

√
Γαcj(cos θcj+1 − sin θcj−1) =

√
Γα

1

L

∑
k,k′

ei(k+k′)j(cos θeik
′
− sin θe−ik′

)ĉk ĉk′ . (S5)

The following commutation relation is then useful in the evaluation of the commutator in Eq. (9)

[n̂q, ĉk ĉk′ ] = −ĉk ĉk′(δk,q + δk′,q). (S6)

Inserting Eqs. (S5) and (S6) into Eq. (S4) one gets

dCq(t)

dt
= −Γα

L

∑
k,k′

⟨ĉ†k′ ĉ
†
k ĉq ĉk+k′−q⟩GGE

(t)
(
cos θe−ik′

−sin θeik
′
)(

cos θ(ei(k+k′−q) − eiq)− sin θ(e−i(k+k′−q) − e−iq)
)
.

(S7)
From the previous equation, it is clear that upon rescaling the time as τ = Γαt, the solution Cq(τ) depends only on
τ . The four-point fermionic function in the previous equation is evaluated exploiting the fact that the tGGE state
(S4) is Gaussian and therefore Wick theorem applies:

⟨ĉ†k′ ĉ
†
k ĉq ĉk+k′−q⟩GGE

(τ) = Ck(τ)Ck′(τ)(δk,q − δk′,q), (S8)

leading to the equation

dCq(τ)

dτ
= − 1

L

∑
k

gθ(k, q)Ck(τ)Cq(τ). (S9)

The function gθ(k, q) is given by

gθ(k, q) = 2(1− cos(k − q)) + sin(2θ)(2 cos(k + q)− cos(2k)− cos(2q)). (S10)

Equations (S9) and (S10) have been used with θ = 0 to produce the data in Fig. 2(a) of the main text. We checked
that the solution of Eqs. (S9) and (S10) is stable upon increasing L from L = 400, 500 and 600 and therefore that the
thermodynamic limit is reached. Setting θ = 0 into the expression for gθ(k, q) one has for Eq. (S9) that

dCq(τ)

dτ
= −2Cq(t) ⟨n⟩GGE (τ) +

2

L

∑
k

cos(k − q)Ck(τ)Cq(τ), (S11)

and for the density of reactants

⟨n⟩GGE (τ) =
∑
q

Cq(τ)/L, (S12)

that

d ⟨n⟩GGE (τ)

dτ
= −2 ⟨n⟩2GGE (τ) +

2

L2

∑
k,k′

cos(k − k′)Ck(τ)Ck′(τ). (S13)

The last equation is not closed for the density ⟨n⟩GGE (τ) because of the presence of the second term on the right
hand side. The first term on the right hand side of (S13) is exactly the mean-field law of mass action describing the
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reaction-limited regime of classical annihilation RD dynamicsS8–S10. The time integration of this contribution simply
yields

d ⟨n⟩MF (τ)

dτ
= −2 ⟨n⟩2MF (τ) → ⟨n⟩MF (τ = Γαt) =

n0
1 + 2Γα tn0

. (S14)

The factor 2 in the previous equation accounts for the fact that in each annihilation reaction 2 particles are lost. The
function ⟨n⟩MF (τ) is depicted in red-dashed in Fig. 2(a). The second term on the right hand side of Eq. (S13) causes
the departure shown in Fig. 2(a) from the law of mass action prediction (S14). In particular, this term is non-zero if
and only if the momentum distribution function Cq(τ) is not flat in q. This is achieved, for example, for the Fermi sea

initial state at density n0 ̸= 1 and it causes the decay ⟨n⟩GGE (τ) ∼ τ−1/2 shown in the blue line of Fig. 2(a). In the
opposite case, where Cq(τ) is flat in the momentum q, the second term in the right hand side of (S13) is identically
zero and the classical mean-field prediction ⟨n⟩MF (τ) (S14) is exactly retrieved. This is precisely what happens for
the incoherent initial state ρ0, with Cq(τ = 0) = n0 for any q.
We mention that the decay of the density in the quantum RD annihilation dynamics (θ = 0) has been also studied

in Ref. S11 via numerical simulations of quantum-jump trajectories for system sizes up to L = 22. Therein, the
fully occupied initial state is taken, n0 = 1 with our notation, and the diffusion (hopping)-limited regime Ω = Γα is
considered. The density is found to decay in this limit algebraically as ⟨n⟩ (t) ∼ t−b, with 1/2 < b < 1. In light of
our results, we expect the exponent b(Ω/Γα) to vary as a function of Ω/Γα towards the value bMF = 1 in Eq. (S14)
attained in the reaction-limited regime at large Ω/Γα. Similar algebraic decays, with an exponent varying with the
Hamiltonian to dissipation strength Ω/Γ, have been numerically observed in Refs. S12 and S13 for different types of
kinetically-constrained open quantum dynamics.

