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We consider the quantum nonequilibrium dynamics of systems where fermionic particles coherently
hop on a one-dimensional lattice and are subject to dissipative processes analogous to those of
classical reaction-diffusion models. Particles can either annihilate in pairs, A+ A → ∅, coagulate
upon contact, A+A → A, and possibly also branch, A → A+A. In classical settings, the interplay
between these processes and particle diffusion leads to critical dynamics as well as to absorbing-state
phase transitions. Here, we analyze the impact of coherent hopping and of quantum superposition,
focusing on the so-called reaction-limited regime. Here, spatial density fluctuations are quickly
smoothed out due to fast hopping, which for classical systems is described by a mean-field approach.
By exploiting the time-dependent generalized Gibbs ensemble method, we demonstrate that quantum
coherence and destructive interference play a crucial role in these systems and are responsible for
the emergence of locally protected dark states and collective behavior beyond mean-field. This can
manifest both at stationarity and during the relaxation dynamics. Our analytical results highlight
fundamental differences between classical nonequilibrium dynamics and their quantum counterpart
and show that quantum effects indeed change collective universal behavior.

Introduction.— In reaction-diffusion (RD) models
classical reactants, or particles, are transported by dif-
fusion and react when they meet, see, e.g., Refs. [1–3].
These are paradigmatic non-equilibrium systems display-
ing universal dynamical properties and stationary state
transitions from fluctuating phases to absorbing states,
i.e., states that once reached cannot be left. In one di-
mension, in particular, spatial fluctuations of the particle
number dominate the kinetics and both exact analytical
results [4–9] and dynamical field-theory renormalization
calculations [10–16] have shown that the dynamical crit-
ical behavior is universal and it is not captured by the
mean-field approximation. This is especially true in the
diffusion-limited regime, i.e., when the diffusive mixing of
the particles is not too strong [4, 6, 17–19]. In the opposite
reaction-limited regime, where the diffusive motion is fast,
the density of reactants rapidly uniformize (leading to the
alternative name of well-stirred-mixture approximation)
and one recovers mean-field results [1, 2, 11, 20, 21].

Quantum effects can alter the universal properties of
absorbing-state phase transitions. This has been shown
for Markovian open quantum systems [22–30], for systems
with kinetic constraints [31–45] and for the quantum
contact process [38, 46]. Quantum dissipative RD spin
chains, where the diffusive motion is replaced by coherent
hopping, have been investigated in Ref. [47]. However,
results in this and other works are limited to small systems,
due to the complexity of the numerical simulation of many-
body quantum dynamics. As a consequence, very little is
known about the impact of quantum effects on universal
aspects of RD dynamics and on absorbing-state phase
transitions.

In this manuscript, we make progress in this direction
deriving exact analytical results for the case of reaction-

limited open quantum RD processes in fermionic chains.
We consider a series of prototypical reaction processes,
such as annihilation A + A → ∅, coagulation A + A →
A and branching A → A + A (see Fig. 1), and show
that the reaction-limited regime of quantum RD models
cannot be described within a mean-field approach, in
stark contrast to the classical settings. We demonstrate
that the presence of quantum effects strongly affects the
approach to stationarity and the stationary state itself.
For annihilation and coagulation, the density of particles
features a algebraic (power-law) decay. This power-law
changes and may deviate from the mean-field predictions
when the initial state of the dynamics features quantum
coherence. In the presence of the branching process,
quantum RD models display an absorbing-state phase
transition. Here, annihilation processes that couple to
coherent superpositions of adjacent particle-pairs lead to
the emergence of dark states which are locally protected
against dissipation. These local dark states, which are not
captured by the mean-field approach, establish quantum
correlations between fermionic particles.

Our analysis is performed by exploiting the time-
dependent generalized Gibbs ensemble method (tGGE)
[48–51], which naturally leads to large-scale Boltzmann-
like equations. The latter provides an exact description
for the reaction-limited regime in the thermodynamic
limit. Our analytical findings show that quantum effects
lead to rich non-equilibrium behavior, significantly differ-
ent from that of classical systems. Our results connect
to the physics of cold atoms, where losses are of central
experimental [52–59] and theoretical [60–67] relevance.

