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One of the central problems in the study of quantum resource theories is to provide a given resource with
an operational meaning, characterizing physical tasks in which the resource can give an explicit advantage
over all resourceless states. We show that this can always be accomplished for all convex resource theories.
We establish in particular that any resource state enables an advantage in a channel discrimination task,
allowing for a strictly greater success probability than any state without the given resource. Furthermore,
we find that the generalized robustness measure serves as an exact quantifier for the maximal advantage
enabled by the given resource state in a class of subchannel discrimination problems, providing a universal
operational interpretation to this fundamental resource quantifier. We also consider a wider range of
subchannel discrimination tasks and show that the generalized robustness still serves as the operational
advantage quantifier for several well-known theories such as entanglement, coherence, and magic.
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Introduction.—A rigorous understanding of quantum
resources has been one of the ultimate goals in quantum
information science. In addition to the apparent theoretical
interest, it also has high relevance to burgeoning quantum
information technologies such as quantum communi-
cation [1,2], quantum cryptography [3,4], and quantum
computation [5,6].
Quantum resource theories [7] have recently attracted

much attention as powerful tools which offer formal frame-
works dealing with quantification and manipulation of
intrinsic resources associated with quantum systems. One
could consider different theories depending on the relevant
physical constraints, and indeed various resource theories
have been proposed and analyzed, such as entanglement
[8,9], coherence [10–12], asymmetry [13,14], quantum
thermodynamics [15,16], non-Markovianity [17], magic
[18,19], and non-Gaussianity [20–22]. Although these re-
source theories provide deeper insights into their specific
physical settings, they do not tell us much about how to
understand the individual properties and results in a unified
fashion. In particular, despite the generality of the resource
theoretical framework, only a small number of results
reported in the literature are applicable to wide classes of
general quantum resource theories [23–29]. In this work, we
add a fundamental item to this list with regard to one of the
central questions asked in the study of resource theories:
the operational characterization of quantum states and the
resources they possess.

An essential building block of a resource theory is the set
of free states. It is the set of states that are considered “easy
to prepare” in that theory, and any state outside of this set is
called a resource state. A common and intuitive assumption
is that the set of free states should be convex and closed.
Convexity reflects a natural attribute in many physical
settings, i.e. the fact that losing information about which
free state was prepared, hence resulting in a probabilistic
mixture of free states, should not by itself generate a
resource. Closedness, on the other hand, corresponds to the
fact that the limit of a sequence of quantum states should
accurately approximate the statistics of the states in the
sequence for all physical experiments [30], which in
particular implies that simply taking the limit should not
create any resource. To differentiate such theories from the
few established resource theories which do not satisfy these
constraints, and in particular, do not allow probabilistic
mixing as a free operation [20,31,32], we will refer to any
general theory obeying the conditions of closedness and
convexity as a convex resource theory.
In principle, one could define any set of free states

and consider resource quantifiers defined with respect
to this set [7,23,27]. However, as the word “resource”
suggests, it is desired that resource states should be useful
for something, otherwise, the resource would lose physical
significance and merely reduce to a mathematical concept.

PHYSICAL REVIEW LETTERS 122, 140402 (2019)
Editors' Suggestion

0031-9007=19=122(14)=140402(7) 140402-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.140402&domain=pdf&date_stamp=2019-04-10
https://doi.org/10.1103/PhysRevLett.122.140402
https://doi.org/10.1103/PhysRevLett.122.140402
https://doi.org/10.1103/PhysRevLett.122.140402
https://doi.org/10.1103/PhysRevLett.122.140402


This question of operational characterization is always
posed once the theory is proposed, and it is usually highly
nontrivial. One of the ways to give an operational inter-
pretation is to consider resource distillation [33–35]. If a
resource state can be distilled to a “maximally resourceful”
state by free operations, that state can be associated with the
tasks that utilize this unit state. However, whether there
exists such an operational task is theory dependent, and
furthermore, some states cannot be distilled at all under
some choices of free operations—these are the bound
resource states [21,29,36–40]. The latter fact makes the
operational characterization even less clear for bound
resources, even when the theory is physically well
motivated.
The question of operational significance of quantum