In the case θ ̸= 0, π/2, i.e., away from the classical limit of the annihilation reaction, one notices that quantum
coherences are produced by the reaction part of the dynamics itself. This translates into the fact that Eq. (S9)
produces a non-homogeneous momentum occupation function Cq(τ), even in the case the initial distribution Cq(0) is

flat in q. As a consequence of this, one observes a decay ⟨n⟩GGE (τ) ∼ τ−1/2 for every FS initial state, even at unit
filling n0 = 1, and, more generally, also for the initial state ρ0 at arbitrary n0. This observation is consistent with the
results derived in Refs. S14 and S15 where two-body atomic losses in one-dimensional bosonic gases in the dissipative
quantum Zeno regime have been addressed.

1. Annihilation dynamics from momentum-inhomogeneous GGE initial states

We present here additional analyses and examples in order to further corroborate the results of Subsec. IIA concern-
ing the annihilation decay ⟨n⟩GGE (τ) ∼ τ−1/2. Henceforth in this subsection we take θ = 0 in Eq. (S5). We consider
the case where the initial state has the GGE form in Eq. (S3) with momentum inhomogeneous initial Lagrange
multipliers λk(0) and momentum occupation function

ρGGE(0) =
1

Z(0)
exp

(
−
∑
k

λk(0)n̂k

)
, Z(0) =

L∏
kn,n=1

(
1 + e−λk(0)

)
, Cq(0) =

1

exp(λq(0)) + 1
. (S15)

We call states as in Eq. (S15) momentum-inhomogeneous GGE initial states as they assume a GGE form and they
allow for an initial occupation function Cq(0) not flat in q. This implies that the various quasi-momenta q are not
uniformly populated in the initial state. It is immediate to compute the purity P = Tr[ρ2], for states as in (S15), as

PGGE(0) =

L∏
kn,n=1

Pkn(0), with Pk(0) =
Tr(e−2λk(0)n̂k)(
1 + e−λk(0)

)2 =
1 + e−2λk(0)

1 + 2e−λk(0) + e−2λk(0)
. (S16)

It is clear that 0 ≤ Pk(0) ≤ 1, with the upper bound 1 attained only if λk(0) → ±∞. From the relation in Eq. (S15)
between Cq(0) and λq(0), this implies Cq(0) → 1 when λq(0) → −∞, and Cq(0) → 0 when λq(0) → +∞. Consequently,
PGGE(0) < 1, and the initial state is mixed, whenever the occupation function Cq(0) is such that 0 < Cq(0) < 1 for
at least one quasi-momentum q. This is the case, for example, of the state ρ0 = exp(λN)/Z0, considered in the main
text, having flat occupation function: Cq(0) = n0 < 1 for every q. Conversely, for pure states, with PGGE(0) = 1,
the occupation function can attain only the values 0 or 1. The latter is precisely the limiting case of the Fermi-sea
initial pure state. Investigating states of the form (S15) therefore generalizes the analysis of the main text by allowing
to study mixed states with a momentum inhomogeneous initial distribution, with the (pure) coherent Fermi sea and
the incoherent (momentum-homogeneous) ρ0 states retrieved as particular cases. In Fig. S1, we show the dynamics
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FIG. S1. Annihilation dynamics for the occupation function and the particle density. . (a) Momentum occupation
function Cq(τ) as function of q for increasing values of the rescaled time τ = Γαt (from top to bottom) for the annihilation
reaction at θ = 0. The initial occupation function is Cq(0) = (1+ cos(q))/2, with initial density 1/2 (topmost black curve). (b)
Top-blue curve: log-log plot of the density ⟨n⟩GGE (τ) associated to the occupation function Cq(τ) in panel (a). The density

decays asymptotically in time as ⟨n⟩GGE (τ) ∼ τ−1/2. The bottom red-dashed line gives the mean-field prediction in Eq. (S14)
with n0 = 1/2 and it is reported for comparison. (c) Momentum occupation function Cq(τ) as a function of q for increasing
values of Γ from the initial condition Cq(0) = 0.7(1 + sin(q))/2 (topmost black curve), and initial density n0 = 0.35. Note that
in this case Cq(0) is not invariant under quasi-momentum reversal q → −q and therefore Cq(τ) evolves differently for positive
and negative values of q. (d) Top-blue curve: log-log plot of the density ⟨n⟩GGE (τ) associated to Cq(τ) in (c). The density

decays asymptotically as ⟨n⟩GGE (τ) ∼ τ−1/2 also in this case, differently from the mean-field prediction (red-dashed curve).

of the momentum occupation function Cq(τ) and the particle density ⟨n⟩GGE (τ) for the annihilation reaction, with
θ = 0, starting from two different mixed states (S15) with momentum inhomogeneous initial distribution. In both
cases, the density decays as ⟨n⟩GGE ∼ τ−1/2. This shows that the non mean-field decay ⟨n⟩GGE ∼ τ−1/2 does not
necessarily require purity equal one for the initial state (as it is the case for the Fermi sea). Mixed initial states (S15)
with purity PGGE(0) < 1 give the decay ⟨n⟩GGE ∼ τ−1/2 as well, as long as the initial momentum occupation function
Cq(0) is inhomogeneous in q. The latter is the necessary condition for the decay exponent to be 1/2, as commented
in Subsec. II A on the basis of Eqs. (S11)-(S14).

