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Abstract14

We use a coupled thermodynamically-consistent framework to model reactive chemo-mechanical re-15

sponses of solid solutions. Specifically, we focus on chemically active solid solutions that are subject16

to mechanical effects due to heterogeneous stress distributions. The stress generation process is driven17

solely by volume changes associated with the chemical processes. We use this model to describe the un-18

derlying physics during standard geological processes. Furthermore, simulation results of a three-species19

solid solution provide insights into the phenomena and verify the interleaving between mechanical and20

chemical responses in the solid. In particular, we show the evolution of the thermodynamic pressure as21

the system goes to a steady state.22

1 Introduction23

In discussing systems undergoing volume changes, Truesdell [39] §5C—in the appendix A Theory of Multi-24

phase Mixtures by Passman, Nunziato & Walsh—identified the thermodynamic pressure as the conjugate25

power expenditure to volume changes.26

The spherical part of the Cauchy tensor only provides mechanical contributions, albeit essential to the27

thermodynamic pressure. Consequently, the spherical part of the Cauchy tensor does not completely describe28

the pressure, specially for systems undertaking chemical process. The thermodynamic pressure is defined29

as the negative variation of the Helmholtz free-energy with respect to the volumetric variations, i.e., pth =30

−∂ψ/∂v; this definition automatically satisfies the mechanical version of the second law of thermodynamics.31

In general, the thermodynamic pressure may be spatially heterogeneous at a steady state and change over32

time. Therefore, the system reaches equilibrium under non-hydrostatic stresses [21, 22, 23, 20].33

This work is part of a series of papers on the chemo-mechanical responses of solid solutions in conjunction34

with the phase-field model applied to geosystems. Herein, we use the proposed model in Clavijo et al. [6, 7]35

to assess the chemical contributions to the thermodynamic pressure in a mineral solid solution. Our model,36

detailed in Clavijo et al. [6, 7], is a thermodynamically-consistent framework for describing chemo-mechanical37

interactions of solid solutions far from equilibrium.38

Our main novel contributions from this work are:39

1



1. Modeling the inhomogeneous pressure distributions that result from local volume changes and showing40

that species nucleation and growth induce volumetric stresses that lead to spatially inhomogeneous41

pressure distributions.42

2. Demonstrating that mineral solid solutions can reach equilibrium under non-hydrostatic stresses, which43

has been largely disregarded in the current state of the art.44

3. Showing that chemical contributions play a major role in the evolution of these systems, which is an45

important step in understanding the complex interactions between chemical and mechanical processes46

in mineral solid solutions.47

4. Highlighting the importance of interfacial effects in mineral solid solutions, which have been poorly48

studied in previous works in the field. Our model takes into account the contribution of interfacial49

phenomena, such as interfaces between different solid phases, to the overall thermodynamic pressure50

of the system.51

Following Clavijo et al. [6], the elastic energy relates the stress-assisted volume changes and the stresses52

resulting from mechanical loading. Further, the chemical energy accounts for the interfacial contributions.53

In particular, we study a solid elastic solution composed of three species. As the species diffuse and react,54

the solid undergoes volumetric stresses that drive the inhomogeneous pressure distribution. The material55

parameters in the simulation are in the range of physical and chemical processes in geosciences. We model56

the elastic properties as a function of the volume fraction, as usually done in the theory of mixtures. We57

keep the elastic properties constant throughout the simulations without losing generality to model the most58

straightforward scenario. Thus, we focus on the spatial heterogeneities in the thermodynamic pressure arising59

from chemical processes.60

Studies on metamorphic petrology and microstructural observations suggest the influence of mechanical61

effects upon chemically active metamorphic minerals. An open research topic in geosciences is to characterize62

the sources that engender heterogeneous pressure distributions in metamorphic minerals. Most importantly,63

the pressure conditions that define equilibrium conditions in metamorphic systems. In this effort, several64

modeling and experimental attempts have been proposed in the literature [27, 38, 15, 30, 41, 42, 43]. Nonethe-65

less, there is a long-standing controversy about the correct magnitude of such pressure distributions predicted66

by these models. The accuracy of pressure distributions predicted by models is a subject of ongoing research67

and debate in the scientific community. There are a variety of factors that can affect the predicted pressure68

distributions, including the complexity of the model, the quality and accuracy of the input data, and the69

specific assumptions and approximations used in the model. The development of new and improved models,70

as well as the collection of more accurate data, may help to resolve some of the controversies surrounding71

pressure predictions. For instance, Tajčmanová et al. [38] study the effects of inhomogeneous pressure dis-72

tributions and review possible thermodynamic formulations to describe such systems. Their results suggest73

pressure deviations from lithostatic values larger than 1 GPa even at the micrometre scale. Howell et al. [17]74

use an analytical model that relates geometric features (host rock and inclusion shapes) in conjunction with75

quantitative birefringence analysis to study the residual stress of graphite inclusion in a diamond. Their76

measurements show internal inhomogeneous pressure distributions around graphite inclusions are caused77

by residual stresses. We do not disregard the possibility of heterogeneous pressures arising from residual78

stresses caused either by solidification or plastification in conjunction with volume changes induced by chem-79

ical processes. However, we restrict attention to volume changes due to chemical reactions to quantify the80

magnitude of such effects.81

To date, a small community has modeled the physical and chemical interactions in mineral mineral82

solutions. Tajčmanová et al. [38] study the effect of inhomogeneous pressure distributions considering the83

impact of mass fluxes and external loading, suggesting that a rock composed of two minerals with different84

mechanical properties will evolve to favor mechanically maintained inhomogeneous pressure distributions.85

Powell et al. [34] explores incorporating non-hydrostatic thermodynamics to explain observed patterns in86

metamorphic belts. Their results suggest non-hydrostatic stress in minerals does not significantly affect87

metamorphism, and commonly adopted approaches in mineral equilibria calculations are unlikely to be88

affected by non-hydrostatically stressed minerals. According to Powell et al. [34], their conclusions are89

supported by the success of these calculations in accounting for fundamental patterns in orogens and is90

inconsistent with a view of metamorphism dominated by non-hydrostatic effects.91
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To understand the underlying phenomenon leading to inhomogeneous spatial distribution of the thermo-92

dynamic pressure, geoscientists must consider all possible mechanisms that favour volumetric deformation.93

