Title: Effectiveness of preventative care strategies for reducing pressure injuries in children aged 0-18 admitted to intensive care: a systematic review and meta-analysis

Short Title: Pressure injury preventive strategies in paediatrics

Authors: Bradley Setchell ^{a, c}, Takawira C. Marufu ^{a, b}, David Nelson ^c and Joseph C. Manning ^{a, b}

Affiliations:

a. Nottingham Childrens Hospital and Neonatal Services, Family Health Division, Nottingham University Hospitals NHS Trust, Nottingham, UK
b. Centre for Children and Young People Health Research, School of Health Sciences, University of Nottingham, Nottingham, UK
c. University of Lincoln, Lincoln, UK

Corresponding Author:

Bradley Setchell, Paediatric Intensive Care Unit Staff Nurse, Nottingham Children's Hospital and Neonatology, Nottingham University Hospitals NHS Trust, East Block, Queens Medical Centre Campus, Nottingham, NG7 2UH.

Email:Bradley.Setchell@nuh.nhs.uk

Funding Source: This work is part of Bradley Setchell's Integrated Clinical Academic Internship Funded by NIHR HEE and hosted by the University of Lincoln. **Conflict of Interest**: Dr Joseph C. Manning is a current recipient of an NIHR HEE funded ICA Clinical Lectureship [ICA-CL-2018-04-ST2-009]. The views expressed in this article are those of the authors and not necessarily those of the NIHR or Department of Health and Social Care, UK.

Contributor Statements: Setchell and Nelson conceptualized and designed the study. Setchell, Marufu and Manning were involved in the data extraction and analysis. All authors contributed to the drafting, critical review and revision of the manuscript and have approved the final manuscript.

Acknowledgement: None

Abstract

Introduction: The development and prevention of pressure injuries is a complex phenomenon, dependent on a wide variety of extrinsic and intrinsic risk factors. Children with critical illness form an extremely vulnerable patient group with an exceptionally high risk of immobility-related and medical device-related pressure injuries. Recent reviews on this subject matter largely been focused on adult patients. The aim of this review is to systematically synthesise the evidence on the most effective interventions to prevent pressure injury development in children admitted to intensive care.

Methods: Four electronic databases; CINAHL, MEDLINE, EMBASE and the Cochrane Central Register of Controlled Trials were searched. Studies were screened at three stages, title, abstract, and full text against the inclusion and exclusion. Quality appraisal was conducted using the Joanna Briggs Institute Critical Appraisal Tools and two authors independently extracted study data from included studies using a predesigned data collection form. A meta-analysis was performed using RevMan 5.

Results: After removal of duplicates, twenty studies met the inclusion criteria. Observed interventions included; use of risk assessment tool, preventative skin regimes, nutrition, repositioning, support surfaces, medical devices care, and staff education and training. A bundle intervention approach was used to implement pressure ulcer preventative strategies. Meta-analysis demonstrated an associated 51% potential reduction in pressure injury post intervention (pooled OR 0.49 (95% confidence Interval (CI) 0.39 - 0.62) P < 0.0001).

Conclusion: Pressure injury preventative strategies are more likely to reduce the number and severity of pressure injuries. Paediatric nurses are pivotal members of the direct care multidisciplinary team with unique expertise and influence over the risk assessment, implementation and maintenance of pressure injury preventative strategies for children admitted to intensive care.

Key words: paediatrics, pressure ulcers, intensive care, prevention, intervention

Introduction

The development and prevention of pressure injuries (PIs) is a complex phenomenon, dependent on a wide variety of extrinsic and intrinsic risk factors. Typically PIs have been defined by the National Pressure Injury Advisory Panel (NPIAP), European Pressure Ulcer Advisory Panel (EPUAP) and Pan Pacific Pressure Injury Alliance (PPPIA) as a localised injury to the skin and/or underlying tissue as a result of immobility-related pressure or pressure in combination with shear [1, 2]. Children with critical illness who require an intensive care admission form an extremely vulnerable patient group with an exceptionally high risk of immobility-related PIs [3]. Growing evidence suggests that medical devices, particularly in paediatric populations, are also a leading cause of PI [4-6]. The notable difference between immobility-related and medical device-related PIs is that the latter will mimic the shape of the medical device itself and be caused as a result of sustained pressure that is usually attributed to the rigid materials of the device or the tight dressings that may be used to secure it [5, 7]. These injuries are particularly of challenge to prevent because medical devices are often an essential therapeutic or diagnostic component of life sustaining treatment [4, 5, 8]

The scale of the problem is global. Early prevalence studies published before 2010 did not always separate medical device-related PIs from immobility-related PIs, or specify whether device-related PIs were included or excluded [9]. However, PI prevalence estimates among hospitalised paediatric patients after 2010 ranged from 1.4% to 8.2% [8] and paediatric critical care areas have reported prevalence as high as 43.1% [10]. A huge emphasis is currently being placed on patient safety issues and harm free care initiatives, particularly in the fundamental aspects of nursing care such as PI prevention, at local and international level [11, 12]. The urgency to reduce physiological and psychological burden on patients and their caregivers, lessening the financial liability on health care providers, and decrease the risk of subsequent co-morbidities and infection is crucial for advancing PI prevention research [13].

A systematic review that evaluated the effectiveness of preventative care strategies for reducing PIs among critically ill adult patients concluded that rigorously designed randomised controlled trials are necessary to further the evidence base [14]; while another recent systematic review concluded that nurses caring for critically ill patients are well qualified to lead in the prevention of PIs and they must plan and implement evidence-based care to prevent all types of PIs, including medical devicerelated PIs [15]. Much has been learned since 2001, when initial efforts to elucidate the problem of PIs in children was published in an international guideline [16]. With progress being made in paediatric-specific, medical device sensitive, PI risk assessments [3], this systematic review aims to identify the effectiveness of PI prevention strategies on the development of hospital-acquired PIs among children aged 0-18 admitted to intensive care.

Methods

A systematic review protocol for this study was registered with the International Prospective Register of Systematic Reviews (PROSPERO; CRD42021245169) in March 2021. The Preferred Items for Systematic Reviews and Meta-Analysis (PRISMA) [17] guidelines were used to report the review process.

Search Strategy

A comprehensive search strategy (Appendix 1) was devised and executed on the following four databases: Cumulative Index to Nursing and Allied Health (CINAHL), MEDLINE, EMBASE and the Cochrane Central Register of Controlled Trials (CENTRAL). Google Scholar and the National Institute for Health and Care Excellence (NICE) were also searched for sources, plus the reference lists of included studies. The search terms included: child* (OR) adolescent (OR) infant (OR) baby (OR) babies (OR) pediatric* (OR) paediatric* (OR) neonat* AND pressure injur* OR pressure ulcer* OR pressure sore OR bed sore OR decubitus ulcer AND intensive care OR critical care OR PICU OR ICU OR PCCU OR NICU OR high depend* AND reduc* OR prevent* OR sever* OR duration OR develop* OR worsen*. An asterisk (*) wildcard symbol was added to truncate certain search phrases to ensure more comprehensive identification of the relevant studies. Medical subject headings 'intensive care', 'pressure ulcer' and 'pediatric' were used in addition to key search terms. Consultation with two independent subject librarians regarding the

search strategy occurred prior to completing the search for sources. Database searches were conducted up to December 2022.

Eligibility Criteria

Articles were included and reviewed based on whether they were experimental study designs - including randomised controlled trials (RCTs), non-randomised controlled trials, quasi-experimental studies, and comparative studies - and evaluated the effectiveness of any PI prevention strategies that have been conducted in intensive care settings providing services to children aged 0-18. Studies published in the English language, and at any time, were considered for inclusion in this review.

Study Selection

Articles were initially screened by title and abstract, by the primary author, to ensure they met the inclusion criteria. All full text papers for inclusion were individually assessed for eligibility by two independent authors (Setchell and Nelson). Both authors used a spreadsheet to store information about the papers, which was then cross checked for accuracy. Any discrepancies were discussed amongst the two reviewers until they reached agreement. In this instance, there was no need for a third reviewer, as a consensus could be reached.

Quality assessment

Quality assessment for included studies was undertaken independently by two reviewers (Setchell and Marufu), and discrepancies were resolved by agreement. The Joanna Briggs Institute (JBI) critical appraisal tools for Quasi-Experimental Studies, RCTs [18] and Prevalence Studies were used according to the corresponding methodology. Following appropriate guidance, each item in the critical appraisal tool was scored (1 for 'yes', or 0 for 'no' or 'unclear') and a total for each study was converted to a percentage. The authors rated the studies as high quality (>80%), moderate quality (50%–80%) and low quality (<50%).

Data Extraction

Two authors (Setchell and Nelson) independently extracted study data from included studies using a predesigned data collection form. Data extraction was done independently and agreed using consensus. No disagreements occurred in this process. A summary table was created to include study details (authors, year and country), study aim, participants, details of the interventions and findings from each study.

Data Analysis

Included studies presented outcome results in various formats including odds ratio (OR), relative risk (RR) and percentage rates. Using pre and post pressure ulcer prevention intervention figures, OR and 95% confidence intervals (95% CI) for the likelihood of pressure ulcer reduction after the intervention (exposure) was calculated. A meta-analysis was conducted using Rev.Man 5 [19] using the random effect method for a pooled size effect of implementing a pressure ulcer prevention strategy. For the studies where OR could not be calculated and/ or OR results were for a specific part of the intervention a qualitative synthesis is provided.