B. Coagulation

We consider here the symmetric coagulation reaction (5), where the reactions A+A→ ∅+A (right coagulation) and
A+A→ A+ ∅ (left coagulation) happen with the same rate Γγ/2. The generalization of the following analysis to the
asymmetric coagulation, where right and left coagulation take place with different rates Γγ+ and Γγ−, respectively,
is straightforward and it does not alter qualitatively our results.

The calculation for the symmetric coagulation process Lγ±
j in Eq. (5) is more involved than the one for annihilation

as it involves three fermion operators. The expression in Fourier space of the jump operators is

Lγ±
j =

√
Γγ/2 cjnj±1 =

√
Γγ/2 cj c

†
j±1cj±1 =

√
Γγ

2

1

L3/2

∑
k1,k2,k3

eik1je−ik2(j±1)eik3(j±1)ĉk1 ĉ
†
k2
ĉk3 . (S17)

The commutator in Eq. (S4) can be again simplified using the following commutation relations

[n̂q, ĉk1 ] = −δk1,q ĉqn̂q = −δk1,q ĉq, and [n̂q, ĉ
†
k2
ĉk3 ] = ĉ†k2

ĉk3(δk2,q − δk3,q). (S18)

From Eqs. (S17) and (S18) one has

[n̂q, L
γ±
j ] =

√
Γγ

2

1

L3/2

∑
k,k′

ĉk ĉ
†
q ĉk′eikje−iq(j±1)eik

′(j±1) −
∑
k,k′

eikje−ik′(j±1)eiq(j±1)ĉk ĉ
†
k′ ĉq

−
∑
k,k′

eiqje−ik(j±1)eik
′(j±1)ĉq ĉ

†
k ĉk′

 , (S19)
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and therefore

∑
j

(Lγ±
j )†[n̂q, L

γ±
j ] =

Γγ

2

1

L3

∑
j

∑
k1,k2,k3

e−ik1jeik2(j±1)e−ik3(j±1)ĉ†k3
ĉk2
ĉ†k1

∑
k,k′

ĉk ĉ
†
q ĉk′eikje−iq(j±1)eik

′(j±1)

−
∑
k,k′

eikje−ik′(j±1)eiq(j±1)ĉk ĉ
†
k′ ĉq −

∑
k,k′

eiqje−ik(j±1)eik
′(j±1)ĉq ĉ

†
k ĉk′


=

1

L2

 ∑
k1,k3,k,k′

e±i(k1−k)(ĉ†k3
ĉk1−k+k3+q−k′ ĉ†k1

ĉk ĉ
†
q ĉk′ − ĉ†k3

ĉk1+k3−k+k′−q ĉ
†
k1
ĉk ĉ

†
k′ ĉq)


− 1

L2

 ∑
k1,k3,k,k′

e±i(k1−q)ĉ†k3
ĉk1+k3+k−k′−q ĉ

†
k1
ĉq ĉ

†
k ĉk′

 . (S20)

One realizes from equation (S20), that in order to proceed further with the calculation we need to compute six-point
fermion correlation functions. This is accomplished, similarly as in the case of the annhilation reaction dynamics in
Eq. (S8), exploiting the Gaussian structure of the tGGE state (S3) and therefore the Wick theorem. We report the
calculation for the first term in the sum on the third line of Eq. (S20):

⟨ĉ†k3
ĉk1−k+k3+q−k′ ĉ†k1

ĉk ĉ
†
q ĉk′⟩

GGE
(τ) = Ck1

CqCk3
δk1,kδq,k′ + Ck3

Ck1
(1− Ck)δk1,k′δk,q + Ck3

Cq(1− Ck1
)δk3,kδk′,q

−Ck3
Ck1

(1− Cq)δk3,kδk1,k′ + Ck3
(1− Cq)(1− Ck1

)δk3,k′δk,q + Ck3
(1− Cq)Ck1

δk3,k′δk1,k.
(S21)

The calculation of the tGGE expectation value of the other two terms on the third line of Eq. (S20) works similarly
and it is not reported for brevity. In the previous equation, the argument of the momentum occupation function
Cq(τ) is the rescaled time τ = Γγt and it is not reported again for the sake of brevity. Taking the expectation value of
Eq. (S20) over the time-dependent GGE state, according to Eq. (S4), and using the result (S21), after some algebra
one obtains the equation

dCq(τ)

dτ
= ⟨n⟩2GGE (τ)− 2Cq(τ) ⟨n⟩GGE (τ) +

2Cq(τ)

L

∑
k

cos(q − k)Ck(τ)−
1

L2

∑
k,k′

cos(k − k′)Ck(τ)Ck′(τ), (S22)

where τ = Γγt and ⟨n⟩GGE as in Eq. (S12). The differential equation for the latter quantity can be written by
summing Eq. (S22) over all the modes q

d ⟨n⟩GGE (τ)

dτ
= −⟨n⟩2GGE (τ) +

1

L2

∑
k,k′

cos(k − k′)Ck(τ)Ck′(τ)

 . (S23)