As a part of this effort, this work portraits intrinsic relation between chemo-mechanical responses of min-94

eral solid solutions. The considered framework cannot wholly describe a rock. Rocks are complex systems95

composed of several minerals and grain boundaries whose crystalline structure and chemical and mechanical96

properties differ. Moreover, during metamorphism, rocks interact with fluids that strongly define the grade97

of metamorphism, altering the rock properties. Nevertheless, the aforementioned model sets the basis for a98

thermodynamical treatment to describe the thermodynamic pressure which defines equilibrium conditions.99

The remainder of the paper has the following structure. Section 2 covers a list of dimensionless forms100

for the coupled chemo-mechanical equations as well as initial and boundary conditions. Section 3 presents101

the model thermodynamics. Section 3.1 covers the definition of the network model proposed by Larché and102

Cahn in conjunction with the nature of solidity while allowing for compositional changes, followed by Section103

3.3 which describes the elastic energy, particularly the coupling between chemical and mechanical processes.104

Section 3.4 outlines the definition of a chemical energy potential considering interfacial interactions. We105

also describe the Ostwald ripening effect and spinodal decomposition processes. Section 3.5 discusses the106

underlying physics that rules the evolution of elastic solids undergoing chemical processes. In this section,107

we also show how to calculate the thermodynamic pressure from the Helmholtz free-energy density. Finally,108

in section 4, we study the evolution of a three-species solid solution where one species results from a forward109

chemical reaction. Such a coupled chemo-mechanical process drives the generation of the inhomogeneous110

pressure distributions. Hence, the system reaches equilibrium under inhomogeneous spatial distribution of111

the thermodynamic pressure.112

2 A dimensionless system of coupled chemo-mechanical equations113

We adopt the notation proposed by Fried and Gurtin to define a chemical component in saturated sys-114

tems [14]. The Helmholtz free energy functional accounts for the contributions from the mechanical and115

chemical responses of the system. Regarding the chemical energy, the functional characterizes a solid sys-116

tem’s dynamics that may undergo spinodal decomposition at solid-state, where interfacial interactions drive117

the spinodal decomposition process. The solid, composed of the several species, is described as a compressible118

neo-Hookean elastic material. We treat the solid as a continuum body subject to a motion described by a119

deformation field. The kinematics of the motion of the particles in the body define the deformation field. In120

the continuum mechanics literature, such systems are commonly called solid-species solutions. Henceforth,121

we adopt this denomination [14].122

A set of balance equations in the form of partial differential equations define how mass, linear and angular123

momenta, internal energy, and entropy of the system vary in time as deformation and chemical processes take124

place. As shown in Gurtin et al. [14], Dal and Miehe [8], Miehe et al. [25], Tsagrakis and Aifantis [40], three125

primary fields govern the coupled chemo-mechanical responses of a solid-species solution: the deformation126

field, the species concentrations, and the chemical potentials.127

The system’s total free-energy density characterizes the evolution of elastic solids undergoing chemical128

processes. This energy potential additively accounts for the elastic and chemical energy densities contribu-129

tions outlined in Sections 3.3 and 3.4. The total free-energy density reads130

ψ̂ = ψ̂ch + ψ̂el. (1)

Conventionally, the chemical energy density can be written as ψ̂ch = ψ̂φ + ψ̂s, where ψ̂φ represents an131

homogeneous free-energy density and ψ̂s considers interfacial contributions due to concentration gradients.132

Following Clavijo et al. [5], the chemical energy density used in this work extends to a multi-component133

framework, the classical free-energy potential used in Cahn-Hilliard formulations [3, 12].134

Table 1 summarizes the main governing and constitutive equations; it lists the balance equations, chemical135

potentials, source/sink terms, and stress tensor for the chemo-mechanical framework proposed in [6, 7].136

Lastly, the elastic free-energy density reads137

ψ̂el(Fe) =
G

2
[Fe : Fe − 3] +

G

β

[
(detFe)−β − 1

]
(2)
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Table 1: Coupled system of chemo-mechanical equations

Equation Description
ρ0 = Jρ Balance solid mass

φ̇αR = sα −DivȷαRσ Balance species concentration

ȷαRσ = −∑n
β=1 M

αβ JC−1∇µβRσ Species mass flux

µαRσ = ∂(σ)ψ
∂φα

R
−Div ∂(σ)ψ

∂(∇φα
R) − (γα + γσ) Species chemical potential

sα = −∑Ns

c=1(υαc −ϖαc)(k
+
c

∏n
a=1(φ

a
R)
υac − k−c

∏n
a=1(φ

a
R)
ϖac) Chemical reaction source term

0 = DivTR + b Balance linear momentum

TR = GJ−1/3
φ [Fe − (detFe)−βFe−⊤] Stress tensor

Jφ =

(
1 +

∑n
α=1 ω

α(φαR − φαR0)

)
Chemical volumetric deformation

pth = −∂ψ
∂v = −ρ0 ∂ψ∂J Thermodynamic pressure

ψ̂el(Fe) =
G

2
[Fe : Fe − 3] +

G

β

[
(detFe)−β − 1

]
Elastic energy

ψ̂ch(φR,∇φR) = NvkBϑ (
∑n
α=1 φ

α
R lnφαR) Chemical energy

+Nv
∑n
α=1

∑n
β=1 Ω

αβφαRφ
β
R

+
1

2

∑n
α=1

∑n
β=1 Γ

αβ ∇φαR · ∇φβR

The system of equations presented in Table 1 describes the behavior of an elastic solid solution composed138

of n chemical components, where α denotes the α-th component and σ represents the reference species.139