Quantum reaction-diffusion models— We con-
sider fermionic quantum chains of length L. Each site
j can be either occupied nj |· · · •j · · ·⟩ = |· · · •j · · ·⟩ or
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empty nj |· · · ◦j · · ·⟩ = 0, where nj = c†jcj and the opera-
tors cj , c

†
j obey the fermionic anticommutation relations

{cj , c†j′} = δj,j′ . The fermionic statistics prevents double
occupancy of lattice sites, typically assumed in RD classi-
cal models [1–3]. The dynamics is ruled by the quantum
master equation [68–70] (ℏ = 1 henceforth)

ρ̇(t) = −i[H, ρ(t)] +D[ρ(t)]. (1)

Here, we assume that the diffusive motion of the particles
in classical RD models is replaced by coherent hopping,
which is accounted for by the quantum Hamiltonian

H = −Ω

L∑
j=1

(c†jcj+1 + c†j+1cj) , (2)

with Ω the hopping rate [cf. Fig. 1(a)]. Such Hamiltonian
is diagonalized with Fourier-space fermionic operators
ĉk, ĉ

†
k, where k is the quasi-momentum, and the number

operators n̂k = ĉ†k ĉk [71]. It conserves the total number
N =

∑
j nj =

∑
k n̂k of particles: [H,N ] = 0. The irre-

versible reaction processes are encoded in the dissipator
D. It takes the (Lindblad) form [68–70]

D[ρ] =
∑
j,ν

[
Lν
j ρL

ν
j
† − 1

2

{
Lν
j
†Lν

j , ρ
}]

, (3)

where Lν
j are local jump operators. We consider four

different reactions, labelled by the parameter ν, which
are sketched in Fig. 1(a). The first is binary annihilation,
A+ A → ∅, of a pair of neighboring particles (rate Γα),
which is described by the jump operators

Lα
j = Lα

j (θ) =
√
Γαcj(cos θ cj+1 − sin θ cj−1). (4)

The sum of the two terms, whose balance is controlled
by the angle θ ∈ [0, π), allows for the possibility that
interference between two quantum mechanical amplitudes
contributes to the pair annihilation process. Such struc-
ture naturally emerges in the Bose-Hubbard model subject
to strong two-body losses. In this limit, the model can be
mapped to free fermions (2) with weak, Γα ≪ Ω, two-body
losses (4), as shown in Refs. [52, 60, 62]. The classical-
incoherent annihilation process is recovered for θ = 0, π/2.
The second reaction is coagulation, A + A → A, of a
particle upon meeting a neighbouring one (rate Γγ/2),
with jump operators

Lγ±
j =

√
Γγ/2 cjnj±1. (5)

The third reaction is one-body annihilation, A→ ∅, (rate
Γδ) with jump operators

Lδ
j =

√
Γδ cj . (6)

These three reactions break number conservation and,
due to continued particle loss, drive the system towards

Figure 1. Quantum RD dynamics in the reaction lim-
ited regime. (a) Quantum chain with sites that can either be
occupied by a fermion, |· · · •j · · ·⟩, or empty |· · · ◦j · · ·⟩. Parti-
cles can hop between nearest-neighboring sites with hopping
rate Ω, Eq. (2). Dissipation consists of irreversible reactions
at rate Γν , Eqs. (4)-(6). The parameter θ controls coher-
ent superposition from pair annihilation events. (b) In the
reaction-limited regime, Γ ≪ Ω, reaction dynamics is slow
and takes place on the timescale ∼ Γ−1. Fast hopping rapidly
smooths out spatial fluctuations (highlighted in red), due to
local reactions, and the state of the systems is described by a
homogeneous GGE(τ) (blue horizontal lines) at any rescaled
time τ = Γt. (c) The total particle density ⟨n⟩GGE (τ) decays
algebraically in rescaled time τ (blue points) for annihilation
or coagulation with exponent dependent on initial state coher-
ence. When branching is included an absorbing-state phase
transition to an active, finite density of particles, state can
occur. The latter displays correlation when θ ̸= 0, π/2.

an absorbing state devoid of particles. To establish a
non-trivial steady state, we consider a fourth reaction,
namely branching, A → A+ A. This process allows for
creation of a particle in the neighborhood of an occupied
site (rate Γβ/2)

Lβ±
j =

√
Γβ/2 c

†
jnj±1. (7)

The competition between the branching process and one-
body annihilation (as in the contact process [2, 3]) gives
rise to a nonequilibrium absorbing-state phase transition,
from the empty state to a stationary active one with finite
density of particles. Coagulation (5) and branching (7)
can be experimentally implemented in the facilitation
regime [72] of cold-atomic gases dressed with Rydberg
interactions [73–75]. For convenience, in the following
when multiple reactions are present, we rescale rates as
Γν = Γν, so that Γ sets the timescale of the dissipation,
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while the dimensionless parameters α, β, γ and δ encode
the relative strength of the reactions [see Fig. 1(b)-(c)].