Equation (S22) has been solved with L = 600 to produce the data in Fig. 2(b) of the main text. Equation (S23) has
the very same structure as Eq. (S13) for the annihilation reaction dynamics. The difference between the two reaction
processes lies, however, in the evolution equation for the momentum occupation function Cq(τ), cf. Eq. (S9) with
Eq. (S22). The classical reaction-limited mean-field analysis is encoded into the first term on the right hand side
of (S23), which corresponds to the law of mass action for the coagulation dynamics. The time integration of this
contribution is

d ⟨n⟩MF (τ)

dτ
= −⟨n⟩2MF (τ) → ⟨n⟩MF (τ = Γγt) =

n0
1 + Γγ tn0

. (S24)

We notice that in Eq. (S24) there is no factor 2 (as in Eq. (S14) instead) since each coagulation reaction depletes the
number of particles by 1. The second term in Eq. (S23) is beyond the mean-field classical reaction-limited description
and it is not zero if and only if the momentum distribution is not flat in momentum space. This is the case of the FS
initial state, whose dynamics is shown in blue in Fig. 2(b). In the opposite case, where Cq(τ) is flat in momentum
space, the mean-field solution (S24) is retrieved. This is the case of the dynamics from the initial state ρ0, which we
plot in red-dashed in Fig. 2(b).



6

C. Contact process with annihilation

In this Subsection we discuss the contact process with pair annihilation given by Eqs. (4)-(6) without coagulation
Γγ = 0. We consider the case of symmetric branching reactions (7), where A + ∅ → A + A (right branching) and
∅ + A → A + A (left branching) happen with the same rate Γβ/2. The generalization to asymmetric branching is
again straightforward and it does not change qualitatively the results we are going to present. We further rescale all
the reactions’ rates Γν = Γν, with ν = α, β and δ, such that Γ sets the overall dissipation rate, while α, β and δ
encode the relative strength of the three reactions here considered.

The calculation for the branching jump operator Lβ±
j is similar to the one explained in Subsec. II B for the coagu-

lation dynamics. In particular, one has in Fourier space

(Lβ±
j )† =

√
Γβ

2

1

L3/2

∑
k1,k2,k3

eik1je−ik2(j±1)eik3(j±1)ĉk1 ĉ
†
k2
ĉk3 . (S25)

From Eqs. (S25) the calculation proceeds in a similar way as the one outlined in Subsec. II B. We report here just the
final result for the sake of brevity

dCq(τ)

dτ
= β

2 ⟨n⟩GGE (τ)− Cq(τ)− ⟨n⟩2GGE (τ) +
1

L2

∑
k,k′

cos(k − k′)Ck(τ)Ck′(τ)

−δCq−
α

L

∑
k

gθ(k, q)Ck(τ)Cq(τ),

(S26)
with τ = Γt and ⟨n⟩GGE (τ) in Eq. (S12). Equation (S26) has been solved for L = 600 to produce the data in
Fig. 2(c)-(d). It is also instructive to look at the structure of the equation for the density of particles:

d ⟨n⟩GGE (τ)

dτ
= β ⟨n⟩GGE (τ)(1−⟨n⟩GGE (τ))− δ ⟨n⟩GGE (τ)+

1

L2

∑
k,k′

(β cos(k − k′)− αgθ(k, k
′))Ck(τ)Ck′(τ). (S27)

The part of the right hand side which solely depends on the density ⟨n⟩GGE (τ) gives the result one would get within
the mean-field treatment of the classical reaction-limited RD dynamics. The terms coupling different Fourier modes
Ck(τ) and Ck′(τ) go beyond the latter description. From Eq. (S10) and (S27), the mean-field prediction for the
stationary density nstatMF is readily obtained

d ⟨n⟩MF (τ)

dτ
= −2α ⟨n⟩2MF (τ)− δ ⟨n⟩MF (τ) + β ⟨n⟩MF (τ)(1− ⟨n⟩MF (τ)) = 0 → ⟨n⟩statMF =

β − δ

β + 2α
, (S28)

which is defined (⟨n⟩statMF ≥ 0) only if β > βc = δ. In the reaction-limited regime, the critical point of the absorbing-
state phase transition therefore coincides with the one of the classical CP (with branching (7) and decay (6) only)
above its upper critical dimensionS8,S10. The same stationary state is furthermore obtained from the FS and the
incoherent initial state ρ0 (the two initial states having the same density n0). The associated stationary density

⟨n⟩statGGE is, however, strongly affected by the coherences introduced by the annihilation reaction (4) at θ ̸= 0(π/2).
In particular, the stationary occupation function Cstat

q = limτ→∞ Cq(τ), shown in the inset of Fig. 2(c), is not flat
as a function of q, which implies that the quantum reaction-limited steady state displays spatial correlations beyond
the classical mean-field description. The stationary density achieved at long times in the active phase, β > βc, is
consequently not given by Eq. (S28) for θ ̸= 0(π/2). In the case of Fig. 2(c), for example, we find for θ = π/3 (the other

parameters are reported in the associated caption) that ⟨n⟩statGGE ≃ 0.1706, while Eq. (S28) gives ⟨n⟩statMF = 1/6 ≃ 0.167.
In order to investigate further the structure of the stationary state, we compute the stationary correlation matrix
Gstat(x− y, θ) = limτ→∞G(x− y, θ, τ), with:

