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We analyse dynamical large deviations of quantum trajectories in Markovian open quantum sys-
tems in their full generality. We derive a quantum level-2.5 large deviation principle for these systems,
which describes the joint fluctuations of time-averaged quantum jump rates and of the time-averaged
quantum state for long times. Like its level-2.5 counterpart for classical continuous-time Markov
chains (which it contains as a special case) this description is both explicit and complete, as the
statistics of arbitrary time-extensive dynamical observables can be obtained by contraction from
the explicit level-2.5 rate functional we derive. Our approach uses an unravelled representation of
the quantum dynamics which allows these statistics to be obtained by analysing a classical stochas-
tic process in the space of pure states. For quantum reset processes we show that the unravelled
dynamics is semi-Markov, and derive bounds on the asymptotic variance of the number of quantum
jumps which generalise classical thermodynamic uncertainty relations. We finish by discussing how
our level-2.5 approach can be used to study large deviations of non-linear functions of the state such
as measures of entanglement.

Introduction – Practical quantum systems are always
coupled to their environments, which means that their
dynamics are stochastic. This is manifested for example
by wavefunction collapse and by decoherence. In such
open quantum systems one aims to trace out the environ-
ment and follow the dynamics of the system state [1–4].
In many situations, this leads to a density matrix ρ that
evolves deterministically in continuous time, according
to a Markovian quantum master equation (QME). This
dynamics can be understood via a mapping to stochas-
tic quantum trajectories [5–8] – this is called unravelling
the QME. An individual quantum trajectory specifies the
behaviour of the system conditioned on a time-record of
observations (or events) in the environment. If the events
are quantum jumps (as for example in the case of photon
counting) the trajectories are those of a continuous-time
quantum Markov chain, see [1–4]. Averaging over these
recovers the QME, but information about their fluctua-
tions requires knowledge about the quantum trajectories.

The state-of-the art approach for characterising fluctu-
ations in stochastic trajectories uses large deviation prin-
ciples (LDPs) [9–17]. This method focuses on rare events
in which time-averaged quantities deviate significantly
from their typical (ergodic) values. In open quantum
systems, LDPs have been used to analyse the counting
statistics of quantum jumps [18–24] and of homodyne
currents [25]. For classical systems, two important re-
cent advances have been the analysis of LDPs for the
full statistics of all fluxes and state occupancies (LDPs
at level 2.5 [26–31]), and variational analyses based on
optimal control theory [32, 33]. Here, we extend these
ideas to stochastic quantum trajectories.

In particular, we establish a level-2.5 LDP for quan-
tum jump trajectories, including variational representa-
tions of rate functions, based on optimal-control theory.
This framework recovers previous results for the statistics
of arbitrary dynamical observables (by using a contrac-
tion principle [13]). In addition, it enables several new
applications, two of which we consider in detail. First,
the level-2.5 LDP allows to derive bounds on the pre-
cision of estimation of the (empirical) rates of quantum
jumps in quantum reset processes, thus generalising clas-
sical thermodynamic uncertainty relations [34–38]. Sec-
ond, the level-2.5 LDP can be used to analyse new kinds
of dynamical fluctuations, which are related to non-linear
functions of the state; as an example, we consider fluctu-
ations of the bipartite entanglement entropy.

Average and unravelled dynamics – We consider
Markovian open quantum systems in continuous time,
where the system density matrix ρt evolves according to
a QME, ∂ρt/∂t = L(ρt). The Lindbladian L [39, 40] acts
on density matrices as [1–3]

L(·) = −i[H, (·)] +
∑
i

(
Ji(·)J†i −

1

2
{J†i Ji, (·)}

)
, (1)

where Ji is a jump operator, and i = 1, 2, . . . ,m identifies
the type of quantum jump. For example, different types
of jumps might correspond to emitted photons with dif-
ferent frequencies. We write [A,B] = AB − BA for the
commutator of two operators and {A,B} = AB + BA
for their anti-commutator.