There are two important timescales in the dynamics:
the reaction time ∼ Γ−1, which gives the typical time
needed for neighbouring particles to react, and the hop-
ping time (or diffusion time in classical RD models) ∼ Ω−1,
which sets the timescale for two reacting particles to meet.
In classical settings [1, 2], the dynamics qualitatively
changes depending on the ratio Γ/Ω. The regime with
Γ/Ω ≫ 1 is named diffusion limited as the propagation of
particles is the limiting factor for reactions to occur. In
this regime, spatial fluctuations are relevant and in one
dimension the total particle density ⟨n⟩ (t) = ⟨N⟩ (t)/L
decays algebraically as ⟨n⟩ (t) ∼ (Ωt)−1/2 [4–9, 17–19],
which is slower than the corresponding mean field predic-
tion ⟨n⟩MF (t) ∼ (Γt)−1 (note the different rescaling of
time).

The opposite regime, Γ/Ω ≪ 1, is the reaction-limited
one. Here, spatial fluctuations are irrelevant as fast mo-
tion makes the particle density homogeneous in space.
For classical systems [1, 2, 11, 20, 21] this regime is de-
scribed by law of mass action rate equations, which assert
that the rate of change of reactants is proportional to the
product of their global densities. This approach disre-
gards spatial correlations among particles and it indeed
reproduces the mean-field result ⟨n⟩MF (t) ∼ (Γt)−1. In
what follows, we consider the quantum analogue of this
regime, see Fig. 1(b)-(c). As we show, this regime is much
richer than its classical counterpart as coherent effects
give rise to collective behavior and quantum correlations
beyond mean-field.

Reaction-limited tGGE— For our quantum RD
models, the reaction limited regime Γ/Ω ≪ 1 is equiva-
lent to a weak dissipation limit, which can be analyzed
with the recently proposed time-dependent generalized
Gibbs ensemble (tGGE) of Refs. [48–51]. Due to fast
hopping, one can consider the state of the system ρ(t) to
be relaxed with respect to the stationary manifold of the
Hamiltonian, [H, ρ(t)] = 0, at any time t. The dynamics
of ρ(t) within this manifold is set by the timescale Γ−1

and it is determined by the dissipation. This aspect is
pictorially shown in Fig. 1(b). The tGGE approach then
makes an ansatz among the set of relaxed states of the
Hamiltonian, which is the GGE, see, e.g., Refs. [76, 77].
In the specific case of the Hamiltonian (2), the GGE can
be written as

ρGGE(t) =
1

Z(t)
exp

(
−
∑
k

λk(t)n̂k

)
, (8)

where Z(t) =
∏

k[1 + e−λk(t)]. The GGE state (8) de-
scribes averages ⟨. . .⟩GGE (t) of local observables in the
thermodynamic limit. It is entirely fixed from the knowl-
edge of the Lagrange multipliers λk(t) or, equivalently,
of the occupation functions ⟨n̂q⟩GGE (t) = Cq(t), which

obey the equations [62–64, 67]

dCq(t)

dt
=
∑
j,ν

⟨Lν
j
†[n̂q, L

ν
j ]⟩GGE

(t), ∀q. (9)

The solution Cq(τ) of this equation clearly depends on
the rescaled time τ = Γt, consistently with the above
discussion on the reaction-limited regime. The equation
of motion (9) describes the large-scale dynamics of the
system and it has a structure akin to the Boltzmann
equation. The right hand side can be, crucially, exactly
computed in the GGE state (8) through Wick’s theorem.
To explore the impact of quantum-coherent effects on the
RD dynamics, we consider two different initial conditions
for Eq. (9). The first is the coherent Fermi-sea (FS)
state with density-filling 0 < n0 ≤ 1: Cq(t = 0) = 1 if
q ∈ [−πn0, πn0], and zero otherwise. The second is the
incoherent state ρ0 = exp(−λN)/Z0, with a flat initial
distribution in momentum space, Cq(0) = n0.