resources has been addressed on a case-by-case basis. Of
particular interest to us will be the task of channel and
subchannel discrimination, a fundamental problem in quan-
tum information theory [41–44]. It has been demonstrated
that, even without the aid of another state, every entangled
state is useful in some channel discrimination task [45], and
the amount of entanglement of a state is directly related to its
usefulness in channel discrimination [46,47]. Analogous
results have been shown also for steering, coherence, and
asymmetry [48–50], where it was not only shown that every
resource state in these theories is useful in a particular
subchannel discrimination task, but it was also found that the
maximal advantage associated with a given state is exactly
quantified by the measure known as the generalized robust-
ness [51–53]. Although it would be natural to expect similar
results to hold in more general cases, the arguments
employed in the aforementioned works are specifically
tailored to the above theories and do not immediately
generalize to encompass larger classes of resources.
Here, we show that every resource state in any convex

theory is useful in a channel discrimination task, allowing
for a strictly greater probability of success compared to
discrimination using a free state, which gives an operational
characterization to resource states in a theory-independent
fashion. As a result, we in particular provide an operational
meaning to every bound resource state, including bound
magic states [37,38] (see also Ref. [54]) as well as bound
genuine non-Gaussian states [21,55]. We then find that the
maximal advantage a resource state can provide in a class
of subchannel discrimination problems is exactly quanti-
fied by the generalized robustness measure. The general-
ized robustness was first introduced as an entanglement
monotone [51–53] and recently generalized to every finite-
dimensional convex theory [27]. Although the definition of
this quantity is based primarily on geometric considera-
tions, it is nevertheless known to admit operational inter-
pretations in specific resource theories. In the resource
theory of coherence, as mentioned above, it characterizes
the advantage a coherent state provides in subchannel
discrimination tasks related to phase discrimination
[49,50,56], as well as quantifies the largest fidelity a state

can achieve with the maximally coherent state in a single-
shot transformation with free operations [56,57]. Similarly,
the generalized robustness of entanglement corresponds to
the largest fidelity achievable with a maximally entangled
state under free transformations [58]. The logarithmic
version of this measure known as the max-relative entropy
[59] plays an essential role in the characterization of one-shot
entanglement dilution [60,61] and one-shot coherence dilu-
tion [62], and quantifies the minimal rate of noise needed to
catalytically erase the resource contained in a given state for a
wider class of resource theories [28,63]. However, a general
operational meaning of the generalized robustness in all
convex resource theories was not known. Our result lifts the
generalized robustness to an operationally meaningful mea-
sure in any convex resource theory, thus, generalizing and
extending hitherto known results. We finally consider
relaxing the constraints placed on allowed measurements
in the subchannel discrimination task and show that the
maximal advantage is still quantified by the generalized
robustness measure for some well-known theories such as
entanglement, coherence, and magic.
All resource states are useful in a channel discrimination

task.—Let LðXÞ be the set of linear operators acting on the
Hilbert spaceX , where the latter can be infinite dimensional,
and let LðX ;YÞ ¼ fΦjΦ∶LðXÞ → LðYÞg be the set of
linear transformations that map the operators on the
Hilbert space X to the operators on the Hilbert space Y.
Let DðXÞ be the set of density operators acting on X , and
F ðXÞ ⊆ DðXÞ be a closed and convex set. We say that if
ρ ∈ F ðXÞ, ρ is a free state, and we call ρ a resource state
otherwise.
Let fΨig denote a finite set of subchannels (completely

positive trace-nonincreasing maps) that compose a com-
pletely positive trace-preserving (CPTP) map Λ ¼ P

iΨi
where Ψi ∈ LðX ;YÞ. We consider a subchannel discrimi-
nation task where one is to decide which subchannel was
applied to the input state ρ ∈ DðXÞ by making a measure-
ment on the output under the promise that only one of
the subchannels in the set is realized. The goal of this
task is to choose the best measurement strategy correspond-
ing to a set of positive-operator-valued measure (POVM)
elements fMig that maximizes the success probability
psuccðfΨig; fMig; ρÞ ¼