Our approach is based on unravelling the dynamics
described by the QME in terms of quantum jump tra-
jectories [1–3]. Each trajectory consists of the stochastic
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evolution of a pure state, which we denote at time t by the
rank-1 density matrix ψt, conditioned on a given time-
record of jump events. The pure state ψt thus evolves
according to the Belavkin stochastic differential equation
(SDE) [5],

dψt = B(ψt)dt+
∑
i

( Ji(ψt)
Tr[Ji(ψt)]

− ψt
)
dnit , (2)

where

B(ψ) = −iHeffψ + iψH†eff − ψTr(−iHeffψ + iψH†eff) ,

with Heff = H − i
2

∑
i J
†
i Ji being the (non-Hermitian)

effective Hamiltonian, and Ji(ψ) = JiψJ
†
i . Formally, the

“noise increment” dnit is equal to one if a jump of type i
takes place between times t and t+ dt or zero otherwise.
The average of dnit is Tr[Ji(ψt)]dt, and the noise incre-
ments obey “Ito rules” dnitdnjt = δijdnit [2, 3]. Two
standard results are [6] (i) the Belavkin SDE maintains
ψt as a pure state, and (ii) for appropriate initial condi-
tions on ψt, the density matrix can be recovered by av-
eraging ψ over the noise realisations: ρt = E[ψt]. Hence,
all quantum observables can be computed as classical ex-
pectation values for the unravelled process.

Quantum-classical correspondence and master
equation for unravelled dynamics – Equation (2)
represents the quantum Markov chain via a classical SDE
in the space of pure states ψ. Let Pt(ψ) be the proba-
bility density for ψ at time t, in analogy with classical
stochastic processes. Then

∂tPt(ψ) = −div [B(ψ)Pt(ψ)]

+
∑
i

∫
dψ′ [Pt(ψ

′)wi(ψ
′, ψ)− Pt(ψ)wi(ψ,ψ

′)] , (3)

where

wi(ψ,ψ
′) = Tr [Ji(ψ)] δ

(
ψ′ − Ji(ψ)

Tr [Ji(ψ)]

)
(4)

is the rate for transitions from ψ to ψ′ due to quantum
jump i. Precise definitions of the quantities in Eq. (3) are
given in [41]. We call Eq. (3) the unravelled dynamics
quantum master equation (UQME).

Physically, Eqs. (2-3) have a simple meaning: the pure
state ψt evolves deterministically along paths specified
by the operator B, but this deterministic evolution is
punctuated at random times by jumps, specified by Ji.
The probability Pt evolves according to the UQME, and
at long times it tends to the stationary solution P∞(ψ).
We assume that this solution is unique, which is the case
in most physical applications, see also [42].

We summarise this quantum-classical mapping (or un-
ravelling) as: (i) ψt is the (stochastic) position in Hilbert
space which evolves according to the SDE (2); (ii) the

state ρt corresponds to the average position and evolves
according to the QME (1) [43]; (iii) the master equation
for the stochastic process ψt is the UQME.

Level 2.5 LDP for unravelled dynamics – We derive
a LDP at level 2.5 for the unravelled process by generalis-
ing the classical result to systems that evolve by a combi-
nation of continuous deterministic evolution and discrete
(random) jumps, cf. Eqs. (2-4). The large deviation (LD)
theory of stochastic dynamics is concerned with the be-
haviour of observables that are time-integrated over tra-
jectories, for some long time τ [44]. At level 2.5 these
observables fall into two main classes [26–30]: empirical
fluxes qiτ (ψ,ψ′), corresponding to the number of jumps
from ψ to ψ′ per unit time in a trajectory (i.e., empirical
transition rates), and the empirical measure µτ (ψ), cor-
responding to the fraction of time that the system spends
in ψ. Their (steady-state) averages over trajectories are
E[µτ (ψ)] = P∞(ψ) and E[qiτ (ψ,ψ′)] = P∞(ψ)wi(ψ,ψ

′).
The level-2.5 LDP quantifies the (small) probability that
µτ and qτ differ from their average values: as τ → ∞
then

Prob[(µτ , qτ ) ≈ (µ, q)] ' exp (−τI2.5[µ, q]) (5)

where I2.5[µ, q] is the level-2.5 rate functional.
To obtain a formula for I2.5, we define a controlled

stochastic process, in which the transition rates wi are
replaced by auxiliary rates [32, 33]

wA
i (ψ,ψ′) = Ai(ψ)wi(ψ,ψ

′) (6)

where Ai is a (positive) rescaling factor. The steady state
probability density for this controlled process is denoted
by PA