Annihilation and coagulation— In Fig. 2(a), we
plot, from Eq. (9) [78], the particle density as a function
of time for the pair annihilation reaction only (Γγ = Γβ =
Γδ = 0), Eq. (4) with θ = 0, so that interference effects
are excluded. The density decays as ⟨n⟩GGE (τ = Γαt) ∼
(Γαt)

−1/2 for the FS initial state for any filling n0 ̸=
1. The 1/2 decay exponent does not necessarily require
considering pure states. It also occurs for initial mixed
states with an inhomogeneous in q initial occupation
function Cq(0) [78]. In contrast, for the initial state ρ0 and
any n0, the law of mass action is recovered and the density
is exactly given by mean-field, ⟨n⟩MF (τ) ∼ (Γαt)

−1. This
shows the relevance of coherent effects in the critical
dynamics of the model, since the algebraic decay of the
density in the reaction-limited regime is not described by
the mean-field approximation whenever the initial state
is quantum coherent. In the latter case, the decay of the
particle density is slower than in the classical counterpart
of the model, where only incoherent initial states are
possible and the long-time behavior of the density is
independent on the initial density n0 [79–81].

In Fig. 2(b), we plot the particle density as a function
of time for the coagulation reaction only (Γα = Γβ =
Γδ = 0), Eq. (5) [78]. We find that ⟨n⟩GGE (τ = Γγt) ∼
(Γγt)

−1 both for the incoherent state ρ0 and for the FS
state. For all initial conditions we see mean-field like
decay [82], which is different from the situation for pair
annihilation at θ = 0, Fig. 2(a). This difference between
annihilation and coagulation processes is in stark contrast
with classical RD models, where both processes belong
to the same universality class and decay in the same way
independently of initial conditions [5, 6, 18, 80, 81, 83–85].

For quantum RD, only when starting from the incoher-
ent initial state ρ0 annihilation and coagulation behave
in a similar way. In fact, the densities ⟨n⟩annGGE (τ, n0) and
⟨n⟩coagGGE (τ, n0) obey

⟨n⟩coagGGE (τ, n0) = 2 ⟨n⟩annGGE (τ, n0/2), (10)
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Figure 2. Dynamics and active phase in quantum reaction-limited RD systems. (a) Log-log plot of the particle density
⟨n⟩GGE (τ) as a function of the rescaled time τ = Γαt for the binary annihilation reaction (4) with θ = 0. In the top-blue curve,
the initial state is the coherent Fermi sea (FS) state with filling n0 = 0.7. The density decays asymptotically as a power law
⟨n⟩GGE (τ) ∼ τ−1/2. In the inset, the black dashed curve is a power-law fit ⟨n⟩GGE (τ) = aτ−b performed over the time window
τ ∈ [106, 107], with the resulting fitting parameter for the exponent being b = 0.50025± 5 · 10−5. In the red-dashed curve, the
initial state is the incoherent state ρ0 with the same mean density n0 = 0.7. In this case, the density is exactly described by the
mean-field (MF) law of mass action and ⟨n⟩GGE (τ) = ⟨n⟩MF (τ) ∼ τ−1. (b) Log-log plot of the density of particles ⟨n⟩GGE (τ)
as a function of τ = Γγt for the coagulation reaction (5). The top-blue curve corresponds to the FS initial state at filling
n0 = 0.3, while the red-dashed one to the incoherent state ρ0 at the same filling. For the FS state, the asymptotic exponent
⟨n⟩GGE (τ) ∼ τ−1 is the same as in MF. (c) Log-log plot of the density as a function of τ = Γt for the CP with pair annihilation
Eqs. (4)-(6) and Γγ = 0, from the FS initial state at n0 = 0.7. For β > δ an active stationary state is reached. The associated
stationary momentum distribution function Cstat

q is shown in the inset as a function of q. (d) Stationary correlations Gstat(2, θ)

at distance 2 (left, blue axis) and dark state contribution Gdark(θ) = sin(2θ)/2 (right, red axis) in the CP as a function of θ.
Parameters are β = α = 1, δ = 0.5.

for Γα = Γγ . Equation (10) is proved noting that the dy-
namics from the incoherent state ρ0 according to Eq. (9)
remains at all times fully incoherent and the quantum
master equation (1) can then be mapped onto a classical
master equation [78]. For the coherent FS initial state, off-
diagonal element of the density matrix ρ(t) are relevant,
the quantum master equation does not reduce to its classi-
cal counterpart, and Eq. (10) does not apply. This shows
that the quantum RD annihilation and coagulation pro-
cesses do not generically belong to the same universality
class and they can display different asymptotic behavior.