P
iTr½MiΨiðρÞ�. Note that channel

discrimination, where one is to discriminate CPTP maps
fΛig, each of which is realized at the prior probabilitypi, is a
special case of subchannel discrimination where each sub-
channel is taken as Ψi ¼ piΛi.
It was shown in Ref. [45] that every entangled state is

useful in a channel discrimination task. Translating this
result to the framework of subchannel discrimination,
the result says that for any entangled state ρ there exists
a channel discrimination task in which the quantity
maxfMigpsuccðfΨig;fMig;ρÞ is strictly greater than
maxfMigpsuccðfΨig; fMig; σÞ for any σ ∈ F ðXÞ. We show
the corresponding result for any choice of a convex and
closed F ðXÞ.
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Theorem 1. Let ρ ∈ DðXÞ. Then, ρ ∉ F ðXÞ if and
only if there exist subchannels Ψ0, Ψ1 ∈ LðX ;YÞ such that

maxfMigpsuccðfΨig; fMig; ρÞ
maxσ∈F ðXÞmaxfMigpsuccðfΨig; fMig; σÞ

> 1:

Proof.—The “if” direction of the Theorem is trivial
due to the closedness of F ðXÞ. For the other direction, note
first by the Hahn-Banach separation theorem [64] that, for
any density matrix ρ ∉ F ðXÞ, there exists a bounded
self-adjoint operator W ∈ LðXÞ such that ∀ σ ∈ F ðXÞ,
TrðσWÞ ≥ 0 and TrðρWÞ < 0; conversely, if such an
operator W exists, then ρ must be outside of the set
F ðXÞ. We shall show that one can always construct
two channels with equal prior probability such that
ρ gives an advantage in discriminating them. To this
end, take another self-adjoint operator X ∈ LðXÞ defined
by X ¼ I −W=kWk∞ ≥ 0 satisfying TrðρXÞ > 1 and
0 ≤ TrðσXÞ ≤ 1 ∀ σ ∈ F ðXÞ, and consider the two maps
Λ0;Λ1 ∈ LðX ;ZÞ defined as

Λ0ðηÞ ≔
�
TrðηÞ
2

þ TrðηXÞ
2kXk∞

�
j0ih0j

þ
�
TrðηÞ
2

−
TrðηXÞ
2kXk∞

�
j1ih1j

Λ1ðηÞ ≔
�
TrðηÞ
2

−
TrðηXÞ
2kXk∞

�
j0ih0j

þ
�
TrðηÞ
2

þ TrðηXÞ
2kXk∞

�
j1ih1j

where Z is any Hilbert space of at least two dimensions
containing the mutually orthogonal vectors fj0i; j1ig. It is
straightforward to verify that Λ0, Λ1 are both completely
positive trace-preserving maps, and thus valid quantum
channels. Notice now that for any state ρ we have
kðΛ0 − Λ1Þ½ρ�k1 ¼ 2TrðρXÞ=kXk∞, which implies

� kðΛ0 − Λ1Þ½ρ�k1 ≤ 2=kXk∞ ρ ∈ F ðXÞ;
kðΛ0 − Λ1Þ½ρ�k1 > 2=kXk∞ ρ ∉ F ðXÞ:

Consider now the task of discriminating the subchannel
ensemble f1

2
Λ0;

1
2
Λ1g, for which the maximal success prob-

abiltiy is given by maxfMigpsuccðf12Λ0;
1
2
Λ1g; fMig; ρÞ ¼

1
2
ð1þ kðΛ0 − Λ1Þ½ρ�k1=2Þ by theHolevo–Helstrom theorem

[65,66]. The statement then follows immediately by
noticing that for ρ ∉ F ðXÞ and any σ ∈ F ðXÞ we
have kðΛ0 − Λ1Þ½ρ�k1 > kðΛ0 − Λ1Þ½σ�k1. □

We remark that the example subchannel discrimination
task considered in the proof of the theorem is, in fact, a
binary channel discrimination problem, thus showing an
advantage of any resource in the discrimination of quantum
channels specifically.