The variables and parameters used in this model are listed in Table 2. Note that independent variables are140

indicated with [I]. A free-energy density ψ0 = 2NvkBϑ allows to write a cross-diffusion tensor as follows141

Dαβ = ψ0M
αβ . (3)

As suggested by Clavijo et al. [6, 7], the dimensionless forms of the energy densities, and governing and142

constitutive equations, can be obtained by143

u = u−1
0 u, x = L−1

0 x, t = D0l
2
0L

−4
0 t. (4)

Further, the considered coupled chemo-mechanical theory uses the following scalar and vector dimensionless144

numbers145

ωα, k
c

+ = kc+D
−1
0 ℓ−2

0 L4
0, k

c

− = kc−D
−1
0 ℓ−2

0 L4
0, ϑ

αβ

c = ϑ−1ϑαβc ,

ℓ
αβ

= L−1
0 ℓαβ , ψ = ψ̂ψ−1

0 , σαβ = σαβ(ψ0L0)
−1, β, b = G−1b,

G = Gψ−1
0 , l = u0L

−1
0 , D

αβ
= DαβD−1

0 ℓ−2
0 L2

0, γα = ψ−1
0 γα.

(5)

Table 3 presents a summary of the main dimensionless equations and variables in the chemo-mechanical146

framework, as outlined in the works of Clavijo et al. [6, 7]. When combined with equations 5, they constitute147

a complete system of partial chemo-mechanical equations that describes the system under study.148
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Table 2: List of variables and parameters of the coupled chemo-mechanical framework

Variables and Parameters Description
Nv Number of molecules per unit volume [I]
kB Boltzmann constant [I]
ϑ Temperature [I]
ϑc Critical temperature [I]
σ Interfacial tension [I]
M Species mobility
ρ0, ρ Reference and current configuration solid densities
φ, φ0 Species concentration, Initial species concentration [I]
J Jacobian
u Displacement vector
C Green-Lagrange stress tensor
F Deformation gradient
Fe Elastic part of the deformation gradient
ψ Chemo-mechanical free-energy density
γ Internal micro-force
υ,ϖ Stoichiometric coefficients in reversible reaction [I]
k+, k− Reactions rates in reversible reaction [I]
L0 Domain length [I]
D Diffusion tensor [I]
u0 Reference deformation state [I]
D0 Reference diffusion coefficient [I]
l0 Interface thickness of a reference species [I]
t Time
G Shear modules [I]
β Weak compressibility [I]
b Body force
ω Chemical deformation parameter [I]
TR First Piola-Kirchhoff stress tensor

Table 3: Coupled system of dimensionless chemo-mechanical equations

Dimensionless Equation Description

∂φα
R

∂t
= ∇ ·

(∑n
β=1 D

αβ
M ∇µβRσ

)
+ sα Balance species concentrations

M = det(I+ l∇u)(I+ l∇u)−1I(I+ l∇u)−⊤ Species Mobility

µαRσ = 1
2

(
ln
φαR
φσR

)
+ 2

∑n
β=1(ϑ

αβ

c − ϑ
αβ

c )φβR −∑N
β=1(σ

αβℓ
αβ − σσβℓ

σβ
)∆φβR Species chemical potential

− 1
3ω

ασJ−1
φ Gtr[TR(I+ l∇u)⊤]− (γα + γσ)

sα = −∑ns

c=1

{
(υcα −ϖcα)(k

c

+

∏n
a=1(φ

a
R)
υca − k

c

−
∏n
a=1(φ

a
R)
ϖca

)
}

Species Mobility

0 = DivTR + b Balance linear momentum

TR = J−1/3
φ [J

− 1
3

φ (I+ l∇u)− (detJ
− 1

3
φ (I+ l∇u)−β(J

− 1
3

φ (I+ l∇u))−⊤] First Piola-Kirchhoff stress tensor
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3 A thermodynamically-consistent description of chemo-mechanical149

interactions in solid solutions150

We encourage the reader to refer to the works of Clavijo et al. [5, 6, 7] for a detailed and comprehensive151

thermodynamic derivation of the coupled chemo-mechanical equations discussed in this manuscript. In this152

section, we aim to provide a deeper understanding of the underlying physics behind these equations and153

their connection to standard chemo-mechanical processes in geosystems. To begin, we introduce the solid154

model proposed by Larché-Cahn, which we use to illustrate the mechanism of interfacial interactions in155

a crystalline solid. By defining solidity, we can then explain the main components of the proposed free156

energy in Clavijo et al. [7], such as the elastic energy and chemical energy, and use them to estimate the157

thermodynamic pressure. Additionally, we provide observational evidence of such processes reported in the158

literature, further reinforcing the validity of our proposed framework. It’s worth noting that our proposed159

framework is not only limited to metamorphic rocks but also to other natural phenomena that involve160

chemo-mechanical interactions.161

3.1 Crystalline structure and mass constraint162

The considered chemo-mechanical framework builds on the Larché-Cahn’s solid model undertaking compo-163

sitional changes [21, 22, 23, 20]. The author’s model is based on the definition of relative chemical potentials164

following the so-called Larché-Cahn derivative [14, 21]. Hence, two different species may share the same165

lattice site in the crystalline structure due to energy exchange caused by species transport. For saturated166

systems, the chemical potential describes how the energy changes when one species increases its concen-167

tration while simultaneously reducing another one. Thereby, diffusion processes are only feasible if local168

composition variations of one species induce a complementary change in another species concentration.169

Our formulation uses non-Fickian diffusion to describe interfacial interactions that describe, for example,170

spontaneous spinodal decomposition processes, the Ostwald ripening, and Gibbs-Thomson effects. However,171

the model describes conventional diffusion by setting the interfacial energy tensor equal to zero.172

Understanding the impact of mechanical and chemical processes on solids requires a description of the173

nature of solidity and its properties. Gibbs’ introduced a theory for the equilibrium thermodynamics of solids174

under non-hydrostatic conditions where dissolution and accretion at the solid-fluid interfaces are possible [13].175