Results

The online search identified a total of 1173 studies, 265 duplicates were removed, and 58 studies were sort for retrieval after title and abstract sifting stages. Twenty-five papers were abstracts that had been submitted to conferences without a published full text paper, 33 full texts were retrieved and screened for eligibility and only 20 met the inclusion criteria, Table 1. Figure 1 is a flow chart showing an overview of the search process.

Table 1 Characteristics of included studies

Figure 1 PRISMA Flow chart

Out of all the included studies, six were randomised control trials (RCTs) [20-25] and nine were quasi-experimental [26-34] all with a combined sample size of 9287 participants. Four studies were before and after intervention [35-38] of which three [36-38] did not have specified sample size and one was a prospective cohort study [39] with a total sample size of 65 participants. Nine studies were conducted in the United States of America [27-29, 32-34, 36-38], three in Spain [26, 30, 39], two in China [20, 24], and one in each of the following countries; Australia [21], India [22]

Indonesia [23], Iran [25], Argentina [35] and Turkey [31]. Most settings were single centre tertiary hospitals, only two studies were multicentre trials with larger population samples [28, 30].

Methodology Quality Assessment

Fifteen studies were high quality, scoring > 80% on the JBI assessment tool and the other five studies had moderate scores [23, 25, 32, 37, 39]. No studies were assigned a low-quality ranking and therefore, no studies were excluded on methodological quality. Due to the nature of interventions, three out of the five RCTs commented on the difficulties of blinding healthcare providers [20-22]. However, to mitigate this, one study blinded the nurses before allocation [20], one study blinded an investigator who was analysing patient photographs [21] and one study blinded the statistician [22]. Only one study mentioned blinding participants and their guardians [20], in comparison two of the five RCTs did not describe their blinding or randomisation procedures at all [23, 24].

Interventions

All interventions used in the studies included are largely in line with the NPUAP, EPUAP and PPPIA guidelines [1] for PI prevention. Interventions were used as part of bundle interventions (that involves concurrent implementation of multiple interventions). These included; skin risk assessment, preventive skin care regimes, nutrition status, repositioning, support surfaces (pressure relieving equipment), medical device related assessments and staff education and training. These interventions are briefly summarised below with a narrative synthesis of studies not included in the meta-analysis.

Skin risk assessment; thirteen studies used a variety of validated risk assessments as part of their bundle of preventative strategies and generally assessed patients using them every 24 hours. Predominantly the Braden Q Scale [39] was used in eleven of these studies [23, 26-29, 31, 333-35, 38, 39], which is the former version of the updated Braden QD Scale [17] used in one recent study [32]. The Neonatal Skin Risk Assessment Scale [41] was used in three studies: as the only tool in one study [30], and in addition to the Braden Q Scale depending on the age of patients in two studies [23, 26]. Of these studies, which incorporated a risk assessment tool, six

studies included additional training for nursing staff on how to use them as part of the preventative strategy [27, 29, 31, 34, 35, 38]. None of the studies reported reduction on PI due to the use of the assessment tool alone. However all these studies reported an overall reduction in PI incidence rates by ensuring those at risk were identified early by daily risk assessment as part of bundle intervention.

Preventative skin care regimes; seven studies described the use of barrier cream to moisturise and protect the skin after episodes of incontinence [26-29, 31, 32, 36], with one detailing the use of foam dressings [26]. Similar to the skin risk assessment, none of the studies outlined the effectiveness of barrier cream use alone. All studies also reported a reduction in overall PI.

Nutrition; eleven studies in this review acknowledged the crucial element of adequate nutritional support for patients in intensive care at risk of PIs [26-33, 36-38], however four of these studies did not implement interventions to support this [30, 33, 36, 37]. The remaining seven studies all specified how nutrition consultations formed part of their preventative strategy [26-29, 31, 32, 38], with two of these studies using a high risk Braden Q Score <16 to trigger this consultation [27, 38]. By making this process automatic, one study was able to achieve a 100% compliance score for every high risk patient receiving a nutritional review by a dietician during the study period [27, 46]. In a large multicentre study, the three institutions with the lowest rates of pressure ulcers used preventative nursing strategies such as nutrition consultations [28], and another study reported that early nutritional intervention can prove an effective prevention strategy if patients with a higher risk of developing PI are identified [26]. Parenteral nutrition was found to be a significant risk factor in one study [30].

Repositioning; Variation in repositioning frequency was observed across included studies. Nine studies acknowledged that repositioning paediatric patients in intensive care every two to three hours is associated with a lower risk of PIs [26, 28-33, 36, 38]. In one study, turning the patient every two, four and eight hours were associated with lower risk for PI development (OR 0.27, 95% CI, 0.21 - 0.35, p <.001), (OR 0.355, 95% CI, 0.267 - 0.472, p <.001), (OR 0.63, 95% CI, 0.42 - 0.93, p .02)

respectively [28]. However one multicentre study reported two hourly frequency of repositioning as non-significant [30].

One study observed that measuring frequency of repositioning is not always feasible in intensive care if hemodynamic and/or respiratory instability conditions contraindicate it [26], but the NPIAP recommends slow, gradual turns in this patient group to allow time for stabilisation of hemodynamic and oxygenation status [1]. In addition, small shifts in body position for critically ill patients who are too unstable to maintain a regular repositioning schedule should supplement regular repositioning [1], which one study in this review credited as a successful intervention [32]. To improve repositioning compliance, one study found that appointing a project leader to track the frequency of repositioning daily increased compliance from 36% to 67% [38], which resulted in a 63% PI reduced from baseline. Similarly, another study implemented a family-centred approach, which encouraged family members to remind and assist nursing staff with repositioning their child [32]. The study reported a 17% reduction in PI rates post-intervention.

Support surfaces; nine studies describe the use of pressure redistributing support surfaces [26-30, 32, 33, 35, 36], however the extent of their use is often variable. One study reported the following interventions did not demonstrate statistical significance in reducing pressure ulcer development; egg-crate and foam-mattress overlays, gel pads, cushions, and specialty pressure redistributing mattresses [28]. Two studies used pressure redistributing mattresses that were limited to adult sized beds or were only suitable for patients who weighed >22kg [29, 33], and one study reported having an insufficient amount of pressure redistributing mattresses on site which caused some eligible patients to be excluded if they were already in use [39] and cautioned using pressure redistributing mattresses among haemodynamically unstable patients. Historically, the use of dynamic pressure management surfaces was not widespread among paediatric intensive care units, as traditionally these surfaces were considered more suitable for adults [27, 39], but centres are now incorporating algorithms that guide nurses to allocate paediatric-specific surfaces appropriately [26, 39]. Three studies detailed the use of support surfaces other than pressure redistributing mattresses, these included polymer gel positioners and cushions [27, 29, 35]. One of these studies failed to measure the adherence to these interventions [35], whereas the other two studies reported a high compliance to their use [27, 29].

Medical device-related interventions; in total, thirteen studies in this review utilised interventions to reduce PIs from medical devices [20-25, 28-32, 34, 36, 37]. Two studies commented on the difficulty in conducting skin assessments under critical devices that are difficult to reposition, for example endotracheal tubes, non-invasive positive pressure ventilation facemasks, and tracheostomies [29, 30]. Both studies reported > 50% of PIs being attributed to medical devices despite twelve-hourly daily skin checks, whereas two other studies also included this intervention with greater success [31, 36]. One of these studies included the additional removal of respiratory devices every four hours as part of their preventative strategy, however they acknowledge this was the least compliant element of their overall bundle [36]. Specifically investigating continuous positive airway pressure (CPAP) devices, one RCT showed that Bubble CPAP with its nasal interface had higher and more serious incidence of nasal injuries in comparison to Jet CPAP device, risk ratio (RR) 0.6 (95% Cl, 0.5 - 0.8, p < 0.001) [22]. In contrast another study reported that the implementation of a Bubble CPAP Skincare Protocol was successful at reducing nasal PIs over the 24-month post implementation period [37].

Similarly, another study was able to significantly decrease the number of patients who developed a tracheostomy PI from 8.1% during the pre-intervention period, to 0.3% after the interventions were implemented [32]. They achieved this by using extended-style tracheostomy tubes in children with anatomy that caused the neck to not be clearly exposed in the neutral position or those with behaviours that repeatedly drove the tube down into the sternum, performing tracheostomy assessments every 8 hours, and by placing hydrophilic polyurethane foam under tracheostomy tubes to wick moisture from the stoma away from the skin surface. They also used a hydrocolloid barrier dressings under the flanges of tracheostomies, which is another intervention recommended by the NPIAP [1]. Five other studies also used this intervention effectively [20, 21, 24, 25, 34].

Three demonstrate that prophylactic use of a nasal barrier dressing was effective at reducing nasal PI for infants receiving nasal CPAP [21, 24, 25]. One of these studies focused on the first 48 hours of commencing treatment in very preterm or very low

birth weight infants and observed that skin damage occurred to 34% of those who had a hydrocolloid barrier dressings compared to 56% of those without the barrier dressing, P = .02 [21]. A similar study reported infants in the intervention study having significantly lower incidence and severity of nasal injury compared with those having standard care 37.5% versus 92.5% respectively, P < 0.001 [25]. The other study, used the chi-squared test, to show a statistically significant difference (*P*=0.01) in the incidence of nasal injury between infants who received a prophylactic hydrocolloid barrier dressing and those who did not [24]. One study noted that hydrocolloid dressings does not only reduce the rate of nasotracheal tube-related PI in the child with long-term nasotracheal intubation, but also improve the endurance of the nasal skin significantly [20].