G(x− y, θ, τ) = ⟨c†xcy⟩GGE (τ) =
1

L

∑
k,q

eiyq−ixk ⟨c†kcq⟩GGE
(τ) =

1

L

∑
q

eiq(y−x)Cq(τ). (S29)

The latter equation is nothing but the Fourier transform of Cq(τ). Because of translational invariance, G(x− y, θ, τ)
is a function of the distance x− y between the two sites only. Moreover, since the initial conditions investigated (the
Fermi-sea and the incoherent state ρ0) and Eq. (S26) are invariant under quasi-momenta q → −q reversal, Cq(τ) is at
any time an even function of q. As a consequence, the correlation matrix G(l, θ, τ) is at any time τ real and symmetric
with respect to the origin: G∗(l, θ, τ) = G(l, θ, τ) = G(−l, θ, τ).
In Fig. S2, we plot Gstat(l, θ) as a function of the distance l between the two sites, with the initial state taken as

the FS at filling n0 = 0.7 (in the same way as in Fig. 2(c)-(d)). One can see that Gstat(l, θ) has a peak at l = 0, whose
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FIG. S2. Stationary correlations in the CP with binary annihilation. Plot of Gstat(l, θ) as a function of l in the
active stationary state of the CP with pair annihilation (4) and without coagulation Γγ = 0 (cf. Eqs. (4)-(6)). The values of
Gstat(l, θ) are represented by the red markers while the blue dashed line is a guide for the eye. The value Gstat(l = 0, θ) at
l = 0 corresponds to the stationary density ⟨n⟩statGGE, which is different from the mean-field value nstat

MF as long as θ ̸= 0, π/2.
Fundamentally Gstat(l, θ) is different from zero when θ ̸= 0, π/2 at even distances l = ±2, 4, 6, 8, . . . , showing that the stationary
state displays spatial correlations. In the inset, we zoom the values of Gstat(l, θ) in the interval l ∈ [1, 8], showing that dominant
correlations are at distance l = ±2, while correlations at higher (even) distances are subleading. The parameters are analoguos
to the ones used in Fig. 2(c) of the main text: β = α = 1, δ = 0.5 and θ = π/3. The initial state is the FS at filling n0 = 0.7.
The same result is obtained for the incoherent initial state ρ0 at the same density n0.

magnitude corresponds to the stationary density ⟨n⟩statGGE of the active phase. In addition, Gstat(l, θ) is non-zero at
even values of l = ±2,±4,±6 . . . . This fact shows that the stationary active state is not factorized in real space, as
it would be within the mean-field description of the classical reaction-limited dynamics. In the inset of Fig. S2, we
zoom in Gstat(l, θ) away from l = 0. The dominant correlations clearly take place at distance l = 2. Only in the case
θ = 0 (π/2), where the annihilation (4) reduces to its classical limit, the steady state is uncorrelated and one recovers

the classical mean-field results: Cstat
q = ⟨n⟩statMF (flat in momentum space) and Gstat(l, θ) is zero for any l ̸= 0.

We provide here the explicit expression of the GGE stationary state ρstatGGE in order to better explain the relation
between the local dark states in Eq. (11) of the main text and the non-trivial correlation function displayed in
Fig. S2. As explained in the main text, the stationary GGE can be written as ρstatGGE ∝ e−λMFN−λ2Q2/2, with

λMF = log(1/ ⟨n⟩statGGE − 1) and λ2 = −ε sin(θ)/(2 ⟨n⟩statGGE (1 − ⟨n⟩statGGE)). We now expand the expression for ρstatGGE to
first order in ε obtaining

ρstatGGE =
e−λMFN

Zstat
MF

−λ2
2

e−λMFN

Zstat
MF

Q2+O(ε2), with Q2 =
∑
j

(c†jcj+2+c
†
j+2cj), and Zstat

MF = Tr(e−λMFN ) =

L∏
j=1

(1+e−λMF).

(S30)
In the previous step, we used the fact that Q2 is a conserved charge of the Hamiltonian and therefore [Q2, N ] = 0 and
that e−λMFN is purely diagonal. The term e−λMFNQ2 is consequently purely off-diagonal so that the normalization of
ρstatGGE is Zstat

MF to first order in ε. The first term on the right hand side of the equation for ρstatGGE is an incoherent mixture
of states in the fermionic Fock space spanned by |C⟩ = |C1, C2 . . . CL⟩ = |◦1 ◦2 · · · •L⟩, with N |C⟩ = N(C) |C⟩ =∑

j N(Cj) |C⟩, according to the factorized probability measure ∝ e−λMFN(C):

e−λMFN

Zstat
MF

=
∑
C

e−λMFN(C)

Zstat
MF

|C⟩ ⟨C| =
∑

C1,C2...CL

 L∏
j=1

Pj

 |C⟩ ⟨C| , and Pj =
e−λMFN(Cj)

1 + e−λMF
. (S31)
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One can eventually calculate the action of Q2 onto the state (S31) which leads to

ρstatGGE =
e−λMFN

Zstat
MF

−
⟨n⟩statGGEA(θ)

2

∑
j

∑
C<j−1,C>j+1

Mj(|C<j−1, ◦j−1 •j •j+1, C>j+1⟩ ⟨C<j−1, •j−1 •j ◦j+1, C>j+1|+ h.c.)