This result is useful in the task of resource certification,
where experimenters are to confirm that they truly possess a
resource state. Indeed, the channel considered here has a
direct connection to the witness operator that separates the
resource state from the set of free states. This connection
allows for another operational way of detecting a resource
state in terms of channel discrimination besides directly
measuring the witness observable. Notably, due to the
generality of the theorem, this extends beyond the entan-
glement certification [67,68] to certifying other resources
such as coherence, genuine non-Gaussianity, and magic.
We further note that, by considering the assistance

of ancillary systems, one could think of a more general
setting where maxfMigpsuccðfΨig; fMig; ρÞ is compared to
maxσ∈F ðX⊗YÞmaxfM̃igpsuccðfΨi⊗Ig;fM̃ig;σÞ where input
free states are defined in the extended Hilbert spaceX ⊗ Y,
and correspondingly fM̃ig is the set of POVMs acting on
X ⊗ Y. If F ðX ⊗ YÞ allows for the entanglement between
X and Y, the entanglement in the free states may help to
distinguish the subchannels. It is then not clear whether the
same conclusion would still hold, as there might be a trade-
off between the advantage provided by the resource in ρ
and the entanglement in σ ∈ F ðX ⊗ YÞ, which could be
highly theory dependent. To consider explicitly the advan-
tage provided by the resource itself, in this Letter we focus
on the characterization of the resource in ρ with respect to
F ðXÞ, but the above extension would certainly be inter-
esting on its own and worth further study.
Robustness as the advantage in subchannel

discrimination.—Let X be a Hilbert space with dimX ¼
d < ∞. Any closed convex set F ðXÞ ⊆ DðXÞ comes
with the generalized robustness measure RF ðXÞ∶DðXÞ →
Rþ defined as

RF ðXÞðρÞ ¼ min
τ∈DðXÞ

�
s

���� ρþ sτ
1þ s

∈ F ðXÞ
�
: ð1Þ

It can also be obtained as the optimal value of the following
convex optimization problem (see, e.g., Refs. [27,69]):

maximize TrðρXÞ − 1; ð2Þ
subject to X ≥ 0; ð3Þ

TrðσXÞ ≤ 1 ∀ σ ∈ F ðXÞ: ð4Þ
We shall find that the generalized robustness with respect

to any choice of F ðXÞ allows for an operational inter-
pretation: It serves as an exact quantifier for the advantage
that a given state enables in a certain class of subchannel
discrimination problems. Precisely, recall that the success
probability in the discrimination of a set of subchannels
fΨig with the measurement strategy fMig is given by
psuccðfΨig; fMig; ρÞ ¼

P
iTr½MiΨiðρÞ�. We will quantify

the advantage that a quantum state ρ provides over all
free states F ðXÞ in the discrimination of fΨig using the
measurement strategy fMig as the ratio of psuccðfΨig;
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fMig; ρÞ to the best success probability when using a free
state, maxσ∈F ðXÞpsuccðfΨig; fMig; σÞ. The following result
shows explicitly that, in any convex resource theory, the
maximal such ratio optimized over all choices of sets of
subchannels and measurement strategies is given precisely
by the generalized robustness.
Theorem 2. For any ρ ∈ DðXÞ,

max
fΨig;fMig

psuccðfΨig; fMig; ρÞ
maxσ∈F ðXÞpsuccðfΨig; fMig; σÞ

¼ 1þ RF ðXÞðρÞ:

Proof.—It can be easily shown that the left-hand side is
less than or equal to the right-hand side as follows.
Recalling the definition of the generalized robustness,
there exist τ ∈ DðXÞ and σ ∈ F ðXÞ such that ρ ¼
½1þRF ðXÞðρÞ�σ−RF ðXÞðρÞτ. Then, for any fΨig and fMig,

psuccðfΨig;fMig;ρÞ¼
X
i

Tr½MiΨiðρÞ�

≤ ½1þRF ðXÞðρÞ�
X
i

Tr½MiΨiðσÞ�

≤ ½1þRF ðXÞðρÞ�
× max

σ∈F ðXÞ
psuccðfΨig;fMig;σÞ: ð5Þ

Thus, it suffices to show that for any ρ, there exist
fΨig and fMig such that ½psuccðfΨig; fMig; ρÞ�=
½maxσ∈F ðXÞpsuccðfΨig; fMig; σÞ� ≥ 1þ RF ðXÞðρÞ. Let X ∈
LðXÞ be an operator satisfying Eqs. (3) and (4).
Let us write X in its spectral decomposition as X ¼P

d
i¼1 xijeiiheijwhere fjeiigdi¼1 forms an orthonormal basis

of X and each xi ≥ 0. Consider now a set of unitaries
fUigdi¼1 such that

P
i UijejihejjU†

i ¼ I ∀ j—the choice of
such a set of unitaries is not unique, but there always
exists one because we can, for instance, take
Ul ≔