Staff education and training; sixteen studies included some form of staff training and development as part of their preventative strategy [20, 22, 26-39]. Four studies opted for an online training module or podcast [27, 31, 33, 34, 38], two studies utilised face-to-face training either for new nurses [27] or in small groups [26], and two studies focused on family member training [32, 36]. The rest of the studies did not specify how the training was delivered, but most modules included information about using risk assessment tools, the preventative interventions that were going to be studied, and methods of data collection. In one study skin care champions were appointed who received extra training [29], and in another study the knowledge of nurses was tested before and after an education intervention; the authors found that the knowledge was improved [38]. Continual, real-time feedback about PIs during weekly skin rounds was also found to be an effective intervention in one study [36].

Meta-analysis of interventions to reduce pressure ulcers

Ten studies were included in a meta-analysis of interventions to reduce pressure ulcers (Figure 2). For all studies included in the meta-analysis [20, 21, 24, 26-27, 29, 31-32, 35, 39] intervention data and pressure ulcer events provided in the studies was used to calculate corresponding OR. Calculated OR for individual studies are presented in Table. The meta-analysis showed a pooled OR 0.49. 95% confidence interval (CI) (0.39 – 0.62), p = 0.001 for test of overall effect. The analysis demonstrates an associated 51% reduction in pressure ulcer development in PICU admitted patients post intervention. Moderate heterogeneity ($I^2 = 59\%$) was observed

demonstrating medium variation in study outcomes between included studies. No sub-group analysis was performed.

Figure 2 Meta-analysis of interventions to reduce pressure ulcers

Publication bias

Publication bias was visually assessed using funnel plot developed using Rev.Man5. The plot was asymmetrical indicating a possible risk of publication bias (Figure 3 Funnel plot).

Figure 3 Funnel plot

Discussion

While other systematic reviews have investigated PI prevention strategies for adult patients [14, 15, 42], this paediatric review is novel research and the first review of its kind. This review has identified that preventative strategies from the NPIAP guideline [1] are effective to reduce the number and severity of PIs among critically ill children admitted to intensive care. Given the inclusion of RCTs and quasi-experimental studies, this review can be relatively certain that PI preventative strategies lead to reductions in the number and severity of PIs, but the effect size is varied depending on the interventions included. As a complex phenomenon, a multifaceted approach to PI prevention that includes multiple interventions (also known as bundles) has demonstrated effectiveness for reducing PIs for adults admitted to intensive care [42].

Further evidence suggests that some interventions are being used in practice, but a standard is lacking. In a recent point-prevalence study in a large tertiary children's hospital, 44% of patients were reported as not receiving PI preventive strategies aligned to their risk assessment. Despite this, the overall incidence of PIs was low [11]. This paper recommends that randomised, controlled, multicentre studies with larger samples and standardised, multicomponent PI prevention strategies for children admitted to intensive care are therefore necessary.

In comparison, having a medical device is consistently associated with an increased risk of developing PI [5, 6, 11, 17]. Most studies in this review acknowledged the difficulty of preventing device-related PIs, and the effectiveness of prophylactic hydrocolloid barrier dressings to prevent nasal PIs for infants receiving respiratory support was demonstrated [24]. The NPIAP (working with international partners) has recently launched an initiative to develop evidence-based standards for using prophylactic dressings to prevent PIs, as none currently exist despite their widespread use [43]. Not only does this amplify the contemporaneity of this issue, but it encourages clinical academic professionals to research the use of prophylactic barrier dressings among children of all ages. Paediatric medicine uses a whole spectrum of, often invasive, medical devices [5, 6, 17], and the future of PI prevention for children is synonymous with device risk mitigation. There is an opportunity for health professionals and device manufacturers to work closely with biomedical and biomechanical engineers to develop designs for existing and new

devices that will reduce the risk of device-related PIs [5]. Through effective clinical academic research, children's nurses should clearly articulate their clinical goals in order to drive innovation measured against standardised quantitative performance outcomes. Nurses are well qualified to lead in the prevention of PIs [15]. Although PI prevention is a fundamental aspect of nursing care and a nursing quality indicator, most centres employ a multidisciplinary approach to their strategy. Notably, a nutritional expert is considered beneficial to this process. Among adult research, there is a moderate statistical association between nutrition status and developing a PI [44]. While impaired nutrition and its relationship to PI development has not been as rigorously studied in children, this review was able to highlight that early nutritional intervention, by a qualified expert, is an effective strategy to prevent PIs in those children who have been identified as higher risk. In addition, audit and feedback strategies were found to be effective at ensuring compliance in a recent adult systematic review [42]. While only one study in this review demonstrated that real time, multidisciplinary, audit and feedback was useful for maintaining compliance to the preventative strategy, other research in this area has determined that information technology can be incorporated into daily work flow to improve patient care and safety in a children's intensive care unit [45]. As technology in hospitals advances, consideration should be given to the dissemination of patient safety data such as PI prevention via systems that are accessible to all direct care members of the multidisciplinary team.

Finally, the education and training of direct care nurses will always remain a fundamental aspect of PI prevention. The evidence suggests that online training modules or podcasts are a popular method of delivery, presumably because they can be distributed and accessed easily, however some centres prefer to provide face-to-face training. The limited number of studies in this review, and in adult literature [14, 42, 43], that examines the effectiveness of PI prevention training indicates the necessity for further research in this area. Similarly, the inclusion of non-professional carers and family members has a specific place in paediatric healthcare. Nurses are uniquely positioned to foster relationships with families who have a child admitted to intensive care; however the challenges of restrictive family presence and poor understanding of family needs were highlighted as key findings from a systematic review [46]. A small number of studies in this review discovered

that educating family members about the risks of PIs, including how to inspect for signs of PI and to notify the direct care nurse with concerns was a useful component of the preventative strategy. This type of family-centred care philosophy is recommended in the International Consensus Document about device-related PIs [5], however further empirical research is required to substantiate how effective and appropriate this is as a PI preventative strategy – especially in a critical care environment.

Study strengths and limitations

A comprehensive search strategy was used to identify potential studies for inclusion and the PRISMA guidelines were used as a review process and reporting mechanism. All studies included in the review had low risk of bias when assessed for methodological quality, giving some assurance on data quality and review results. However, results in studies that met the inclusion criteria for this review were reported in various formats with a limited number, (ten) of studies included in a metaanalysis. Furthermore for some studies OR were calculated from reported data, and therefore were not adjusted for any potential confounders. This has the potential to influence data quality of the meta-analysis and limit the generalisability of our study findings. However, considering bundle intervention approach used, the results observed in this review are more generalisable, highly relevant, timely and supported in clinical practice [42].

Conclusion

In this systemic review, strategies to prevent PIs in children admitted to intensive care settings have been analysed. Following international policy guidance, the review provides evidence on the use of risk assessment, preventative skin care regimes, nutrition, repositioning, pressure relieving equipment, medical devices care, and education and training as interventions to prevent PIs. Children's Nurses are the pivotal members of the direct care multidisciplinary team with unique expertise and influence over the risk assessment, implementation and maintenance of PI preventative strategies for children admitted to intensive care. The quality of the research is varied; which demonstrates requirements of further research to advance the empirical data. A particular focus on standardising strategy protocols, compliance

to interventions, data collection and the complexity of device-related PI prevention is crucial moving forward.

References

- National Pressure Ulcer Advisory Panel (NPUAP), European Pressure Ulcer Advisory Panel and Pan Pacific Pressure Injury Alliance (EPUAP). Prevention and Treatment of Pressure Ulcers: Quick Reference Guide. Emily Haesler (Ed.). Cambridge Media: Osborne Park, Australia; 2014. Available online at https://www.epuap.org/wp-content/uploads/2016/10/quick-reference-guidedigital-npuap-epuap-pppia-jan2016.pdf (Accessed on 08 October 2021).
- Liao, Y., G. Gao, and L. Mo, Predictive accuracy of the Braden Q Scale in risk assessment for paediatric pressure ulcer: A meta-analysis. International journal of nursing sciences, 2018. 5(4): p. 419-426.
- 3. Chamblee, T.B., et al., CE: How to Predict Pediatric Pressure Injury Risk with the Braden QD Scale. Am J Nurs, 2018. **118**(11): p. 34-43.
- 4. Stellar, J.J., et al., Medical Device-Related Pressure Injuries in Infants and Children. J Wound Ostomy Continence Nurs, 2020. **47**(5): p. 459-469.
- Gefen, A., et al., Device-related pressure ulcers: SECURE prevention. Journal of Wound Care, 2020. 29(Sup2a): p. S1-S52.
- 6. Murray, J.S., et al., Medical device-related hospital-acquired pressure ulcers in children: an integrative review. J Pediatr Nurs, 2013. **28**(6): p. 585-95.
- Black, J.M., et al., Medical device related pressure ulcers in hospitalized patients. Int Wound J, 2010. 7(5): p. 358-65.
- Delmore, B., et al., Pressure Injuries in the Pediatric Population: A National Pressure Ulcer Advisory Panel White Paper. Adv Skin Wound Care, 2019.
 32(9): p. 394-408.
- Kottner, J., D. Wilborn, and T. Dassen, Frequency of pressure ulcers in the paediatric population: a literature review and new empirical data. Int J Nurs Stud, 2010. 47(10): p. 1330-40.
- Razmus, I. and S. Bergquist-Beringer, Pressure Injury Prevalence and the Rate of Hospital-Acquired Pressure Injury Among Pediatric Patients in Acute Care. J Wound Ostomy Continence Nurs, 2017. 44(2): p. 110-117.
- Marufu, T.C., et al., Pressure injury and risk in the inpatient paediatric and neonatal populations: A single centre point-prevalence study. Journal of Tissue Viability, 2021. 30(2): p. 231-236.