+
(1− ⟨n⟩statGGE)A(θ)

2

∑
j

∑
C<j−1,C>j+1

Mj(|C<j−1, ◦j−1 ◦j •j+1, C>j+1⟩ ⟨C<j−1, •j−1 ◦j ◦j+1, C>j+1|+ h.c.)+O(ε2),

(S32)

with A(θ) = ε sin(2θ)/2, as defined in the main text. In the previous equation, we denoted with C<j−1 (C>j+1) the
Fock state preceding (following) the site j − 1 (j + 1), i.e., |C1, C2 . . . Cj−1⟩ (|Cj+2, . . . CL⟩). We have also denoted
with Mj =

∏
l ̸=j,j±1 Pl, the marginal distribution for all the lattice sites but j − 1, j, j + 1. The relation between the

previous equation and the local dark states |ψ⟩dark,◦/•j in Eq. (11) of the main text can be made more explicit upon

rewriting Eq. (S32) as

ρstatGGE = ρstatdiag +
⟨n⟩statGGE ε

2

∑
j

∑
C<j−1,C>j+1

Mj |C<j−1, ψ
dark,•
j , C>j+1⟩ ⟨C<j−1, ψ

dark,•
j , C>j+1|

+
(1− ⟨n⟩statGGE)ε

2

∑
j

∑
C<j−1,C>j+1

Mj |C<j−1, ψ
dark,◦
j , C>j+1⟩ , ⟨C<j−1, ψ

dark,◦
j , C>j+1|+O(ε2), (S33)

with

ρstatdiag =
e−λMFN

Zstat
MF

−
⟨n⟩statGGE ε sin

2 θ

2

∑
j

∑
C<j−1,C>j+1

Mj |C<j−1, ◦j−1 •j •j+1, C>j+1⟩ ⟨C<j−1, ◦j−1 •j •j+1, C>j+1|

−
⟨n⟩statGGE ε cos

2 θ

2

∑
j

∑
C<j−1,C>j+1

Mj |C<j−1, •j−1 •j ◦j+1, C>j+1⟩ ⟨C<j−1, •j−1 •j ◦j+1, C>j+1|

−
(1− ⟨n⟩statGGE)ε sin

2 θ

2

∑
j

∑
C<j−1,C>j+1

Mj |C<j−1, ◦j−1 ◦j •j+1, C>j+1⟩ ⟨C<j−1, ◦j−1 ◦j •j+1, C>j+1|

−
(1− ⟨n⟩statGGE)ε cos

2 θ

2

∑
j

∑
C<j−1,C>j+1

Mj |C<j−1, •j−1 ◦j ◦j+1, C>j+1⟩ ⟨C<j−1, •j−1 ◦j ◦j+1, C>j+1| . (S34)

The term ρstatdiag is incoherent and gives zero contribution to the correlation function, Tr[c†xcyρ
stat
diag] = 0 for x ̸= y.

The non-trivial correlations in Fig. 2(d) of the main text are entirely determined by the second and third term in

Eq. (S33) and, in particular, by the coherences introduced by the projectors onto the dark states |ψ⟩dark,◦/•j appearing

therein. The non-trivial structure of ρstatGGE, determined by the appearance of the conserved charge Q2, is necessarily

determined by the dark states |ψ⟩dark,◦/•j of the annihilation reaction. When θ = 0, π/2 and destructive interference

in Eq. (S5) is not possible, the dark states are not present and Q2 is as well absent in ρstatGGE. The latter is in this case
solely determined by the conserved charge N and it is trivially factorized in space and uncorrelated.

III. MAPPING BETWEEN ANNIHILATION AND COAGULATION

In this Section we discuss for quantum reaction-limited RD systems the mapping between annihilation (4) at θ = 0
(or, equivalently, π/2), and coagulation (5). The mapping is valid for the incoherent initial state ρ0 and it is expressed
by Eq. (10) of the main text, which relates the density of reactants time evolution in the two reaction processes.