P
d
j¼1 jejþlihejj. Now, consider the subchannels

fΨig defined by Ψið·Þ ¼ ð1=dÞUið·ÞU†
i and measurement

fMig defined by Mi ¼ UiXU
†
i =TrðXÞ. Mi is a valid

POVM because Mi ≥ 0 due to X ≥ 0, and
P

iMi¼
½1=TrðXÞ�Pi

P
d
j¼1xjUijejihejjU†

i¼½1=TrðXÞ�Pd
j¼1xjI¼I.

This choice of subchannels and measurement gives
psuccðfΨig; fMig; ρÞ ¼ TrðρXÞ=TrðXÞ and

psuccðfΨig; fMig; ρÞ
maxσ∈F ðXÞpsuccðfΨig; fMig; σÞ

¼ TrðρXÞ
maxσ∈F ðXÞTrðσXÞ

≥ TrðρXÞ:

The last inequality is due to Eq. (4). The optimal X
satisfying Eqs. (2)–(4) realizes TrðρXÞ ¼ 1þ RF ðXÞðρÞ,
which concludes the proof. □

The generality of the result allows one to apply this to a
variety of settings and extends the operational connection

between subchannel discrimination and resource witnesses
to the so-called quantitative witnesses [27,69,70]. To
exemplify the applicability of the theorem, in the
Supplemental Material [71] we relate the result to an
explicit physical problem of detecting the noise introduced
by the application of a non-Clifford gate, of practical
relevance for fault-tolerant quantum computation.
Relaxation of measurement constraints.—The result of

Theorem 2 gives an operational meaning to the generalized
robustness in a very general fashion. However, one may
also be interested in less restrictive settings of subchannel
discrimination, where the measurement strategies for ρ and
for any free state σ can be chosen independently.
Let us first consider the most general situation where, for

each state, the experimenters can choose any set of POVMs
acting on X . This relaxation makes the comparison much
more subtle because different free-state inputs can be paired
with different optimal measurements. For the resource
theories of coherence and asymmetry, it was shown that
the robustness still serves as a quantifier for the advantage in
this setting [49,50,56]. The proofs of these results rely on the
simple structure of the two resources, allowing one to choose
the set of subchannels in away such that all free states remain
invariant under the application of any subchannel, removing
the need to explicitly maximize over all the measurement
strategies. In fact, this can be used to establish a sufficient
condition imposed at a more abstract level that allows this
relation to hold in other resource theories; we formalize it as
follows. Full proofs of the results in this section are provided
in the Supplemental Material [71].
Proposition 3. Suppose ρ ∈ DðXÞ, and let X ¼P
j xjjejihejj be the optimal witness in Eq. (2) for ρ.

If there exists a set of unitaries fUigdi¼1 such thatP
iUijejihejjU†

i ¼I, ∀j andUiσU
†
i ¼UjσU

†
j , ∀ σ∈F ðXÞ,

∀ i; j, then

max
fΨig

maxfMigpsuccðfΨig; fMig; ρÞ
maxσ∈F ðXÞ;fMigpsuccðfΨig; fMig; σÞ

¼ 1þ RF ðXÞðρÞ:

One can easily verify that, for instance, coherence theory
satisfies this condition, which recovers the result in
Refs. [49,50,56].
It could perhaps seem that one cannot expect the same

relation to hold for theorieswith amore complex structure, as
in general, the measurement strategies could be chosen in a
waywhich leads to better success probabilitywith free states.
However, rather surprisingly, it turns out that the robustness
still acts as the exact quantifier of the operational advantage
in this general setting in the resource theory of entanglement.
Theorem 4. Let F ðXÞ ¼ SEPðX1 ⊗ X2Þ where