Gibbs’ model describes non-hydrostatic stress distributions on solids caused by a surrounding fluid. This176

isotropic stress (pressure) induces fluid pressure gradients, ∇pfluid, at solid-fluid interfaces, which in turn177

leads to chemical potential gradients at dissolution points. Nonetheless, Gibbs’ theory does not quantify178

the lattice deformation caused by compositional changes as the solid-state diffusion concept did not exist179

[13, 36, 22]. We now model elastic solids that allow for compositional changes while remaining in the180

solid-state.181

Figure 1: An idealized cubic crystalline structure. Atoms inside the crystalline structure are more energeti-
cally stable than surface ones since more neighboring atoms bound them.
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Figure 2: Larché and Cahn network embedded in a solid’s crystalline structure. The solid is composed of
two species sketched as red and blue circles. The figure shows a coherent transition together with the stress-
assisted volume changes mechanism. The red atom transport from lattice site 1 to lattice site 2 induces
volumetric stresses.

We adopt the network model proposed by Larché and Cahn [22]. Hence, a network embedded in the solid182

structure allows defining a displacement field and solid strains [14, 21]. As a result, the strain quantifies the183

network’s deformation with respect to a reference network configuration, commonly set as an undeformed184

state. A solid network can be identified in several natural and engineering materials, such as minerals,185

polymers, and metals. For instance, the unit cell of the crystalline structure of minerals, which arranges the186

atoms in a systematic and repeating pattern, acts like a network. We focus on saturated systems, such that187

n∑
α=1

φα = 1, (6)

where the order parameter φα accounts for the dimensionless concentration of the α-th species. When the188

solid is solely composed of the diffusing species, the mass constraint given by (6) must hold. Figure 2 depicts189

the crystalline structure composed of two species (drawn as red and blue circles) that corresponds to the190

case where adjacent components have coherent transitions, namely, their crystalline structure’s orientation191

coincides. The solid network must account for the lattice misalignment when a new species grows and192

nucleates. According to Larché and Cahn [21, 22], Larche and Cahn [23, 20], the growth and nucleation193

of new species require describing non-coherent transitions by defining a crystalline structure and proper194

orientations of the mechanical properties. In our framework, the mass transport, nucleation, and growth of195

new species induced by chemical reactions generate elastic strains. In Figure 2, for instance, the transport196

of the red atom from the lattice site (1) to (2) must contribute to distorting the crystalline structure and,197

therefore, generating elastic strains. Henceforth, we denote such a mechanism as stress-assisted volume198

changes. The transport of the red atom from the lattice site (1) to (2) requires the movement of other atoms199

towards the lattice site (1) since the mass constraint is given by (6) must always hold. Thus, we restrict200

our attention to cases where mass transport by vacancies is impossible. In multicomponent systems, we also201

identify the partial pressure pα = φαp as the pressure related to the α-th species, with a concentration φα.202

3.2 Interfacial interactions203

Interfacial interactions explain Ostwald ripening effects. Such phenomena have been reported during the204

textural evolution of metamorphic rocks [29, 28, 11, 31]. This ripening effect is a thermodynamically-driven205

spontaneous process in spatially heterogeneous solutions composed of small and large aggregates. Thereby,206

the thermodynamic system moves to a lower energy state by minimizing its free-energy functional. Small207

aggregates tend to dissolve into the solution and precipitate onto the surface of larger aggregates of the same208

species since small aggregates are less energetically favored.209

Without loss of generality, let us consider a solid solution with a cubic crystalline structure as depicted210

in Figure 1. The green atom is the most energetically stable in the crystalline structure due to its six211
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(a) (b) (c)

Figure 3: (a) Idealized solid composed of two aggregates and a matrix. Ostwald ripening dynamics control the
dissolution of small aggregates and eventually their precipitation onto the surface of the larger aggregate once
the solution supersaturates. (b) and (c)Sketch the ripening evolution. As the smaller inclusion concentration
is depleted, the stress field changes, driving the large inclusion’s final shape.

neighboring atoms. Meanwhile, the blue atoms on the surface are less energetically stable since five or212

fewer neighboring atoms bound them. The aggregates with more green (interior) atoms are energetically213

favored and, therefore, more stable. Consequently, as the system reduces its free-energy functional, the less214

stable structures, namely the smaller aggregates, tend to dissolve into the solution and precipitate on the215

surface of the more stable structures. This mechanism shrinks smaller aggregates and grows the larger ones,216

increasing the overall aggregate size. Figure 3 (a) shows an idealized representation of a rock composed of217

two aggregates and a matrix where the small aggregate of the red component undergoes Ostwald ripening.218

Eventually, the smaller red aggregate completely dissolves and precipitates, leading to the larger aggregate219

growth. Figure 3 (b)-(c) portrait intermediate stages of the process.220

3.3 Elastic energy221

Elastic energy defines the potential energy stored in the material as work is performed to change either its222

volume or distort its shape. External forces applied through solid boundaries, body forces due to gravity,223

electric and magnetic fields, thermal swelling/shrinkage, and internal adjustment caused by compositional224

changes transfer elastic energy to the solid.225

The minerals that compose rocks accommodate these processes along with their evolution. Shear zones226

and overburden are typical examples of external loading applied to the rock. The chemical interactions227

caused by diffusion and reaction, where atoms arrange to form a material with a defined crystal structure, are228

examples of internal adjustment caused by compositional changes. Exhumation of deep crustal metamorphic229

rocks involves thermal swelling and shrinkage due to the crust’s temperature gradient.230

All elastic responses allow the solid to recover its original configuration when the external force ceases.231

Consequently, the solid recovers its shape and volume. More importantly, chemical systems under heteroge-232

neous elastic stresses can only reach equilibrium if all dissipative processes, such as mass transport, chemical233

reactions, and interfacial effects, have ceased. In the considered framework, the variations in local species234

concentration are scaled by a swelling parameter ω, which measures the change in local species concentrations235

towards volumetric stresses. The parameter ω is related to the solid crystalline structure and its mechanical236

properties [6].237

Figure 4 depicts the elastic energy ψ̂el as a function of local species concentration, parametrized by the238

swelling parameter ω, for a two-component system. With fixed boundaries, the stress variations are only239

due to the changes in the species concentration. As illustrated in Figure 4, the elastic energy increases as240

the swelling parameter becomes larger. Thereby, as long as local species concentrations change with respect241

to the initial distribution, the solid undergoes elastic deformation. The interaction between diffusion and242

deformation changes the rates of both processes.243
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Figure 4: Elastic energy ψ̂el as a function of the local concentration. The parametrization shows the effect
of the swelling parameter ω on the elastic energy ψ̂e.