- World Health Organisation, Global Patient Safety Action Plan 2021-2030
 Towards Eliminating Avoidable Harm in Health Care. 2021.
- Rowe, A.D., K. McCarty, and A. Huett, Implementation of a Nurse Driven Pathway to Reduce Incidence of Hospital Acquired Pressure Injuries in the Pediatric Intensive Care Setting. Journal of Pediatric Nursing, 2018. 41: p. 104-109.
- Tayyib, N. and F. Coyer, Effectiveness of Pressure Ulcer Prevention Strategies for Adult Patients in Intensive Care Units: A Systematic Review. Worldviews on Evidence-Based Nursing, 2016. 13(6): p. 432-444.
- 15. Alshahrani, B., J. Sim, and R. Middleton, Nursing interventions for pressure injury prevention among critically ill patients: A systematic review. Journal of Clinical Nursing. **n/a**(n/a).
- National Pressure Ulcer Advisory Panel Board of Directors, PRESSURE ULCERS IN AMERICA: Prevalence, Incidence, and Implications for the Future: An Executive Summary of the National Pressure Ulcer Advisory Panel Monograph. Advances in Skin & Wound Care, 2001. 14(4).
- Moher, D., et al., Preferred reporting items for systematic review and metaanalysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 2015.
 4(1): p. 1.
- Tufanaru C, et al., Chapter 3: Systematic reviews of effectiveness. In: Aromataris E, Munn Z (Editors). JBI Manual for Evidence Synthesis. JBI, 2020. Available from https://synthesismanual.jbi.global.
- 19. Cochrane Review Manager (RevMan) software available online at https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman (Accessed on 08 Octyober 2021).
- Chen, J., et al., Investigating the Efficacy of Hydrocolloid Dressing for Preventing Nasotracheal Tube-Related Pressure Injury in the PICU. Pediatr Crit Care Med, 2020. 21(9): p. e752-e758.
- Imbulana, D.I., et al., A Randomized Controlled Trial of a Barrier Dressing to Reduce Nasal Injury in Preterm Infants Receiving Binasal Noninvasive Respiratory Support. J Pediatr, 2018. 201: p. 34-39.e3.
- Khan, J., et al., Nasal injury and comfort with jet versus bubble continuous positive airway pressure delivery systems in preterm infants with respiratory distress. Eur J Pediatr, 2017. **176**(12): p. 1629-1635.

- Widiati, E., N. Nurhaeni, and D. Gayatri, Medical-Device Related Pressure Injuries to Children in the Intensive Care Unit. Compr Child Adolesc Nurs, 2017. 40(sup1): p. 69-77.
- Xie, L.H., Hydrocolloid dressing in preventing nasal trauma secondary to nasal continuous positive airway pressure in preterm infants. World J Emerg Med, 2014. 5(3): p. 218-22.
- Rezaei, Parvane et al. "Protective Dressings, Injury, and Device Failure in Preterm Infants Receiving Nasal Continuous Positive Airway Pressure: A Randomized Controlled Trial." Advances in skin & wound care vol. 34,9 (2021): 1-6. doi:10.1097/01.ASW.0000767344.37591.b6
- Bargos-Munárriz, M., et al., Prevention of pressure injuries in critically ill children: A preliminary evaluation. Journal of Tissue Viability, 2020. 29(4): p. 310-318.
- 27. Schindler, C.A., et al., Under pressure: preventing pressure ulcers in critically ill infants. J Spec Pediatr Nurs, 2013. **18**(4): p. 329-41.
- Schindler, C.A., et al., Protecting fragile skin: nursing interventions to decrease development of pressure ulcers in pediatric intensive care. Am J Crit Care, 2011. 20(1): p. 26-34; quiz 35.
- 29. Visscher, M., et al., A quality-improvement collaborative project to reduce pressure ulcers in PICUs. Pediatrics, 2013. **131**(6): p. e1950-60.
- García-Molina, P., et al., Pressure ulcers' incidence, preventive measures, and risk factors in neonatal intensive care and intermediate care units. Int Wound J, 2018. 15(4): p. 571-579.
- Uysal, G., et al., Effect of Pressure Injury Prevention Guides Used In a Pediatric Intensive Care. Clin Nurs Res, 2020. 29(4): p. 249-255.
- Pasek, T.A., et al., Preventing Hospital-Acquired Pressure Injuries by Using a Tiered Protocol in Children Receiving ECMO in the Pediatric Intensive Care Unit. Crit Care Nurse, 2021. 41(1): p. 71-77.
- 33. Kiss, E.A. and M. Heiler, Pediatric skin integrity practice guideline for institutional use: a quality improvement project. J Pediatr Nurs, 2014. 29(4): p. 362-7.
- 34. Boesch, R.P., et al., Prevention of tracheostomy-related pressure ulcers in children. Pediatrics, 2012. **129**(3): p. e792-7.

- Aprea, V., et al., Impact of a health care quality improvement intervention to prevent pressure ulcers in a Pediatric Intensive Care Unit. Arch Argent Pediatr, 2018. **116**(4): p. e529-e541.
- Simsic, J.M., et al., Prevention of Pressure Ulcers in a Pediatric Cardiac Intensive Care Unit. Pediatr Qual Saf, 2019. 4(3): p. e162.
- Lawrence, C., et al., Sustained Reduction of Nasal Pressure Injuries in the Neonatal Intensive Care Unit With the Use of Bubble Continuous Positive Airway Pressure: A Quality Improvement Project. J Wound Ostomy Continence Nurs, 2021. 48(2): p. 101-107.
- Cummins, K.A., R. Watters, and T. Leming-Lee, Reducing Pressure Injuries in the Pediatric Intensive Care Unit. Nurs Clin North Am, 2019. 54(1): p. 127-140.
- García-Molina, P., et al., A prospective, longitudinal study to assess use of continuous and reactive low-pressure mattresses to reduce pressure ulcer incidence in a pediatric intensive care unit. Ostomy Wound Manage, 2012.
 58(7): p. 32-9.
- 40. Curley, M.A.Q., et al., Predicting Pressure Ulcer Risk in Pediatric Patients: The Braden Q Scale. Nursing Research, 2003. **52**(1): p. 22-33.
- Dolack, M., et al., Updated neonatal skin risk assessment scale (NSRAS).
 Kentucky nurse, 2013. 61(4): p. 6.
- Lin, F., et al., The effectiveness of multicomponent pressure injury prevention programs in adult intensive care patients: A systematic review. International Journal of Nursing Studies, 2020. 102: p. 103483.
- The National Pressure Injury Advisory Panel (NPIAP). Prophylactic Dressing Standards Initiative 2020. Available online at: <u>https://npiap.com/page/PDSI</u>. (Accessed on 22/06/2021).
- Munoz, N., et al., The Role of Nutrition for Pressure Injury Prevention and Healing: The 2019 International Clinical Practice Guideline Recommendations. Advances in Skin & Wound Care, 2020. 33(3).
- Shaw, S.J., et al., Effect of a Real-Time Pediatric ICU Safety Bundle Dashboard on Quality Improvement Measures. The Joint Commission Journal on Quality and Patient Safety, 2015. 41(9): p. 414-420.

46. Butler, A., B. Copnell, and G. Willetts, Family-centred care in the paediatric intensive care unit: an integrative review of the literature. Journal of Clinical Nursing, 2014. **23**(15-16): p. 2086-2100.