Contact process— We now consider the contact pro-
cess (CP) with pair annihilation, cf. Eqs. (4)-(6) with
Γν = Γν (ν = α, β, δ) and Γγ = 0 and Fig. 1(c). In
Fig. 2(c), we plot the density as a function of the rescaled
time τ = Γt. We find a phase transition between an ab-
sorbing and an active state: the stationary state density
⟨n⟩statGGE becomes non-zero when β > βc, with βc = δ in-
dependent on α and θ. This βc is the same as that of the
mean-field classical CP [2, 3]. Furthermore, we find that
the associated critical exponents for the stationary density
⟨n⟩statGGE ∝ (β − βc)

1 and for the decay of the density at
the critical point βc, ⟨n⟩GGE ∼ (Γt)−1, are those of the
(mean-field) directed percolation universality.

Interestingly, however, the stationary state is strongly
affected by the quantum coherence introduced by the
annihilation reaction in Eq. (4), beyond what can be pre-
dicted by a mean-field approach. The inset of Fig. 2(c)
shows that the different quasi-momenta q are not evenly
populated in the stationary state. This applies when
θ ̸= 0, π/2. The non-trivial structure of Cstat

q implies that
the stationary state has spatial correlations. To quantify

this we compute the two-point fermionic correlation func-
tion Gstat(x−y, θ) = ⟨c†xcy⟩

stat

GGE, which for the mean-field
(product) state would be zero unless x = y. We find
that Gstat(l, θ) is non zero at even distances l = 2, 4, 6 . . .
with a dominant contribution at l = 2. The value of
Gstat(2, θ) as a function of θ is shown in Fig. 2(d) and is
approximately equal to A(θ) = ε sin(2θ)/2. Considering
only these dominant next-to-nearest-neighbor correlations,
we can identify the (approximate) Lagrange multipliers
λstatq for the stationary GGE ρstatGGE expanding to first
order in A(θ) (since ε is small as shown in Fig. 2(d)).
One obtains λstatq = λMF + λ2 cos(2q) and therefore
ρstatGGE ∝ e−λMFN−λ2Q2/2, with Q2 =

∑
j(c

†
jcj+2 + c

†
j+2cj).

The contribution λMF = log(1/ ⟨n⟩statGGE − 1) represents
the mean-field component of the state, while λ2 =
−A(θ)/(⟨n⟩statGGE (1 − ⟨n⟩statGGE)) accounts for deviations
from it. We show [78] that ρstatGGE can be written in terms
of an incoherent state plus a coherent correction, where
projectors onto the local dark states

|ψ⟩dark,◦/•j = ± cos θ |•(◦/•)j◦⟩+ sin θ |◦(◦/•)j•⟩ , (11)

emerge out of the uncorrelated mean-field state. The
states |ψ⟩dark,◦/•j are both dark with respect to the annihi-
lation process (4) centered in j, i.e., Lα

j (θ) |ψ⟩
dark,◦/•
j = 0.

Moreover, |ψ⟩dark,•j is dark to branching (7) in j and is
connected through one-body annihilation (6) in j to the
state |ψ⟩dark,◦j . These local dark states determine the
correlations Gstat(2, θ) in ρstatGGE, as shown in Fig. 2(d).

Summary— We provided a fully analytical treatment
of quantum many-body RD systems in their reaction-
limited regime, where the irreversible reaction rates are
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much smaller than the coherent hopping rate. While for
classical RD models this regime is well described by a
mean-field approach, we have shown that quantum RD
displays instead much richer behaviour. In particular, for
annihilation, quantum coherence in the initial state can
give rise to an algebraic density decay whose power-law
exponent differs from the mean-field one. Furthermore,
we have shown that quantum annihilation and coagula-
tion do not belong to the same universality class. For
the contact process plus pair annihilation, we have found
that the stationary state can feature correlations, which
emerge as a consequence of destructive interference. This
inherently quantum feature gives rise to locally protected
and correlated dark states. The RD systems discussed
here connect the soft-matter physics of chemical reactions
to that of cold atoms, where reactions translate into dis-
sipative particle losses or creations [53–67], which can
be implemented via Rydberg-dressing [73–75]. Quantum
reaction-diffusion systems are an ideal benchmark to in-
vestigate the impact of quantum effects on large-scale
universal properties via numerical methods [38, 39, 46]
and dynamical Keldysh-field theory [86, 87].
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