In this Section we use the Jordan-Wigner (JW) transformation to describe the RD dynamics via spin operatorsS1

cj = Sjσ
−
j , c†j = S†

jσ
+
j , Sj =

j−1∏
l=1

(−σz
l ), nj = c†jcj =

1 + σz
j

2
, σ±

j =
σx
j ± iσy

j

2
, (S35)

with σx,y,z
j the spin 1/2 Pauli matrix at site j. One realizes that the fermionic number operator nj = c†jcj = |↑⟩j ⟨↑|j

is identified with the projector onto the spin up state σz
j |↑⟩j = + |↑⟩j . The Hermitian operator Sj = S†

j is usually
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named JW string. The annihilation reaction (4) in terms of the spin operators reads as

Lα
j (θ = 0) = −

√
Γασ

−
j σ

−
j+1, (S36)

while the coagulation reaction becomes (5)

Lγ±
j =

√
Γγ/2Sjσ

−
j nj±1. (S37)

It is important to emphasize that Eq. (S37) contains the JW string Sj and it is therefore not local in the spin
representation. We, however, show in this Section that in the proof of Eq. (10) the string term Sj in Eq. (S37) does
not matter. The Hamiltonian (2) with the JW transformation becomes the XX spin chainS1

H = −Ω

L∑
j=1

(σ−
j σ

+
j+1 + σ+

j σ
−
j+1). (S38)

In order to prove Eq. (10), we introduce also jump operators LD,R
j (LD,L

j ) giving incoherent hopping to the right (left)

LD,R
j =

√
Dc†j+1cj =

√
Dσ+

j+1σ
−
j , LD,L

j =
√
Dc†jcj+1 =

√
Dσ+

j σ
−
j+1, (S39)

at rate D. We remark that the boundary terms, j = L, in the Hamiltonian (S38) and the boundary jump operators

Lα
j=L(θ = 0), Lγ+

j=L, L
γ−
j=1, L

D,R
j=L and LD,L

j=L depend on the parity (−1)N of the fermionic number N . We do not write
these terms explicitly here, as the analysis of the reaction-limited regime through the tGGE of Sec. I directly applies
in the thermodynamic limit L → ∞. In this limit boundary terms can be neglected. In the proof of Eq. (10), we
consider the incoherent initial state ρ0 with mean density n0:

ρ0 =
exp(−λN)

Z0
=

L∏
j=1

(n0nj + (1− n0)(1− nj)) =

L∏
j=1

(
n0 |↑⟩j ⟨↑|j + (1− n0) |↓⟩j ⟨↓|j

)
. (S40)

The reaction-limited dynamics in Eq. (S3) from the initial state (S40) remains incoherent at all times and diagonal
in the classical basis spanned by product states of the form, e.g., |C⟩ = |↑↑↓ . . . ↑⟩. The reaction-limited Lindblad
dynamics (S3) can be therefore mapped to a classical master equation by introducing the state vector |P (t)⟩:

ρ(t) =
∑
C

PC(t) |C⟩ ⟨C| → |P (t)⟩ =
∑
C

PC(t) |C⟩ , (S41a)

dρGGE(t)

dt
= D[ρGGE(t)] →

dP (C, t)

dt
=
∑
C′ ̸=C

W (C ′ → C)P (C ′, t)−R(C)P (C, t) → d |P (t)⟩
dt

= −H |P (t)⟩ . (S41b)

Here, H is the Hamiltonian of the classical master equation (not to be confused with the Hamiltonian H ruling the
original coherent dynamics (1)-(3)) and it is given by

H = −
∑
C

∑
C′ ̸=C

W (C ′ → C) |C⟩ ⟨C ′|+
∑
C

R(C) |C⟩ ⟨C| . (S42)

Here, the transition W (C ′ → C) and the escape rate R(C) are related to the jump operators in the dissipator D as

W (C ′ → C) =
∑
j

| ⟨C|Lj |C ′⟩ |2, and R(C) =
∑
C′ ̸=C

W (C → C ′) =
∑
j

⟨C|L†
jLj |C⟩ . (S43)

The initial state ρ0 (S40) is mapped to the state |ρ0⟩

ρ0 → |ρ0⟩ =
(

n0
1− n0

)
1

⊗
(

n0
1− n0

)
2

· · · ⊗
(

n0
1− n0

)
L

. (S44)

We note that the string operator Sj present in Eq. (S37) does not contribute to the dynamics for a purely incoherent
density matrix, as in Eq. (S41), since S2

j = 1. For this reason, in the following, we do not consider the JW string Sj

in the coagulation jump operators Lγ±
j (S37).
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The mapping to the classical master equation (S41) applies both to the annihilation (S36) Dα and to the coagulation
(S37) Dγ dissipator. In both the cases, it can be shown that one can include the incoherent hopping (S39) into the
dissipators Dα,D Dγ,D, as the reaction-limited dynamics in Eqs. (S11) and (S22) for Cq(τ) for the incoherent evolution
(S41) is not changed upon including the jump operators (S39). The advantage of doing this is that the dissipators
Dα,D and Dγ,D map under Eq. (S41) to the classical Hamiltonians Hann

α,D and Hcoag
γ,D of the corresponding classical

reaction diffusion systemsS16–S20. In the latter case, the incoherent hopping accounts for the diffusive motion of the
classical reactants, with the rate D in Eq. (S39) the diffusion constant. For the classical annihilation-diffusion we
have