Authors	Type of	Country	Aim	Participants	Details of interventions	Findings
	Study					
Bargos-	Quasi-	Spain	To evaluate a	Paediatric patients up to 14	The intervention group was	The cumulative incidence in
Munarriz et al	Experimental		prevention strategy	years old at risk of suffering	attended using the prevention	paediatric patients exposed to the
[26]			implemented to reduce	from pressure injuries and	care plan which included the	risk of pressure injuries was
			incidence and severity	who were admitted more than	main evidence-based	reduced from 16% to 13.3%, OR
			of positioning related	48 h in a paediatric intensive	recommendations of	0.58 95% CI (0.23 – 1.42)*; and in
			pressure injuries	care unit.	NPUAP/EPUAP and focused on:	the subgroup of patients with
			affecting paediatric	n=110 [50 control grp, PI 8	skin assessment (from head to	prolonged stay (≥28 days), the
			patients in a paediatric	participants, cumulative	toe during cleaning or care	incidence was reduced from
			critical care unit.	14PIs and 212 days of PICU	procedures), skin moisturizing,	55.55% to 20%. In the intervention
			Secondary objective	admission; Cumulative	repositioning (including heel	group, category III and IV pressure
			was to evaluate	incidence 16% [CI95: 8.33%-	offloading), limiting head-of-bed	ulcers were completely reduced. In
			compliance with	28.51%] [60 intervention grp,	elevation to 30 degrees,	addition, the total number of
			preventive	PI 8 participants cumulative	allocating pressure-redistributing	pressure injuries decreased by
			recommendations.	11 Pls, 70 days PICU	support surfaces using a	21.43%
				admission Cumulative	standardized algorithm, and	
				incidence 13.33% [CI95:	localized pressure relief (with	
				6.91% to 24.16%].In	different types of devices).	
				prolonged hospitalisation	Interventions: Skin assessment	
				patients cumulative incidents	- Twice a day, hyperoxygenated	
				of PI was 55.55% [CI95:	fatty acids (HFA) application –	
				26.66%-81.12%] in control	Twice a day, pressure-	
				grp and 20% [CI95: 5.66% to	redistributing support surfaces	
					(PRSS) – daily, Head-of-bed	

Table 1 Characteristics of included studies

				50.98.0%] in the intervention	elevation maximum 30∘ -daily,	
				grp.	Barrier cream application –	
					daily, Floated heels – daily, Full	
					body/head repositioning – 8	
					times a day.	
Chen et al [20]	RCT	China	To investigate the	Paediatric patients received	The participants in the	45 participants had nasotracheal
			efficacy of hydrocolloid	invasive mechanical	experimental group received	tube-related pressure injuries in
			dressing in reducing	ventilation via nasotracheal	hydrocolloid dressing to protect	control group, compared to 26
			the occurrence rate	tubes. N=122 [n= 62 control	nasal skin from the beginning of	patients in the experimental group
			and severity of	grp, n= 60 intervention grp.	nasotracheal intubation, while	(72.6% vs 43.3%; absolute
			nasotracheal tube-	Mean duration of	the participants in the control	difference, 29.3%, 95% CI, 12.5–
			related pressure injury	nasotracheal intubation	group received the current care	46%; p = 0.001), OR 0.29 95% CI
				150.10 ± 117.09 hours	procedure (without hydrocolloid	(0.14 – 0.62)*. The median survival
				intervention grp, 161.75 ±	dressing) unless pressure	times of the nasal skin integrity
				120.72 hours control grp.	injuries occurred. The	were 95.5 hours in the control
					hydrocolloid dressing was	group and 219.5 hours in
					changed daily to assess the	experimental group (p < 0.001).
					nasal skin. The pressure injury	Conclusions: Hydrocolloid dressing
					staging system that was	can not only reduce the occurrence
					redefined and updated by the	rate of nasotracheal tube-related
					NPIAP in 2016 was used.	pressure injury in the child with
						long-term nasotracheal intubation
						but also improve the endurance of
						the nasal skin significantly.
Imbulana et al	RCT	Australia	To determine whether	Eligible infants were born <30	Infants were randomly allocated	Infants in the barrier group had a
[21]			the use of a	weeks of gestation and/or	to receive either a hydrocolloid	significantly lower rate of nasal

			hydrocolloid nasal	with birth weight <1250 g,	nasal barrier dressing during	injury compared with the no barrier
			barrier dressing during	and had received ≥4 hours,	CPAP (barrier group), or no	group: 18 of 53 (34%) vs 31 of 55
			binasal continuous	but <48 hours, of CPAP. A	barrier dressing (no barrier	(56%), OR 0.40, 95% CI (0.18 –
			positive airway	total of 108 preterm infants	group).	0.87)* Summary: Prophylactic use
			pressure (CPAP)	were enrolled: 53 infants in		of a nasal barrier dressing within
			therapy, compared	the barrier group and 55		48 hours of commencing treatment
			with no barrier	infants in the no barrier		with binasal CPAP in very preterm
			dressing, reduces the	group.		or very low birth weight infants
			rate of nasal injury in	9		reduces nasal injury.
			very preterm and/or			
			very low birth weight			
			infants.			
Khan et al [22]	RCT	India	To report and compare	Preterm neonates of < 34-	The neonates allocated to the	103 (61%) developed nasal injury,
			the incidence, severity	week gestation, who received	experimental group received	moderate 18 (11%), severe 8 (5%).
			and type of nasal	nasal CPAP as primary	Jet-CPAP (J-CPAP; Phoenix	Septum was the most common
			injury, and nasal	support as part of a	Medical Technologies Ltd.,	injury site.
			comfort (pain scores,	randomized trial comparing	Chennai, India) with short bi-	Bubble CPAP device with its nasal
			displacements)	Jet device with Bubble device	nasal prongs at a flow rate just	interface had higher and more
			between two types of	for delivery of CPAP, both	enough to generate desired	serious incidence of nasal injuries
			nasal interfaces with	through nasal prongs of	CPAP. Standard group	in comparison to Jet CPAP device
			different CPAP	different structure, make and	neonates received CPAP using	[RR 0.6 (95% C.I. 0.5–0.8); p <
			delivery systems	fixation methods.	a stand-alone bubble CPAP	0.001]. Similarly, neonates in Jet
			[variable flow device	n=170 [J-CPAP n= 80, B-	device with short bi-nasal	group had lesser average [median
			(Jet CPAP) versus	CPAP n=90, overall nasal	prongs (Fisher and Paykel	(IQR): 3 (3,4) vs. 4 [8, 14]; p =
			continuous flow	injury J-CPAP n= 36, B-	Healthcare, New Zealand) and	0.04] as well as peak N-PASS pain
			bubbling device	CPAP n=67:	were connected to the Fisher	scores [median (IQR): 4 [8, 14] vs.

			(Bubble CPAP)] used		and Paykel bubble CPAP	5 [13, 16]; p = 0.01] in comparison
			for the management of		system using Fisher and Paykel	to Bubble group. However, Jet
			respiratory distress		'Flexi Trunk Midline Interface'	group neonates had significantly
			with onset within 6 h of		(BC 191–70 mm) and	more common prong
			birth in preterm infants		appropriately sized Fisher and	displacements.
			< 34-week gestation.		Paykel 'Infant Bonnet'	
					depending on the head	
					circumference	
Schindler et al	Quasi-	USA	To determine whether	399 infants aged 0 - 3 months	A Pressure Ulcer Prevention	Implementation of the care bundle
[27]	Experimental		a pressure injury	admitted to intensive care at	Program (PUPP) was	was associated with a significant
			prevention bundle was	a large tertiary care medical	implemented in this PICU, the	drop in pressure ulcer incidence
			associated with a	centre. [n= 149 control grp,	components of which included:	from 18.8 to 6.8%, OR 0.32, 95%
			significant reduction in	n=250 intervention grp. PI	assuring patients were	CI (0.17 – 0.60)*. In this study,
			pressure ulcer	developed 28 participants	maintained on the correct	effective nursing care with targeted
			development in infants	(18.8%) control grp, 17	support surface in order to	interventions reduced the incidence
			in the paediatric	participants (6.8%)	decrease tissue interface	of pressure injuries in critically ill
			intensive care unit.	intervention grp]	pressure - Delta-202Warmer	infants. Study participants who
					Overlay (29″ x 23.75″x 2.25″,	developed pressure injuries were
					frequent turning supported with	extremely young, stayed in the
					Gel-filled pillows, incontinence	PICU for extended periods of time,
					management - zinc-based	and had heavy disease burdens
					barrier cream was used with	with the need for invasive
					each diaper change and use of	mechanical support. In this study,
					non-alkaline cleansing agents,	the PUPP bundle appeared to be
					appropriate nutrition - any child	associated with improved
					who scored a "1" in the Braden	outcomes.

Q required dietician input, and
education - nursing staff
participated in an online
educational module about the
Braden Q pressure ulcer risk
assessment, pressure ulcer
identification and grading, as
well as education on the
components of the PUPP
intervention, Skin champions.
The infants in the control group
were part of a previous study
conducted to determine the
incidence of pressure ulcer
development in the PICU.
During this study, the nurses
received education about the
Braden Q risk assessment scale
and pressure ulcer staging, but
they did not receive any
education about skin care or
pressure ulcer prevention in
hospitalized children. There was
no set standard for bathing, use
of barrier creams, or
moisturizing of infants. Nurses