∞(ψ), which may (in principle) be obtained as the
steady-state solution of a suitable UQME. By considering
cumulant generating functions for µ, q and performing a
Legendre transformation (see [41] for details) we obtain

I2.5[µ, q] = inf
A
I[wA|w] (7)

where the infimum is taken over all possible choices of
the rescaling factors A such that the controlled process
realises the rare values of µ, q: that is PA

∞(ψ) = µ(ψ) and
PA
∞(ψ)wAi (ψ,ψ′) = qi(ψ,ψ′). If there is no choice for A

that satisfies this constraint then I2.5[µ, q] = ∞. The
controlled process that corresponds to the minimiser in
(7) is the optimally-controlled process. The quantity to
be minimised is a relative entropy

I[wA|w] =

∫
dψdψ′PA

∞(ψ)
∑
i

D
[
wAi (ψ,ψ′)

∣∣wi(ψ,ψ′)]
(8)

where

D(x|y) = x log(x/y)− x+ y (9)

Using the formulae for wAi and the UQME (3), one has

I2.5[µ, q] =

∫
dψdψ′

∑
i

D
[
qi(ψ,ψ′)

∣∣µ(ψ)wi(ψ,ψ
′)
]
(10)
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which is valid as long as the continuity constraint

div[B(ψ)µ(ψ)] =
∑
i

∫
dψ′
[
qi(ψ′, ψ)− qi(ψ,ψ′)

]
(11)

is satisfied for all ψ. Otherwise I2.5 =∞. Equations (10)
and (11) are analogous to the classical theory of LDs
at level 2.5, but generalised to quantum Markovian dy-
namics, in which the system evolves deterministically be-
tween its (random) jumps [45]. Equations (5-11) show
how large deviations for open quantum dynamics can be
analysed at level 2.5, and they establish a variational
principle for the rate function. This is the first main
result of the paper. We now discuss its consequences.

Contraction to level 1 LDPs and quantum Doob
transform – As in the classical case, the level 2.5 LDP
rate function is given by an explicit expression, in terms
of empirical fluxes and the empirical measure, cf. Eqs. (5-
11). This LDP is complete in the sense that the rate func-
tion for any linear combination of the empirical fluxes
and measure can be derived from Eq. (10) by the con-
traction principle of large deviation (LD) theory. For
example, the number of quantum jumps of type i per
unit time is the integral of the empirical flux over all
possible initial and final states: Qiτ =

∫
dψdψ′qiτ (ψ,ψ′).

These fluxes obey an LDP (known as “level 1” [13]),
Prob[Qτ ≈ Q] ' e−τI1(Q). The rate function I1 can
be obtained by contraction from level 2.5: that is,
I1(Q) = minµ,q:Q I2.5[µ, q], where the minimisation is
over all (µ, q) such that the jump rate is Q.

A second important result for level-1 statistics that can
be recovered from our level 2.5 approach is the quantum
Doob transformation [18, 24]. This states that there is
an auxiliary quantum process for which the rare events in
Prob[Qτ ≈ Q] become typical. The derivation consists of
three main steps: first, the variational characterisation of
I2.5 in Eq. (7) provides an auxiliary process on the space
of pure states, which optimally realises the fluctuation
(µ, q); second, applying a similarity transformation to
ψt yields a new set of quantum stochastic trajectories;
third, one shows that these trajectories are an unravelled
representation of the Doob-transformed dynamics. For
details see [41].

These results show that the quantum level-2.5 LDP (5)
can be used to recover existing results that are usually
calculated through tilted Lindbladian methods [18, 24].
However, the level-2.5 LDP contains much more informa-
tion about the dynamics than the tilted Lindbladian. As
well as fluctuations in the quantum jump rates, it also
describes fluctuations of the empirical measure µτ . Fur-
thermore it provides the variational principle (7). These
open the door to a range of new studies. We discuss two
such directions below.

Application 1: Fluctuation bounds in quantum re-
set processes – Classical level 2.5 LDPs have been used
to derive lower bounds on the size of fluctuations of cur-

rents and fluxes, relating them to entropy production and
dynamical activity - these are called “thermodynamic un-
certainty relations” (TURs) [34–38]. We now use the
variational formula (7) to obtain similar bounds for open
quantum dynamics.