Figure 5: Solid solution microstructure composed of two components. The concentration of the components
A and B correspond to φeqA and φeqB , respectively. The interface, where the concentration varies between φeqA
and φeqB , embraces the chemical properties of both the components A and B.
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ϕ

ψ̂ϕ
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Figure 6: (a) represents the free energy potential of the homogeneous system. The double-well potential
allows for the spinodal decomposition where the local minima of each well account for each component’s
equilibrium concentration. (b) sketches the chemical potential as a function of the concentration. By
definition, the chemical potential is the free energy potential’s partial derivative with respect to the local
concentration.

3.4 Chemical energy244

Solid solutions are complex systems composed of several chemical components. The interface between com-245

ponents may be of non-zero thickness where the physical and chemical properties vary from one component246

to another. That is, the transition from one component to another may not be sharp.247

Figure 5 shows an idealized representation of two components A and B, in equilibrium, sketched by colors248

blue and red, respectively. The concentrations φ of A and B corresponds to φeqA and φeqB . Further, there249

exists a thin region (color gradient) where the concentration φ varies gradually between φeqA and φeqB . This250

region is the interface between components A and B.251

If the temperature decreases below the system’s critical temperature, spontaneous phase separation252

processes such as spinodal decomposition control the textural evolution in the material [6]. As a consequence,253

the system favors the formation of spatial domains rich in each component. Spinodal decomposition processes254

can occur, for example, in plagioclase feldspars and binary systems such as magnetite-ulvospinel [4, 24, 10].255

The generalized Cahn-Hilliard equation can track the microstructure evolution of solid solutions. Figure256

6 (a) depicts the homogeneous free-energy density ψ̂φ as a function of the local concentration φ for different257

values of absolute temperature T . This potential corresponds to the case of a two components solid solution,258

for instance, A and B as depicted in Figure 5. For absolute temperature values greater than critical ones (i.e.,259

T > Tc), the potential ψ̂φ becomes a convex-downward function of φ. The latter renders a homogeneous260

mix, as it only exits a single stable state located at the minimum value of ψ̂φ. Hence, for all possible values of261

concentration, the free-energy density is stable. Alternatively, when the absolute temperatures are below the262

critical temperature T < Tc, the homogeneous free-energy functional becomes a double-well convex upward263

function. As a consequence, two stable coexistent components emerge from each local minimum value,264

representing the concentration at equilibrium. Figure 6 (b), on the other hand, showcases the chemical265

potential calculated as the derivative of the homogeneous, free-energy functional ψ̂φ with respect to the266

local concentration φ.267

3.5 Helmholtz free-energy density and the thermodynamic pressure268

The Helmholtz free-energy density results from applying the Legendre transform to the internal energy while269

replacing the system’s entropy by the temperate as an independent variable. Moreover, by subordinating270

the constitutive relationships to the Helmholtz free-energy density following the arguments of Noll et al.271

[32], this framework describes the dynamics of a non-linear elastic solid undergoing chemical processes and272
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deformation. The thermodynamic pressure is then estimated as the partial derivative of the Helmholtz273

free-energy density with respect to the specific volume, while keeping local concentrations and deformation274

constant. This physical quantity defines the chemical equilibrium when all dissipative processes, which275

produce entropy and therefore variations in local composition, cease [16, 13].276

3.6 A review of thermodynamic pressure in geosystems277

A spike of recent interest in the geosciences literature is the proper definition of the thermodynamic equi-278

librium in metamorphic systems. As outlined in Section 1, the thermodynamic pressure can have spatio-279

temporal inhomogeneities.280

Recent studies of metamorphic petrology show localized pressure deviations from lithostatic values, arising281

from complex chemo-mechanical interactions between the minerals. Conventionally, pressure is estimated as282

the Archimedes’ value (directly proportional to the depth). When considering deforming rocks and mineral283

reactions, stress emerges from both volume changes due to chemical reactions and the overburden, leading284

to inhomogeneous pressure distributions. Thus, Archimedes’s formula is inaccurate for these systems when285

considering volume changes arising from chemical processes. Nonetheless, the magnitude of such deviations286

is still under debate. However, heterogeneity is likely to be the result of the composition of volume changes287

due to chemical reaction and residual stresses due to solidification and plastification.288

For instance, the formation of ultrahigh-pressure rocks suggests that pressure does not always translate289

into depth [30]. Understanding the nature of such deviations is crucial since pressure provides a constraint290

for the description of the dynamics of orogens and an indirect measurement of the depth history of the291

sample. The roots of such discrepancies are complex chemo-mechanical interactions as the metamorphic292

rock complexes evolve towards equilibrium, Most importantly, chemo-mechanical responses are strongly293

interdependent.294

Moulas et al. [30] provide a comprehensive review on metamorphic rocks maintaining and recording295

significant pressure deviations from the lithostatic values. During prograde metamorphism, high pressure and296

temperature conditions form garnet porphyroblasts. As quartz and coesite inclusions grow, the metamorphic297

system endures large volumetric stresses associated with expanding inclusions in a relaxed host matrix.298

Eventually, the metamorphic system exhibits chemical zonation where each aggregate has different chemical299

and mechanical properties. Such heterogeneity generates spatial variations in pressure.300