		1	1	1		I
					used their own nursing judgment	
					to address these components of	
					care. Infants were turned or	
					were repositioned every 4 hrs	
					and there were no skin care	
					champions.	
					In the intervention group, in	
					addition to the PUPP bundle,	
					skin care champions were	
					identified and received extra	
					training to help facilitate bundle	
					compliance.	
Visscher et al	Quasi-	USA	To develop and	Sample size 1425 [before	Implement a pressure injury	The pressure injury rate in the
[29]	Experimental		implement a quality-	bundle implementation n =	prevention bundle with the	PICU was 14.3/1000 patient-days
			improvement (QI)	754 (PICU 293, NICU 461),	following components: daily risk	during the QI development and
			intervention to reduce	after bundle implementation	assessment, daily skin	3.7/1000 patient-days after QI
			pressure injuries by	671 patients across PICU	assessment, examine under	implementation (P<.05), achieving
			50% in PICUs.	(391) and NICU (280).PUs	each medical device every 12	the aim of 50% reduction, OR 0.96,
				associated with medical	hours, reposition every 2 hours,	95% CI (0.65 – 1.40)*. The PICU
				devices before bundle	float heels, check common	rates of stages I, II, and III
				implementation n=62 (PICU	moisture areas every 2-4 hours,	conventional and device-related
				51, NICU 11), after bundle	apply barrier cream to nappy	pressure injuries decreased after
				implementation $n = 53$ (PICU	area, use slide sheets to	the QI intervention. The pressure
				35, NICU 18)	reposition, optimise nutrition with	injury rate in the NICU did not
				,,	ongoing dietician reviews for all	change significantly over time but
					high risk patients, educate all	

					nurses with focused training	remained at a mean of 0.9/1000
					modules, actively engage family	patient-days.
					members, implement skin	
					champions and conduct	
					collaborative skin rounds, share	
					results of skin assessments with	
					all staff every 2 weeks.	
Widlati et al	RCT with a	Indonesia	To determine the	50 children admitted to	The control group received	Although, statistically, there were
[23]	cross-over		effectiveness of injury	intensive care aged between	injury prevention treatment	no significant differences between
	design		prevention guidance	1 day and 18 years	following the hospital routines,	the control and intervention groups,
			about children who		while the intervention group was	the results of the study did uncover
			need to have medical		given precautionary treatments	a notable decrease in the incidence
			devices attached to		based on Kiss and Heiler's	rate of pressure injuries on the third
			their bodies as part of		guidelines. Assessment of skin	day, compared to the first day (in
			their treatment		that had medical devices	the intervention group). Day 1: OR
					attached was done by taking	(95% Cl) - 1.5 (0.3; 7.7), Day 2: OR
					photos and was conducted on	(95% Cl) 0.5 (0.04; 6.2), Day 3: OR
					three consecutive days.	(95% Cl) 0.8 (0.2; 3.9).
Garcia-Molina	Prospective	Spain	Are continuous and	N= 65 [2008 PU incidence	To assess the effect of two	The incidence of pressure injury
et al [39]	Cohort Study		reactive low pressure	20% (n =7) children with	paediatric-specific, continuous	development not related to the use
			special surfaces	support surface-related n=	and reactive low-pressure	of a medical device was low (3.3%)
			(CRLPSS) i.e.	35). Current study PU	mattresses on the incidence of	95% CI 0.08% - 17.2%, much
			pressure redistributing	incidence 3.3% (n= 1)	pressure injuries, an	lower than the rate of similar ulcers
			mattresses effective at	children with CRLPSS n=	observational, descriptive,	in a previously conducted
			preventing immobility-	30.]	prospective, longitudinal (2009–	incidence study (20%) 16.7%
			related pressure		2011) study was conducted	difference $p = 0.0021$ at the same

			injuries for children	30 eligible patients were ages	among PICU patients. The two	facility. The mattresses were
			admitted to intensive	1 day to 10 years old,	paediatric mattresses — one for	believed to be particularly
			care	admitted to the PICU for	children weighing between 500	beneficial for patients who cannot
				more than 24 hours for	g and 6 Kg and another for	be repositioned OR 0.14, 95% CI
				whatever reason, at risk of	children weighing more than 6	(0.02 – 1.19)*. Additional controlled
				developing pressure injuries	Kg — were provided to patients	clinical studies are warranted to
				according to the Braden-Q	at risk of pressure injuries. The	help develop evidence-based
				scale (for children >1 month	aim was to see whether these	protocols of pressure injury
				old) or the neonatal skin risk	mattresses decreased the	prevention in high-risk paediatric
				assessment scale (NSRAS)	number of immobility-related	patients.
				for children <1 month old.	pressure injuries compared with	
					a previous incidence study at	
					the same PICU prior to the	
					mattresses being used.	
Aprea et al	Before and	Argentina	To assess the impact	A total of 152 patients were	Uncontrolled, before and after	A lower incidence of pressure
[35]	after		of a health care quality	included: 74 before the	study. Pre-intervention:	injuries was observed after the
	intervention		improvement	intervention (PUs 51.35% (n=	measurement of pressure	implementation of the health care
	study		intervention on the	38) and 78 after the	injuries; post-intervention:	quality improvement intervention
			development of	intervention PUs 23.08% (n=	implementation of a bundle of	(pre-intervention: 50.60%; post-
			pressure injuries at the	18). Patients' median age	measures (staff training,	intervention: 23.08%; p= 0.001) OR
			paediatric intensive	was 7 months old.	identification of patients at risk,	0.28, 95% CI (0.14 – 0.57)*. No
			care unit.		and pressure relief by using anti-	changes were detected in the
					bedsore mattresses and	number of pressure injuries or the
					polymer gel positioners) and the	severity staging. The most common
					same measurements.	pressure injury location was the
						lower occipital region, followed by

						the lateral malleolar and the upper
						occipital regions. Very few pressure
						injuries corresponded to stage III or
						higher.
Simsic et al	Before and	USA	This quality project	Not specified	Interventions included:	Between 2010 and 2014, pressure
[36]	After		was aimed to reduce		implementing a pressure injury	injuries decreased from 15.7
	intervention		the incidence of		bundle (April 2010, revised	events per 1,000 patient days to a
	study		pressure injuries >		January 2013). This bundle	new baseline of 2.9 events per
			stage II in the		included barrier cream, pulse	1,000 patient days. The hospital
			paediatric		oximeter probe rotation, turning	has sustained this rate for 3 years.
			cardiothoracic		schedule, pressure reduction	Pressure injuries related to
			intensive care unit.		surfaces, heel pressure release,	immobility decreased from 35 in
					head of the bed elevation, a	2010–2011 to 4 in 2016–2017.
					head-to-toe skin assessment	Pressure injuries related to medical
					every 12 hours, removal of each	devices decreased from 34 in
					respiratory device every 4 hours	2010–2011 to 15 in 2016–2017.
					to monitor for pressure injury or	Conclusions: Institution of pressure
					skin breakdown; and skin	injury bundle, multidisciplinary
					inspection around each medical	weekly skin rounds, and huddles
					device including all lines, tubes,	for pressure injuries > stage II
					and drains every 12 hours.	reduced injuries related to
					Multidisciplinary huddles for	immobility, allowed for earlier
					pressure injuries > stage II was	identification of stage II injuries and
					also implemented (October	reduced stage III injuries.
					2011) along with	Challenges remain in reducing
					multidisciplinary weekly skin	pressure injuries related to medical

					rounds (March 2010, revised	devices. Importantly, the hospital
					August 2012), unit specific	sustained this improvement over
					workgroup (October 2012), and	the past 3 years.
					a caregiver input form	The non-punitive huddle process
					(December 2012).	and the bulletin board with actual
					A bulletin board with actual	photographs of pressure ulcers in
					photographs of pressure injuries	our patients as a visual tool are
					in patients (with parental	effective in raising staff awareness
					approval) was updated regularly	and engagement.
					in the staff-only area as a visual	
					tool to raise staff awareness and	
					engagement.	
Lawrence et al	Before and	USA	The purpose of this	Not specified	The BCPAP Protocol included:	During the first 3 months post-
[37]	After		inter-professional		2-hourly skin checks by 2	protocol implementation period,
	intervention		team-driven quality		members of staff, nurses could	one stage 2 nasal injury was noted
	study		improvement project		escalate to a wound specialist	and immediately treated and
			was to implement a		without the need to go through	healed without incident. During the
			Bubble continuous		the medical team, BCPAP 'tip of	next 24-month, post-
			positive airway		the week' was handed out to	implementation period, there were
			pressure (BCPAP)		retain knowledge, signs on	zero nasal pressure injuries
			Skincare Protocol		doors of patients involved in	reported
			proactively to prevent		data collection, and reconfigured	
			potential device-		rooms to ensure nurses could	
			related pressure		always see the bubble	
			injuries.		apparatus	