We restrict our analysis to quantum reset processes,
in which each jump operator projects the system into a
specific state: Ji(ψ) = fi(ψ)ϕi where fi is a scalar func-
tion, and the pure state ϕi is independent of ψ. In this
case, the steady-state distribution P∞ is supported on a
set of m deterministic paths. It follows that the statis-
tics of jumps can be described by a classical semi-Markov
process [46] – the time between jumps is in general a non-
exponential random variable with a distribution that de-
pends on the end-point of the previous jump (but not on
the previous history of the process). For a system that
makes a jump of type i at t = 0, the probability that its
next jump is of type j and occurs at time t is pij(t) =

Tr
(
Jj
†Jje

−iHeff tϕie
iH†

eff t
)

. The marginal probability

that this jump is of type j is Rij =
∫∞

0
dt pij(t), the

average time for such a jump is τij = R−1
ij

∫∞
0
dt tpij(t)

and its variance σ2
ij = R−1

ij

∫∞
0
dt (t− τij)2pij(t)

The statistics of jumps in a quantum reset process are
fully determined by the pij(t). Moreover, following (6),
an auxiliary process can be constructed with an arbitrary
distribution p̂ij(t). Given such a process whose mean
jump rates are Qi, one has from (7) that

I1(Q) ≤
∑
ij

Qi
∫ ∞

0

dt p̂ij(t) log
p̂ij(t)

pij(t)
(12)

where the explicit relation between Q and p̂ij(t) is given
in [41]. Equation (12) provides a lower bound on the
probability of the rare values of the Qi (with the optimal
process saturating the bound and giving the exact I1).

The above result can be used to establish a general
bound on the variance of the empirical rates, which gener-
alises the classical TURs, as follows (for details see [41]).
We choose the p̂ij such that all jump times are rescaled
uniformly from those of the typical process, τ̂ij = τij/a,
where a is a constant, while the marginal probabilities
remain the same, R̂ij = Rij . This can be achieved
with p̂ij = vijpij(t)e

−uijt by an appropriate choice of vij
and uij . The jump counts are also rescaled uniformly,
Qi = a Q̄i, where Q̄i = E[Qi] are those of the process
pij(t). Taking a = 1 + δ with δ � 1, Eq. (12) gives

I1[(1 + δ)Q̄] ≤ 1

2
χδ2 +O(δ3) (13)

with χ =
∑
ij Q̄

iRijτ
2
ij/σ

2
ij . This result provides an un-

certainty bound for any linear combination of the empir-
ical jump rates, Qb =

∑
i biQ

i. That is,

var(Qb)
Q̄2
b

≥ 1

τχ
(14)
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FIG. 1. (a) Example of a quantum reset process: single
particle subject to coherent and dissipative hopping. Here,
Ω = 1/2 and γ = 1. (b) Rate function I1 for the flux QL

(full black curve) and bound from Eq. (12) (dashed red). In-
set: behaviour close to the mean corresponding to the TUR
Eq. (13). (c) An estimate (upper bound) of the entanglement
rate function IS(S) (dashed red), from Eq. (7). Inset: the
bound is compared with the exact IS(S) (full black) in the
quadratic regime analogous to (13). IS(S) is not shown for
all S, as its computation requires non-trivial minimization of
Eq. (7). However, bounds and estimates can be obtained from
simple ansatze. The largest possible value for Sτ is ≈ 0.3863,
achieved by long trajectories without incoherent jumps.

where Q̄b = E[Qb] =
∑
i biQ̄

i. Equation (14) is a bound
on the precision with which Qb can be estimated, and
is thus a TUR for quantum reset processes. In the case
where the jump probabilities pij(t) are exponential - cor-
responding to a classical jump process - Eq. (14) reduces
to the existing classical TUR for counting observables
[37], as τij = σij giving χ =

∑
ij Q̄

iRij which is the aver-
age activity. In the open quantum case one may achieve
more precise estimates because the bound on precision
depends on the reweighed sum in χ. When σij < τij , that
is sub-Poissonian, the more precise jump times can lead
to less uncertainty in Eq. (14). Similar enhancement in
precision can occur for example in classical systems with
time-periodic dynamics [47] or in the presence of mag-
netic fields [48]. In our case it is related to the possibility
of antibunching of quantum jumps [1].