Hann
α,D = −

∑
j

[
D(σ−

j σ
+
j+1 + σ+

j σ
−
j+1) +

∆α

2
σz
jσ

z
j+1 −

Γα

4
(σz

j + σz
j+1)−

∆α − 2D

2

]
− Γα

∑
j

σ−
j σ

−
j+1, (S45)

with ∆α = D − Γα/2. For the coagulation-diffusion dynamics

Hcoag
γ,D = −

∑
j

[
D(σ−

j σ
+
j+1 + σ+

j σ
−
j+1) +

∆γ

2
σz
jσ

z
j+1 −

Γγ

4
(σz

j + σz
j+1)−

∆γ − 2D

2

]
−Γγ

∑
j

(σ−
j nj+1+σ

−
j+1nj), (S46)

and ∆γ = D−Γγ/2. At Γγ = Γα, the two Hamiltonians are related through a similiarity transformation B, as shown
in Ref. S17:

Hcoag
γ=α,D = BHann

α,D B
−1, with B =

L⊗
j=1

Bj and Bj =

(
2 0
−1 1

)
j

, B−1
j =

(
1/2 0
1/2 1

)
j

. (S47)

The similarity matrix B is built as the L−fold tensor product of the matrix Bj at the site j, which is the same for every
lattice site. This equation in the classical realm is considered as the hallmark of the equivalence between annihilation
and coagulationS8,S16,S17,S19. Once Eq. (S47) is established, the equivalence between the quantum reaction-limited
annihilation dynamics and the coagulation one is readily is established. Namely, one has

⟨n⟩coagGGE (τ, n0) = Tr[njρ
γ
GGE(t)] = Tr[njρ

γ,D
GGE(t)] = ⟨−|nj exp(−Hcoag

γ=α,Dt)|ρ0⟩ = ⟨−|nj B exp(−Hann
α,Dt)B

−1|ρ0⟩
= 2 ⟨−|nj exp(−Hann

α t)|ρ0/2⟩ = 2 ⟨n⟩annGGE (τ, n0/2), (S48)

which corresponds to Eq. (10) of the main text and it implies that the density of reactants decays with the same
exponent in the two processes. Here, |−⟩ =

∑
C |C⟩ is the flat state, which implements the normalization of the

classical dynamics. In the second equality, we used the fact that for an incoherent dynamics the introduction of the
incoherent hopping does not alter the quantum reaction-limited dynamics. In the third equality, we used the mapping
(S41) and, in the fourth equality, Eq. (S47). In the fifth equality, we used that njBj = 2nj , ⟨−|Bj = ⟨−| and
B−1 |ρ0⟩ = |ρ0/2⟩. The derivation of Eq. (S48) can be straightforwardly extended to density equal-time correlation
functionsS16,S17,S19,S20.

Equations (S14) and (S24) do satisfy Eq. (S48). This derivation therefore shows that the quantum reaction-limited
dynamics of the annihilation (S36) and coagulation (S37) processes from the initial state (S40) is exactly coincident
with the mean-field classical reaction-limited evolution. Departures from the latter equivalence are of intrinsic quantum
nature and they are determined either by coherences in the initial state, as in the case of the FS initial state, or by
coherences introduced by the reactions, as in the case of Eq. (4) at θ ̸= 0, π/2. In both these cases, the density matrix
ρ(t) develops in time coherences ∝ |C⟩ ⟨C ′| and the quantum master equation (1) cannot be mapped to its classical
counterpart, as in Eq. (S41). In light of our results in Fig. 2(a)-(b), where the density of particles decays with different
asymptotic exponents in the two processes, we conclude that Eq. (S48) does not hold when coherences are present
and quantum annihilation and coagulation generically display different asymptotic decays (with different power-law
exponents). This is in sharp contrast with the classical case where annihilation and coagulation display analogous
algebraic decays irrespectively of the initial condition.

It is important to emphasize that the equivalence between annihilation and coagulation is here proved in the
reaction-limited regime in a weak way, i.e., in terms of the relation (S48) between the densities in the dynamics of
the two processes. In the classical caseS8,S16,S17,S19, the annihilation-coagulation equivalence is proved in a stronger
way in terms of the similarity relation (S47) between the associated dynamical generators Hann

α,D and Hcoag
γ=α,D. Our

results, however, do not rule out the possibility of the equivalence between quantum annihilation and coagulation, in
the stronger sense that the associated Lindbladians (1) (including therefore both the Hamiltonian H in Eq. (2) and
the dissipator D (3)) are related through a similarity transformation. As a matter of fact, in Ref. S11, it has been
suggested that a similarity transformation relating the Lindbladians of the two process does exist. This conclusion is
drawn in Ref. S11 on the basis of exact-numerical diagonalization of the Lindbladian generators of the two processes
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for up to L = 8 spins. The existence of such similarity relation between the two Lindblad generators does not, however,
generically imply a simple relation, as Eq. (S48), for the densities ⟨n⟩ann (t) and ⟨n⟩coag (t) in the two processes and
therefore the same algebraic decay. One must, indeed, also consider how the observable nj and the initial state
B−1 |ρ0⟩ transform under the similarity transformation B. In order to establish Eq. (S48) it is, indeed, crucial that
B−1 |ρ0⟩ = |ρ0/2⟩, i.e., the initial state is simply transformed to a state of the same form but with halved density.
Our results seem to indicate that for the FS initial state the transformation rule is more intricate, though a more
in-depth analysis, which we leave for future studies, is needed.
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