The effect of inhomogeneous pressure distributions seem to be critical. Therefore, understanding the301

nature of such natural responses will allow the geoscience community to calibrate geodynamics models and302

to describe the evolution of microstructure. Previous studies of metamorphic rocks separated the chemical303

and the mechanical actions on mineral assemblages. Given the previous discussion, this simplifying splitting304

is inappropriate as volume changes, induced by chemical interactions between minerals, strongly influence305

pressure distribution. Thus, an appropriate description of the deformation process requires a comprehensive306

treatment of the coupled chemo-mechanical process.307

4 Modeling the effects of inhomogeneous pressure distributions in308

a ternary solid solution309

In this section, we explore deformation resulting from chemical processes, i.e, mass transport, interfacial310

effects, and chemical reaction. We use the thermodynamic pressure of the system to showcase the impact of311

chemical processes.312

We model the dynamics of a ternary solid and treat the system as a general multicomponent solid313

whose crystalline structure imposes a mass constraint such that (6) holds. One of the components emerges314

from a forward chemical reaction. The chemical reaction occurs in solid-state, and as it proceeds, the new315

component grows and nucleates. As mentioned above, we do not consider either diffusion by vacancies or316

grain boundaries between the components. In other words, the crystalline structure of each component,317

described by a lattice such as Figure 2, is coherent. We portrait the scenario where local volume changes318

caused by chemical interactions trigger the stress generation in the solid, reflecting spatial variations in319

pressure. This physical quantity corresponds to the thermodynamic pressure described in Section 3.5. We320
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Figure 7: An sketch of the initial concentrations for A and B. Regions colored by red and blue represent A
and B, respectively. As the chemical and mechanical processes evolve, the system favors generating a new
component C, contributing to the volumetric stress formation in the solid as C nucleates and grows.

use the diffusion coefficients, the reaction rates, and the thermodynamic properties commonly found in321

mineral solid solutions. Table 4 covers such quantities. The overall reaction is given by322

A+B
k−→ C. (7)

Moreover, φ1 = [A], φ2 = [B] and, φ3 = [C] define the concentration of the components A, B and C,323

respectively. We solve the system of equations using PetIGA [9], with a square domain Ω = [0, 1]2 with 128324

C1-quadratic finite elements. To avoid spurious numerical instabilities due to time discretazation, we use325

the generalized-α method proposed in Sarmiento et al. [35].326

Figure 7 depicts the spatial distribution of species initial concentrations. The initial concentration of327

C is zero. We also assume a solid without distortions at t̄ = 0.0. This implies zero relative displacements328

in the sample and, thus, zero strains. We choose a spatial distribution of the concentrations, as Figure 7329

shows, to account for large concentration gradients to track the effect of the interface evolution [3], namely,330

the contribution of the curvature in the chemical potential. We are interested in observing the effect of331

local variations in the concentration upon the generation of inhomogeneous stress and pressure distributions332

which relate the concentrations to the deformation gradient as captured by a volumetric stress tensor.333

Hence, the stress variations come from the volumetric deformation since we do not impose external loading334

nor deformation. Furthermore, there are no mass fluxes through the boundaries. Following Gurtin et al.335

[14], the deformation itself cannot induce mass transport. Therefore, for mass transport to happen, there336

must be chemical potential gradients where the chemo-mechanical coupling accounts for the contributions337

from both the solid’s physical and chemical responses, which in the material sciences literature is known as338

the absence of a piezo-diffusive effect. We set the chemical energy parameter and the number of molecules339

per volume so that we guarantee a non-convex triple-well energy functional. For instance, Figure 6 models340

a two-component case. If required, one can set the chemical energy such that the system evolves without341

interfacial interactions.342

Figures 8-11 show the temporal evolution of the concentration of component A, B, and C together with343

the spatial distribution of the thermodynamic pressure, pth, as the solid evolves to equilibrium. Unlike the344

thermodynamic pressure, the concentrations and time evolution are dimensionless quantities. As discussed345

above, we calculate the concentration of C, φ3, by applying at each time-step the constraint defined by (6),346

which guarantees the consistency of the process. At early stages t̄ < 5.6x10−4, Figure 8, the non-Fickian347

diffusion essentially controls the temporal evolution of both the physical and mechanical processes as the348

forward chemical reaction plays no substantial role. One can verify such assertion by checking the mass349

evolution in Figure 12, where during t̄ < 2.63x10−3 the masses remain approximately constant. Moreover,350

from Figure 8, one can also infer that there is no formation of C until t̄ > 5.6x10−4. Therefore, the initial351

condition, spatially distributed as Figure 7, goes through spinodal decomposition during the early stages and352

is followed by coarsening [5]. These interactions lead to a merging process which eventually forms large and353

rounded structures as suggested by Figures 8 and 9. Hence, we conclude that variations in local composition354

caused by diffusion define the stress generation source at the early stages. Therefore, the dynamics of the355
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spatially inhomogeneous pressure distribution results solely from both spinodal decomposition and coarsening356

mechanisms. At the same time, the system minimizes its free-energy functional by reducing the interface357

between the components A, B, and C. Figure 12 also depicts the temporal evolution of the interfacial358

energy, which verifies that during t̄ < 2.63x10−3, in particular for A and B, the interfacial energy decreases.359

Furthermore, the stress-assisted volume changes mechanism primally occurs along the boundary between360

A and B as the system forms the rounded structures. Namely, large stresses arise along the interface361

between A and B. Figure 14 reports the dynamics of the neo-Hookean energy functional which captures the362

shrinkage and swelling process as the components diffuse and react through the solid structure. From the363

free-energy functional evolution, Figure 13, shows that the system is minimizing its free-energy functional364

as the dissipative diffusion process occurs. The minimization is a direct consequence of the minimum energy365

principle, which states the internal energy is minimized as the system reaches constant entropy. The free-366

energy functional describes the contribution from both the physical and chemical responses of the solid.367

As discussed in Section 3.4, the model captures the dynamics of the Ostwald ripening [28, 11, 31]. In the368

range between 1.73x10−3 < t̄ < 2.63x10−3, Figure 9 illustrates that the smaller aggregates of component369