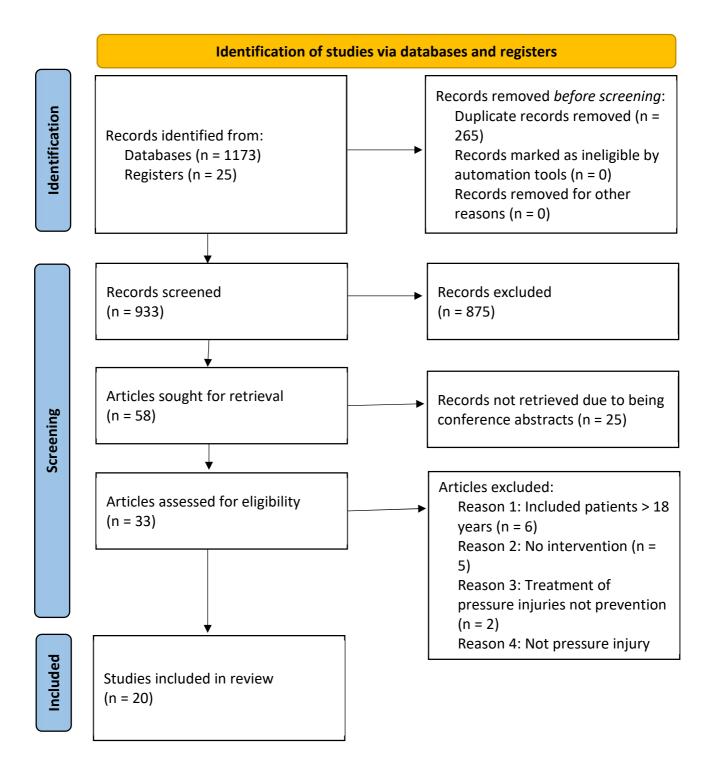
Cummins et al	Before and	USA	The aim of this quality	All patients admitted to the	To implement the following three	The quality improvement project
[38]	after		improvement project	PICU between May 7, 2017,	evidence-based pressure injury	improved the quality of care being
	intervention		was to implement	and June 30, 2017, were	prevention strategies: educating	delivered to patients in the PICU by
	study		evidence-based	included in the project. PICU	PICU nurses on risk factors for	increasing nurses' knowledge of
			paediatric pressure	patients older than 18 years	paediatric pressure injuries and	paediatric pressure injury risk
			injury prevention	were excluded from the	prevention strategies, turning	factors and evidence-based
			strategies to decrease	project.	PICU patients every 2 hours,	prevention strategies, improving
			the incidence of		and ordering nutrition	turning compliance, and
			pressure injuries by		consultations on all patients with	implementing an electronic trigger
			reducing the rate from		a Braden Q score less than 16.	to enhance nutrition support for
			8% to 6% during a 6-		Several multidisciplinary groups	patients at risk of developing
			week time period		were involved in the quality	pressure injuries. The quality
					improvement project including	improvement project also
					the hospital executive team,	decreased preventable patient
					clinical informatics, nursing	harm to PICU patients by
					education, nutrition support	decreasing the pressure injury
					team, quality and safety leaders,	incidence rate. PICU pressure
					and the PICU patient care team.	injury incidence rate reduced from
						8% pre-intervention to 3%, which is
						a 63% decrease from baseline.
Garcia-Molina	Quasi-	Spain	This work was	A sample of 268 infants was	A multi-centre, prospective,	Cumulative incidence of PUs was
et al [30]	Experimental		developed to	included. 34 infants	observational study, evaluating	12.70% (95%, CI 95% = [8.95%-
			determine the	developed PU	the incidence of pressure	17.28%]). Cumulative incidence in
			incidence of pressure		injuries, risk factors, and	the intermediate 1.90% (CI95% =
			injuries in hospitalised		preventive measures in 6 public	[0.39%-5.45%]), intensive care unit
			infants admitted to		neonatal units, was performed.	28.18% (Cl95% = [20.02%-

intensive and	The data were collected	37.56%]). PUs by category; stage I,
intermediate care	between January 25, 2013 and	57.10%; stage II, 31.70%; and
units, along with	December 17, 2013.	stage III, 11.10%.
relevant risk factors	The skin of each infant was	The multivariate analysis found the
and preventive	examined every day by clinical	following to be risk factors: low
measures.	nurses. In addition, a member of	scores in the Spanish version of
	the research team—blinded to	the Neonatal Skin Risk
	the clinical nurse's diagnosis-	Assessment Scale (e-NSRAS)
	evaluated the skin of each infant	(Relative Risk (RR) 0.80; CI95% =
	every 48 hours until discharge or	[0.66-0.97]), the use of non-
	up to 30 days from the day of	invasive mechanical ventilation (RR
	birth.	12.24; CI95% = [4.02-37.32]), and
	Predefined risk factors and	the length of stay (RR 1.08; CI95%
	preventive measures were	= [1.02-1.15])
	collected through observations.	The kangaroo care method was the
	The medical and nursing	only measure that yielded a
	records were reviewed 3 times	significant protective effect from PU
	per week by the same	development (RR 0.26; CI95% =
	researcher. The data consisted	[0.09-0.71]).
	of demographic information,	Repositioning every 2 or 3 hours
	including gender, size, and	and support surfaces (SS vs
	weight at birth, as well as head	standard) as well as changes in the
	circumference and gestational	location of the pulse oximeter
	age.	sensor were non-significant
		preventive measures. Parenteral
		nutrition was found to be a

						significant risk factor. Postural
						changes (every 2 to 3 hours) RR
						0.74 95% CI [0.36-1.54 .43]
						Support surfaces (SS vs standard)
						RR 2.67 95% CI [0.48-14.88 .26]
						Pulse oximeter changes (every 2
						to3 hours) RR 6.40 95% CI [0.53-
						76.35 .14]
Schindler et al	Quasi-	USA	To determine the	Characteristics of 5346	The nurses in all 9 PICUs	The aggregate incidence of
[28]	Experimental		incidence of pressure	patients in paediatric	completed education on the	pressure ulcers was 10.2%.
			injuries in critically ill	intensive care units, admitted	Braden Q Scale score and	Nursing interventions that were
			children, to compare	from March 2006 –	pressure ulcer staging before	associated with lower risk for PU
			the characteristics of	December 2007, in whom	the study began. Although the	development: turning the patient
			patients in whom	pressure injuries did and did	participating hospitals were	every 2 hours OR 0.271 (95% CI,
			pressure injuries do	not develop, were compared.	currently using the Braden Q	0.209 - 0.352, p <.001), every 4 hrs
			and do not develop,		Scale, the education was	OR 0.355 (95% Cl, 0.267 - 0.472, p
			and to identify		implemented to ensure that the	<.001), every 8 hrs OR 0.625)95%
			prevention strategies		nurses had a review of the risk	Cl, 0.423 - 0.926, p .02).
			associated with less		assessment tool and knew how	Use of blanket rolls OR 0.267 (95%
			frequent development		to use the tool properly. The	Cl, 0.205 - 0.348, P <.001), draw
			of pressure injuries		study was retrospective, so no	sheets OR 0.575 (95% CI, 0.403 -
					intervention was assigned based	0.820, P = .002), pillows for
					on the Braden Q Scale score.	positioning OR 0.430 (95% CI,
					Each day, nurses at each	0.322 - 0.573, P <.001), sheep
					participating PICU documented	skin OR 0.448 (95% CI, 0.325 -
					the specific strategies used to	0.618, P <.001), use of body lotion

	prevent pressure ulcers in each	OR 0.655, (95% CI (0.478 -
	patient.	0.897, P = .008), Breathable
		waterproof transparent dressing
		OR 0.713 (95% 0.516 - 0.985, P =
		.04), Using urinary catheter strap
		0.663 (95% CI, 0.496 - 0.885, P =
		.005), Using endotracheal holder
		OR 0.592 (95% CI, 0.422 - 0.832,
		P = .003), disposable underpants,
		OR 0.345 (95% CI, 0.252 - 0.473,
		P <.001), Specialty bed OR 0.226
		(95% CI, 0.167 - 0.306, P <.001,
		Nutrition consultation OR 0.206
		(95% CI, 0.156 - 0.272, P <.001),
		Physical or occupational therapy
		consultation 0.486 (95% CI,
		0.354 - 0.668, <.001).
		The following interventions did not
		demonstrate statistical significance
		in reducing PU development; egg-
		crate and foam-mattress overlays,
		gel pads. Pressure ulcers were
		more likely to develop in children
		younger than 2 years at the time of
		PICU admission than in older
		children but patients in whom

						pressure ulcers developed did not
						differ from those in whom the
						ulcers did not develop in sex or
						race/ethnicity. Pressure ulcers
						were more likely in children who
						remained in the PICU at least 4
						days than in children who remained
						in the PICU less than 4 days.
						Therapeutic interventions that
						increased the risk for pressure
						ulcers included use of BiPAP,
						CPAP, conventional mechanical
						ventilation, HFOV, and ECMO
Xie [24]	RCT	China	This study aimed to	A total of 65 infants, Control	Paraffin oil was smeared around	7 infants in the control group and 2
			compare the incidence	grp n= 32, PUs observed in 9	the infants' nostrils before	infants in the intervention group
			of nasal injury	participants, intervention grp	inserting the nCPAP prongs in	developed nasal injury during
			secondary to nasal	n= 33 PUs observed in 2	the control group; and the	nCPAP support, OR 0.16, 95% CI
			continuous positive	participants	infants' nostrils in the	(0.03 – 0.84)*.
			airway pressure		intervention group were covered	
			(nCPAP) protected		with hydrocolloid dressing 1.8	
			with or without		mm thick with a size of 2–3 cm	
			hydrocolloid dressing		cutting two holes adapted to the	
			in preterm infants.		nose and nostrils. The nostrils of	
					those infants were inspected	
					daily during nCPAP support until	
					they were weaned off nCPAP.	


Uysal et al [31]	Quasi-	Turkey	The aim of this study	Children aged 0 - 18 years	Prevention guide included: risk	Pressure injuries occurred on 9.4%
	Experimental		was to determine the	who were able to be	assessment, skin examinations	of children in the nontreatment
			effectiveness of a	accepted to the PICU, who	(The skin was examined and	group, and in 3.6% of children in
			pressure injury	had no pressure injuries at	palpated before each shift	the treatment group, OR 0.36, 95%
			prevention guide used	admission, were included in	change, monitored for	(0.14 – 0.95)*. There was a
			in a paediatric	the sample. Patients whose	temperature, rash, induration,	statistically significant difference in
			intensive care unit	PICU admission was under	and edema, and evaluated for	the occurrence of pressure injuries
			(PICU) on the	48 hrs were excluded.	pressure-induced pain), Position	between the nontreatment group
			occurrence of pressure	n = 181 for control group,	change (Prevented from	and the treatment group. The
			injuries.	PUs occurred in 17 (9.4%)	remaining in the same position	results show that the risk of
				participants.	for more than 2 hr according to	pressure injuries was reduced, and
				n= 165 intervention group,	the skin status and comfort level	pressure injuries occurred later
				PUs occurred in 6 (3.6%)	of the child, Protectors were	when an evidence-based pressure
				participants.	used for heels and elbows, and	injury prevention guide was used.
					a position-tracking form was	Pressure injury prevention guides
					used.) assessment of nutrition	can be considered effective in
					(Independent feeding and	preventing pressure injuries or
					dietary pattern status, Weight	reducing the risk of their
					loss	occurrence. There remains a need
					Dehydration, Adequate and	for randomized, controlled,
					balanced nutrition)	multicentre studies with larger
						samples because the number of
						studies on the prevention of
						pressure injuries in children in
						PICUs is limited.