SEPðX1 ⊗ X2Þ is the set of separable states with respect
to the bipartition between X1 and X2. Then, for any
ρ ∈ DðX1 ⊗ X 2Þ,

max
fΨig

maxfMigpsuccðfΨig; fMig; ρÞ
maxσ∈F ðXÞ;fMigpsuccðfΨig; fMig; σÞ

¼ 1þ RF ðXÞðρÞ:
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One may then wonder if it is possible to extend this
property to other resource theories. However, it appears that
a possible generalization of Theorem 4 to other resources is
rather nontrivial, even in the simplest cases such as single-
qubit magic theory. The subtlety lies in upper bounding the
denominator of the statement, which is maximized over all
the possible input free states and measurements. To remedy
this, we consider a more restrictive, but still natural,
situation where experimenters are free to choose indepen-
dent measurement strategies but are constrained to use free
measurements [73]. We call a measurement constructed by
the POVMs fMig a free measurement if all the POVM
elements are proportional to some free state, namely, Mi ∝
σi ∀ i for σi ∈ F ðXÞ. Under this restriction, we first find
that the generalized robustness remains an exact quantifier
for the resource theory of coherence.
Proposition 5. Let F ðXÞ ¼ IðXÞ where IðXÞ is the

set of incoherent states with some preferred basis and MF
be the set of free measurements with respect to F ðXÞ. For
any ρ ∈ DðXÞ,

max
fΨig

maxfMig∈MF
psuccðfΨig; fMig; ρÞ

maxσ∈F ðXÞ;fMig∈MF
psuccðfΨig; fMig; σÞ

¼ 1þ RF ðXÞðρÞ:
If we further restrict the measurements to be rank-one,

the same statement holds for single-qubit magic theory with
pure input states.
Proposition 6. Let F ðXÞ ¼ STABðXÞ where

STABðXÞ is the set of stabilizer states defined on a
single-qubit system and M1

F be the set of rank-one free
measurements with respect to F ðXÞ. For any pure state
ρ ¼ jψihψ j ∈ DðXÞ,

max
fΨig

maxfMig∈M1
F
psuccðfΨig; fMig; ρÞ

maxσ∈F ðXÞ;fMig∈M1
F
psuccðfΨig; fMig; σÞ

¼ 1þ RF ðXÞðρÞ:
We note that an optimal task in Proposition 5 is distinct

from the phase discrimination game considered in
Refs. [49,50,56], which requires a nonfree measurement.
We show that the resourceful part in the measurement
can be pushed into the subchannels so that the measurement
becomes free. This idea also works for the resource theory of
magic in two-dimensional systems, but already the generali-
zation beyond this case becomes much less straightforward.
Conclusions.—We have shown that every resource state

defined in any convex resource theory is useful in a channel
discrimination task. It automatically gives an operational
characterization to all resource states, including bound
resources, in which the word “resource” gains an actual
physical meaning. We have then found that the maximal
advantage in the success probability of a class of sub-
channel discrimination problems is exactly quantified by
the generalized robustness measure. Our result ensures that

the generalized robustness measure always admits an
operational interpretation in every convex resource theory.
We have finally considered relaxing the constraint on the
allowed measurement: For the case when the measurement
strategies for the resource-state input and for any free-state
input can be chosen independently, the generalized robust-
ness still serves as the exact quantifier for the maximal
advantage when the input states are entangled states;
analogous results can be shown under the restriction of
free measurements in the resource theories of coherence
and single-qubit magic.
An important outstanding open question is as follows: to

what extent can the results of Theorem 4 and Propositions 5
and 6 be generalized, providing a more complete under-
standing of the generalized robustness as a quantifier of
operational advantage in various subchannel discrimination
tasks? Additionally, it would be interesting to establish a
similar operational characterization of a resource measure
related to RF ðXÞ called the standard robustness of a
resource, where the optimization over τ ∈ DðXÞ is replaced
with an optimization over τ ∈ F ðXÞ, and which is known
to admit operational interpretations in the resource theories
of entanglement [61,74] and magic [19].
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Note added.—Recently, an analogous result to Theorem 4
has been independently obtained by Bae et al. [47], where
the authors considered specifically the case of local sub-
channels applied to a single party and investigated the
advantages which entanglement can provide in that setting.
Also, recently Skrzypczyk and Linden [75] have conjec-
tured a general picture relating robustness-based measures,
discrimination tasks, and information-theoretic quantities,
for which our results establish one of the connections.
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