To illustrate the quantum TUR we consider a sim-
ple system: a single particle hopping, both coher-
ently and incoherently, between two sites, Fig. 1(a).
Coherent hopping is due to the Hamiltonian H =
Ω (|10〉〈01|+ |01〉〈10|). Dissipative incoherent hopping
is due to jump operators JL =

√
γ|10〉〈01| and JR =√

γ|01〉〈10|. This is a quantum reset process of the kind
described above, with reset states ϕL = |10〉〈10| and
ϕR = |01〉〈01|.This model, and reset processes in gen-
eral, can describe experiments, e.g. with quantum dots
or superconducting qubits, of topical interest in quantum
nonequilibrium and quantum thermodynamics [49–54].
As observable Qb we consider the flux due to jumps into
ϕL, so Qb = QL. Its rate function I1(QL) can be com-
puted from the tilted Lindbladian [18]. Using the ansatz
p̂ij(t) ∝ e−utpij(t), Eq. (12) yields a bound on the whole

rate function, as shown in Fig. 1(b). The inset to Fig.
1(b) shows instead the TUR bound Eq. (13) (dashed red
curve) close to the minimum of I1 (full black).

Application 2: Statistics of time-integrated en-
tanglement – The level 2.5 LDP (5) describes the joint
fluctuations of (µτ , qτ ) - we have concentrated so far on
its implications for the statistics of empirical jump rates.
However, the extra information in Eq. (5) may also be
exploited to obtain the statistics of nonlinear functions
of the state. A prominent example is the entanglement
entropy [55].

Consider a bipartite system, where ψt is the (pure)
state of the whole system at time t. The entangle-
ment entropy SE between parts A and B is SE(ψt) =
−TrA ω(ψt) logω(ψt), where ω(ψt) = TrB ψt is the re-
duced state in partition A, and TrA,B denote partial
traces over parts A and B. In open quantum systems
then ψt is a random (fluctuating) quantity, as is the non-
linear function SE(ψt). In particular, the empirical en-
tanglement entropy (i.e., the time average over a trajec-
tory) Sτ = τ−1

∫ τ
0
dt SE(ψt) obeys an LDP for large time:

Prob[Sτ ≈ S] ' exp [−τIS(S)] where IS can again be ob-
tained by contraction from Eq. (5) or by the variational
formula Eq. (7), restricted to auxiliary processes where
the (mean) entanglement is S. In contrast to the statis-
tics of quantum jumps [18], the fluctuations of Sτ cannot
be obtained by spectral analysis of a tilted Lindbladian.
The application of the quantum level 2.5 LDP Eq. (5)
to the statistics of nonlinear functions of the state is the
third main result of this paper.

Fig. 1(c) shows the behaviour of the empirical entan-
glement in the example system of Fig. 1(a). In this ex-
ample the Lindbladian is unital [2], so the steady-state is
the identity. As such, the average state has no entangle-
ment for long times. In contrast, the unravelled state ψt
is typically entangled: the evolution with Heff = H−iγ/2
between jumps generates entanglement due to coherent
hopping, while jumps return ψt to the product states
ϕL,R, which resets the instantaneous entanglement to
zero. The inset in Fig. 1(c) shows the rate function of
Sτ (full black curve) as estimated by numerical simu-
lations of the quantum process and the corresponding
upper bound (dashed red) obtained from Eq. (7), using
the same ansatz as for Fig. 1(b). Computation of the
rate function IS would require exact solution of the vari-
ational problem Eq. (7): here we present a bound that
applies for all values of S, including the very rare ones
(details in [41]). In general the exact computation of rate
functions will be difficult, but the possibility to bound
them with simple ansatze make the level 2.5 approach -
as in the classical case - both useful and practical.

Outlook – The level 2.5 method presented here for quan-
tum jump Markov processes, can also be formulated for
other unravellings, as those related to homodyne detec-
tion experiments and described by diffusive stochastic
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Belavkin equations [2, 3]. Another interesting extension
is to discrete time quantum Markovian dynamics. A pos-
sible application of such formulation would be to study
the statistics of entanglement, out-of-time-order correla-
tors and operator spreading in random unitary circuits
[56–58]. In analogy with classical level 2.5 LDPs, the
method here can also be extended to time-periodic dy-
namics, with possible application to periodically driven
(Floquet) quantum systems [59]. We hope to report on
some of these extensions in the near future.
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