A tend to dissolve into the solid solution and precipitate along the surface of the larger aggregates. Such370

mechanism leads to a large rounded structure of A which is entirely enclosed by B. Figure 9 also shows the371

heterogeneous distribution of the thermodynamic pressure. The thickness of the reaction layer between A372

and B is irregular; see Figure 9 (c)-(d). Conventionally, during reaction-diffusion processes, one can expect a373

planar growth of the reaction layer. Nevertheless, when considering reaction-induced stresses and interfacial374

contributions, the chemical potential becomes a function of both the surface curvature and the mechanical375

pressure, leading to an irregular reaction layer of thickness. As a result, the diffusion process’s driving force376

changes along with the reaction layer, which induces different diffusion rates at the reaction boundary. The377

forward chemical reaction occurs mainly during the time interval between 8.02x10−3 < t̄ < 3.91x10−2, see378

Figure 10. Milke et al. [27] define that positive volume changes involve space creation by moving out the379

mass from the reaction site, and thus, the reaction products can grow and accommodate. On the contrary,380

negative volume changes induce mass transport into the reaction site by consuming the reactant components.381

During this stage, the system forms C along the boundary between A and B.382

Experimental evidence of reaction rim growth is reported by Milke et al. [26] whose experiments on the383

system forstatite (fo) - quartz (qtz) - enstatite (en) produce a reaction rim, mainly composed of enstatite384

(en), of irregular thickness. They suggest that this behavior’s nature is due to the mechanical contributions385

to the chemical potentials resulting from the local volume changes caused by the reaction. Although the386

mechanical contributions influence the chemical potentials, one must also consider the contributions of surface387

curvature between the components. They also alter to a large degree the chemical potentials. This curvature388

effect is called the Gibbs-Thomson effect [33, 18, 1]. The rim growth mechanism as defined by metamorphic389

petrologists results from the chemical reaction between neighboring minerals [27, 19]. In particular, this390

process is strongly affected by the solid’s mechanical properties and involves large volume changes that lead391

to large isotropic stresses.392

Eventually, the volumetric stress drives the spatial variations in pressure. Moreover, one can verify from393

Figure 12 that in the range between 8.02x10−3 < t̄ < 3.91x10−2 the masses change as well as the interfacial394

energy. Consequently, the reactant A and B masses tend to decrease while the reaction product C increases.395

At the end of such stage, the system completely consumes the mass of A. As expected, the interfacial energy396

of C increases as the forward reaction generates more C. Following Clavijo et al. [5], the reaction term in the397

chemical process increases the free-energy functional of the system resulting in the growth trend depicted398

by Figure 13 in the interval 8.02x10−3 < t̄ < 3.91x10−2. Finally, the interleaving between the chemical and399

mechanical responses of the solid form an elongated structure along the solid primally composed of B and400

surrounded by C.401

Due to large volume changes associated with the chemical process, we can see the stresses in the solid402

and thereby the notorious inhomogeneous pressure distribution at the steady-state. Figure 13 shows that403

from t̄ > 7.99x10−2 all dissipative processes ceased as the free-energy functional remains constant. Hence,404

the pressure strongly depends on the interactions between the physical and chemical responses of the solid.405

It is worth noticing that the resulting variations in pressure cannot be compared against deviations from406

lithostatic values as we do not consider in situ stresses.407

The red dots show in Figure 13 represent the beginning of the processes mentioned above. In particular,408

one and two accounts for the beginning of the spinodal decomposition and coarsening processes, respectively.409
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Table 4: Physical and Chemical parameters

Physical parameter Value Name
ϑ [K] 1373.15 Temperature
ϑc [K] 1500.0 Critical temperature

D [m2s−1] 10−20 Diffusion coefficient
K+ [m2s−1] 10−14 Reaction rate
σ [J m−2] 0.817 Interfacial energy
ℓ [m] 10−8 Interface thickness
µ [GPa] 44 Shear modulus
ν [-] 0.17 Poisson’s ratio
ω [-] 10−2 Swelling parameter

Analogously, between three and four, the system undergoes ripening. Finally, five and six define the forward410

chemical reaction period and the steady-state of the solid, respectively.411

The possibility of describing the formation of metamorphic mineral aggregates with spatial inhomoge-412

neous pressure distributions collides with the classical description of metamorphic minerals’ formation. The413

classical interpretations assume an isotropic thermodynamic equilibrium to explain metamorphic mineral414

assemblages via thermobarometry techniques and phase diagrams. Therefore, the formation processes that415

induce heterogeneous pressure distributions imply that these techniques may not be robust to characterize416

metamorphic systems. That is, these inhomogeneous pressure conditions contradict the foundational as-417

sumptions of uniform pressure and temperature distributions. Thus, the nature of the pressure distribution418

that defines the equilibrium of metamorphic rocks and how to calculate and determine this quantity are419

still open questions. As pointed out by Hobbs and Ord [15] (and references therein), the thermodynamic420

equilibrium is entirely characterized by the thermodynamic pressure given by the partial derivative of the421

Helmholtz free-energy density with respect to the specific volume, or when considering Gibbs free-energy422

density, the partial derivative has to be taken with respect to the volume. We believe that previously, in423

the geosciences literature, the lithostatic pressure has erroneously been used to describe the state of equilib-424

rium of the metamorphic rocks. And recently, works on inhomogeneous pressure distributions use the mean425

stress to characterize equilibrium conditions [38, 37]. These pressure definitions only make sense, from a426

thermodynamic point of view, for elastic solid in the absence of ongoing chemical processes [15].427

Viscoelastic, plastic, diffusional creep responses and ongoing chemical processes lead to additional con-428

tributions to thermodynamic pressure. Hobbs and Ord [15, 16] have carried out an extensive review on the429

subject (see also e.g Bennethum and Weinstein [2] and references therein).430
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(a) t̄ = 0.0