Pasek et al	Quasi-	USA	Will a nurse-driven	29 patients. Before	The purpose of the protocol was	The study was able to reduce the
[32]	Experimental		interdisciplinary	intervention n=8, number of	fourfold: (1) to improve proactive	number of pressure injuries in
			pressure injury	patients developed PUs n= 3	prevention measures before or	patients receiving ECMO by
			prevention protocol	observed PUs 12. During	concurrent with the initiation of	implementing a tiered pressure
			that is tiered according	intervention $n = 21$, number	ECMO; (2) to standardize	injury prevention protocol in the
			to the day of ECMO	of patients developed PUs n	prevention throughout the	PICU.
			therapy and predicted	= 4 PUs observed 11.	course of therapy for this patient	The rate of pressure injuries per
			patient stability reduce		population; (3) to improve	100 days of ECMO therapy
			the prevalence of		patient safety by reducing the	decreased from 6.78 to 4.49 during
			immobility- and device-		number of pressure injuries, or	the project.
			related pressure		eliminating them, in patients	Before implementation, 3 of the 8
			injuries among		receiving ECMO; and (4) to	patients (36%) receiving ECMO
			patients receiving		enhance the family's	had 1 or more pressure injuries.
			ECMO in the PICU?		participation in their child's skin	After implementation, however,
					care while the child is receiving	such injuries occurred in only 4 of
					ECMO.	the 21 patients (19%) receiving
					Interventions include: foam	ECMO—an improvement of 17%,
					dressings between cannulas	OR 0.39 95% CI (0.06 – 2.37)*.
					and skin, 2 nurses head to toe	The study found more device-
					assessment on day one to	related injuries after
					establish baseline, off loads	implementation (63%) than before
					heels, fluidized positioner under	implementation (8%); the authors
					occiput, turning 2 hourly,	attribute this increase to the use of
					consider support mattresses,	the new Braden QD Scale, which
					semi-weekly skin care rounds.	improved our awareness and

						assessment of medical device-
						related injuries.
Kiss and	Quasi-	USA	To decrease skin	The study population for the	Create a practice guideline	The skin-care guideline was useful
Heiler [33]	Experimental		breakdown in the	first chart review was	which guided nurses on the	in decreasing skin breakdown and
			PCICU patient	obtained through a random	interventions to be implemented	pressure ulcers in the PCICU
			population through the	selection of 100 patients that	as preventative measures. An	during the acute time period.
			standardization of	were admitted to the PCICU	educational podcast was also	OR 0.387 95% CI [0.16 -0.95] P=
			nursing practice. The	between May 2012 and	created and was mandatory for	0.03
			specific objectives of	October 2012; 100 subjects	all 41 PCICU nurses to watch	
			the study were to	for the post-implementation	prior to the study. Adherence to	
			create and implement	chart review were randomly	the guideline was documented	
			a practice guideline for	selected from patients	in the patient's notes.	
			PCICU nurses and	admitted between January,	Interventions included: skin	
			providers, so that they	2013 and June, 2013.	assessment, specific medical	
			could execute proper		device care, pressure relief and	
			interventions for		repositioning.	
			potential skin-			
			breakdown issues in			
			PCICU patients during			
			the acute time period			
			from intubation to			
			extubation, using the			
			best possible practices			
			identified to date.			

Boesch et al	Quasi-	USA	To develop and test	Patients aged 13 months – 9	Once effective interventions	There was a significant decrease in
[34]	Experimental		potential interventions	years were included in this	were identified by a literature	the rate of patients who developed
			for tracheostomy-	study. All tracheostomy-	review, they were incorporated	a pressure injury from 8.1% during
			related pressure injury	dependent patients admitted	into a pressure injury prevention	the preintervention period, to 2.6%
			prevention, condense	to the 18-bed ventilator unit	bundle and implemented with	during bundle development, to
			them into a clinical	from July 2008 through	the use of quality improvement	0.3% after bundle implementation.
			bundle, and then	December 2010 were	methodology. These included:	
			implement the bundle	included. N=834.	pressure ulcer risk and skin	
			into standard practice		assessment, moisture-free	
			and measure its		device interface, and pressure-	
			effectiveness.		free device interface. In addition,	
					full body assessments took	
					place daily with Braden Q risk	
					assessments, tracheostomy	
					assessments took place every 8	
					hours, and hydrocolloid barrier	
					dressings were placed under the	
					flanges of tracheostomies.	
					Nurses received training about	
					pressure injuries and the	
					intervention bundle online and	
					face-to-face. Consultation with	
					device manufacturers also	
					occurred to redesign the	
					tracheostomies	

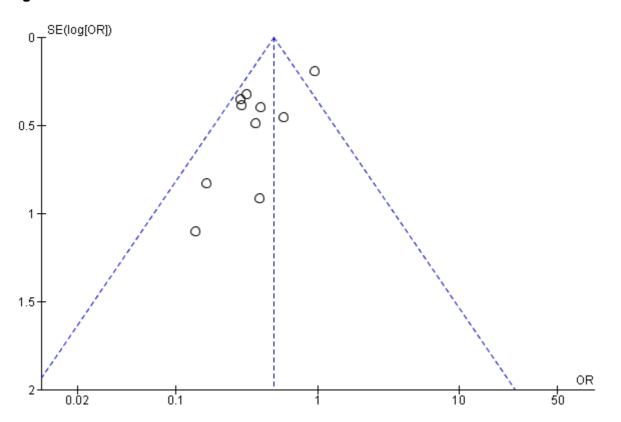

Rezaei et. al	RCT	Iran	To examine the effect	Eighty (80) eligible infants	Infants were randomly assigned	Main study outcome - incidence	
[25]			of a hydrocolloid nasal	were born at 32 weeks of	to two groups; the intervention	and severity of nasal injury in	
			dressing on the	gestation or younger and/or	group used a protective	preterm infants undergoing N-	
			incidence and severity	with a birth weight of 1,500 g	dressing, and the control group	CPAP. Infants in the intervention	
			of nasal injury in	or less and had received	received routine care.	group had a significantly lower	
			preterm infants	between 4 and 72 hours of		incidence and severity of nasal	
			receiving nasal CPAP	CPAP.		injury compared with the control	
			(N-CPAP)			group: 15 of 40 (37.5%) versus 37	
						of 40 (92.5%; P < .001). Overall,	
						the injuries identified in this study	
						were mostly mild and moderate,	
						with only three severe injuries in	
						the intervention group and five in	
						the control group.	
Abbreviations: P	PICU – Peadiatri	c Intensive C	are Unit, OR – Odds Ratio	o, RCT – Randomised Control Tr	ial, ECMO - Extracorporeal membra	ane oxygenation, CPAP –	
Continuous Positive Pressure airway pressure, N-CPAP – Nasal Continuous Positive Pressure airway pressure, BCPAP - Bubble continuous positive airway pressure, PRSS -							
pressure-redistributing support surfaces, NPUAP - National Pressure Injury Advisory Panel, EPUAP- European Pressure Ulcer Advisory Panel, PPPIA - Pan Pacific Pressure							
Injury Alliance, *	OR – Odds ratio	s calculated	from reported raw data.				

Figure 2

	Intervet	ions	No Interve	ention		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Aprea et al (2018)	18	78	38	74	14.4%	0.28 [0.14, 0.57]	_ -
Bargos-Munarriz et al (2020)	11	60	14	50	6.0%	0.58 [0.23, 1.42]	
Chen et al (2020)	26	60	45	62	12.1%	0.29 [0.14, 0.62]	.
Garcia-Molina et al (2012)	1	30	7	35	3.0%	0.14 [0.02, 1.19]	
Imbulana et al (2021)	18	53	31	55	9.7%	0.40 [0.18, 0.87]	.
Pasek et al (2021)	4	21	3	8	1.7%	0.39 [0.06, 2.37]	
Schindler et al (2013)	17	250	28	149	15.7%	0.32 [0.17, 0.60]	_
Uysal et al (2020)	6	165	17	181	7.5%	0.36 [0.14, 0.95]	
Visscher et al (2013)	53	671	62	754	25.8%	0.96 [0.65, 1.40]	
Xie (2014)	2	33	9	32	4.1%	0.16 [0.03, 0.84]	
Total (95% CI)		1421		1400	100.0%	0.49 [0.39, 0.62]	•
Total events	156		254				
Heterogeneity: Chi² = 21.70, df = 9 (P = 0.010); l² = 59%							
Test for overall effect: $Z = 6.03$ (P < 0.00001)						0.02 0.1 1 10 50 Favours [Intervention] Favours [No Intervention]	

Figure 3