(b) t̄ = 1.2x10−5

(c) t̄ = 8.6x10−5

(d) t̄ = 5.6x10−4

Figure 8: Behavior of the ternary solid at the early stages t̄ ≤ 5.6x10−4. The system is mostly controlled
by spinodal decomposition and coarsening. Thereby, the volume changes and concomitant stress generation
result from the diffusion process, leading to the inhomogeneous pressure distribution.
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(a) t̄ = 1.73x10−3

(b) t̄ = 1.9x10−3

(c) t̄ = 2.5x10−3

(d) t̄ = 2.63x10−3

Figure 9: Dynamics of the system following Ostwald ripening. Unstable particles on the surface dissolve and
go into the solution.As the solution gets supersaturated, particles tend to precipitate onto the surface of the
more stable structures. Consequently, the larger structures grow.
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(a) t̄ = 8.02x10−3

(b) t̄ = 9.5x10−3

(c) t̄ = 1.76x10−2

(d) t̄ = 3.91x10−2

Figure 10: Reaction between the components A and B produces a new component C along their boundary.
The evolution favors consuming in a more significant proportion A than B. The simulation results show how
nucleation and growth induce volumetric stresses, contributing to generating the inhomogeneous pressure
distribution.
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(a) t̄ = 3.54x103

(b) t̄ = 9.33x104

(c) t̄ = 1.0x105

(d) t̄ > 1.0x105

Figure 11: The chemical reaction ceases at t̄ = 9.33x104, Figure (b). From this point on, the system
minimizes its free energy solely through mass transport, resulting in a steady state at t̄ > 9.33x106. The
equilibrium of the solid solution is ultimately determined by the thermodynamic pressure at t̄ > 9.33x104,
which takes into account both the chemical and mechanical responses of the solid.
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Figure 12: When a system undergoes a chemical process, either mass transport or chemical reaction, the
dynamics favors to either produce or destroy the interface between the species changing the interfacial energy.
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coarsening, Ostwald ripening effect, the chemical reaction, and steady-state.
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Figure 14: Elastic energy of a neo-Hookean solid model. Since no deformation is induced across the solid
boundaries, the elastic energy variation entirely results from the volumetric stresses associated with the
variations in local composition.

5 Conclusions431

We portray how deformation affects a chemically active solid’s evolution through continuum mechanics,432

thermodynamics far from equilibrium, and the phase-field model. This framework differs from previously433

published works extensively since the thermodynamic pressure, essentially to define equilibrium conditions434

in geosystems, is calculated from a fully coupled-thermodynamic framework for solid solutions. Furthermore,435

the framework accounts for multiple chemical components and interfacial effects. We include interfacial effects436

in the system thermodynamics because such interactions have been reported in the geoscience literature.437

We demonstrate that the interleaving between chemical and mechanical interactions triggers spatial438

variations in pressure. The latter is still an open research topic in geoscience. Such a pressure corresponds439

to the thermodynamic pressure and defines the system’s equilibrium conditions when it reaches a steady440

state. Hence, as mentioned earlier, the framework serves as a first step to modeling the behavior of stress-441

generation processes in mineral solid solutions. Nevertheless, one must be aware that spinodal decomposition442

mechanisms are not common processes in mineral solid solutions. Therefore, to model systems without443

interfacial contributions, the chemical energy must be set so that no spinodal decomposition occurs along444

the process. This can be achieved by choosing the initial distribution of the concentrations at the minimum445

values of the chemical energy and by setting to zero the interfacial energy tensor. The system does not tend446

to minimize the energy by spontaneous separation responses. As Section 4 discusses, the stresses arising447

from chemical processes such as mass transport and chemical reactions greatly influence the thermodynamic448

pressure values.449

Figures 11 and 13 verify that the thermodynamic pressure can have inhomogeneous spatial distributions450

at steady state. Without loss of generality, we show that by selecting appropriate material parameters, one451

can capture common processes in geosystem. For instance, the geometry of reaction rim growth as reported452

by Milke et al. [26]. Herein, we do not include grain boundaries nor fluid-solid interactions. As mentioned453

above, this is necessary, for instance, when modeling metamorphism.454
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[11] D. D. Eberl, J. Środoń, M. Kralik, B. E. Taylor, and Z. E. Peterman. Ostwald ripening of clays and487

metamorphic minerals. Science, 248(4954):474–477, 1990.488

[12] C. M. Elliott and H. Garcke. Diffusional phase transitions in multicomponent systems with a concen-489

tration dependent mobility matrix. Physica D: Nonlinear Phenomena, 109(3-4):242–256, 1997.490

[13] J. W. Gibbs. On the equilibrium of heterogeneous substances. American journal of science, 3(96):491

441–458, 1878.492

[14] M. E. Gurtin, E. Fried, and L. Anand. The mechanics and thermodynamics of continua. Cambridge493

University Press, 2010.494

[15] B. E. Hobbs and A. Ord. Does non-hydrostatic stress influence the equilibrium of metamorphic reac-495

tions? Earth-Science Reviews, 163:190–233, 2016.496

21



[16] B. E. Hobbs and A. Ord. Coupling of fluid flow to permeability development in mid-to upper crustal497

environments: a tale of three pressures. Geological Society, London, Special Publications, 453(1):81–120,498

2018.499

[17] D. Howell, I. Wood, D. Dobson, A. Jones, L. Nasdala, and J. Harris. Quantifying strain birefringence500

halos around inclusions in diamond. Contributions to Mineralogy and Petrology, 160(5):705–717, 2010.501

[18] C. A. Johnson. Generalization of the gibbs-thomson equation. Surface Science, 3(5):429–444, 1965.502

[19] L. Keller. Mineral growth in metamorphic rocks: relationships between chemical patterns, mineral503

microstructure and reaction kinetics. In AGU Fall Meeting Abstracts, volume 2008, pages MR14A–04,504

2008.505

[20] F. Larche and J. Cahn. Thermochemical equilibrium of multiphase solids under stress. Acta Metallurgica,506

26(10):1579–1589, 1978.507
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