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ABSTRACT 

 
Tomographic brain imaging has a rich iconography. Whilst figures are prepared for 

scientific communication (i.e., directed to other researchers) they also often end-

up on magazine and journal covers (i.e., directed to a lay audience). Scientific 

figures should however not be just glossy illustrations of what is in the text. One of 

the primary roles of figures is to carry information that cannot be easily explained 

in words or summarized in tables (Rougier et al., 2014). Poor scientific figures are 

figures that not only fail to convey additional information, but also figures that convey 

or induce incorrect information, especially for non-specialists. Here we provide a 

guideline on which visual information to display and in which context, to improve 

information content and minimize false inference. We first discuss the use of slices 

versus renders and in which situations they should be used. We next reiterate the 

need for unthresholded statistical maps (Jernigan et al.,2003) along with (i) the 

highlighting of significant areas on such maps (ii) the necessity to plot results in all 

regions of interest, and (iii) the choice of colour scales. Together, these measures 

provide additional contextual information and should prevent readers natural 

tendency to falsely infer differences in activations or absence of activations. 

Additional recommendations are also given to convey information about 

hemispheric asymmetry and effect sizes. 
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Introduction 

Tomographic imaging (i.e., magnetic resonance imaging [MRI], positron emission 

tomography [PET], X-ray computed tomography [CT]) offers a unique window in 

understanding structure-function relationships in the living brain. Nowadays, it is 

standard practice to acquire entire brain volumes and perform statistical analyses at 

each voxel, an approach known as statistical parametric mapping (Friston et al., 

1991). Because it is impossible to report the statistical results in every voxel, 

summary tables and figures are of importance. The choice made by authors to 

create such figures should however not be driven by aesthetic considerations alone 

but also driven by the message to convey (Rougier et al., 2014). This is not to say 

that beautiful figures should not be used, as more appealing figures might in fact 

help in remembering results (Borkin et al., 2013; Madan, 2015b). At the intersection 

of psychology, computer vision, graphic design, and statistics, there is a field of 

research that looks at how to represent information and what features are beneficial 

or harmful in figure designs. For instance, Cleveland and McGill (1983), showed that 

changing the axis scaling in scatter plots can alter inference on associations between 

variables. Siegrist (1996) show that using perspective in pie charts, lead to falsely 

infer magnitude differences because the slices that are closer to the reader appear 

to be larger than those in the back. In general, there are recommendations for 

plotting the data rather than summary statistics as those summary values can be 

obtained with very different distributions which can preclude the use of some 

statistical tests (see e.g.Anscombe, 1973, for correlations or Weissgerber et al., 

2015, for bar graphs). Here we discuss information provided in figures when 

presenting tomographic data results. Many proposals have already been made by 

others, what we offer is a principled way chose among those proposals and apply 

them. 

A review of articles using tomographic techniques published between January 2016 

and June 2018 in the European Journal of Neuroscience (N = 30 - 

https://github.com/CPernet/MRI_FaceData_Wakeman-

Henson/blob/master/DataViz/EJN_paper_review.csv) shows that four broad types of 

messages are obtained from statistical parametric maps: (1) demonstrating an effect 

over the whole brain or in specific tissues (e.g., grey matter); (2) showing the 

anatomical location of an effect; (3) revealing an hemispheric asymmetry for a 

condition or stimulus; (4) demonstrating the involvement of a set of areas or networks 

in a given task or between groups or conditions. By associating the message with 

the design, it appears clearly that slices are preferred to display the anatomical 

location of an effect (5.3 slice/render ratio), while displaying a set of areas and 

networks results are less clearly associated with a design (2.5 slice/render ratio) 

although still dominated by displaying slices. The description of the anatomical 

location of an effect was described 19 times, with 16 figures using slices and 3 using 

renders. The involvement of a set of areas was described 22 times with 15 figures 

using slices only, and 6 with renders (3 of them being both renders and slices). 

Among all 30 studies, only 2 showed the raw statistical data (i.e., unthresholded 

map), and 13 (i.e., 43%) did not produce any data plots associated with the data. 

Among the 17 studies plotting data associated to maps, 3 showed inconsistency in 

that mapping (i.e., do a plot for one effect but not another) and 10 plotted significant 

results only, i.e., only 23% of all studies plotted results independent of statistical 

significance. 

https://github.com/CPernet/MRI_FaceData_Wakeman-Henson/blob/master/DataViz/EJN_paper_review.csv
https://github.com/CPernet/MRI_FaceData_Wakeman-Henson/blob/master/DataViz/EJN_paper_review.csv


 

In the following, we propose graphical designs for each type of message, adopting 

the three principles proposed by (Cleveland & McGill, 1985). First, for readers to 

appreciate where an effect is, slices or renders should be used depending on the 

message (principle 1: detection). Second, to improve inference, the assemblage of 

visual information must be performed to create a unified representation of the 

results (principle 2). Third, to convey information about the strength of effects, 

accurate colour scales and plots must be used (principle 3). Proposals  are  

illustrated using data from  (Wakeman  & Henson, 2015) in which 16 participants 

view famous, unfamiliar and scrambled faces. Each image was repeated twice 

(immediately in 50% of cases and 5-10 stimuli apart for the other 50%) and 

subjects pressed one of two keys with either their left or right index finger indicating 

how symmetric they regarded each image relative to the average. Here, only the 

main effects of face recognition (famous faces + unfamiliar faces > scrambled 

faces) is investigated, independently of repetition levels. Resources necessary to 

process raw data and generate the figures in this article are available at 

https://github.com/CPernet/MRI FaceData Wakeman-Henson and 

https://www.github.com/cMadan/MRIdataviz. All figures are also available under 

CCBY licence at data share https://doi.org/10.7488/ds/2516 (Pernet & Madan, 

2019).  

 
Show me the blobs 

The first principle, detection, refers to the ability for readers to detect where effects 

are. Presenting an SPM using multiple views is, therefore, better than any single 

view approach (Madan,2015a; Ruisoto et al., 2012). We can, however, distinguish 

two general cases that will drive the design: presenting networks/sets of areas 

involved in a task vs. illustrating the precise anatomical involvement of an area. In 

the first case, readers must be able to detect all areas, and in the second case, they 

must be able to detect the spatially circumscribed area under scrutiny. Our mini review 

shows that slices are typically shown even when the message is about sets of 

areas, thus failing to show the distribution of activity throughout the brain. Figure 1 

illustrates this using the thresholded map for the contrast famous faces + unfamiliar 

faces > scrambled faces. In the slice view, we can clearly see bilateral fusiform 

activity. The surface view also shows the extent of this activity along the fusiform 

gyrus, particularly on the inflated surface. This surface view provides, in addition, 

some indication of the distribution of activity. Considerations should, therefore, be 

taken to decide if a ‘regular’ grey matter (pial) surface or an inflated surface better 

conveys the cluster extent. Indeed, the presentation of multiple image display 

techniques (“fused images”) has been shown to aid in data interpretation (e.g. 

increase in location agreement among clinicians) and comprehension (e.g. relating 

lesions to an activation pattern – see Stokking et al., 2003, for a review). The use of 

inflated or pial surfaces can be particularly relevant if some clusters are sufficiently 

within a sulcus to be not visible on a pial surface, such as the occipital clusters in 

Figure 1. The glass brain representation gives the most complete depiction of 

“active” areas but makes it difficult to localize the precise location of the activity. 

When the message is about networks or the involvement of many areas, we thus 

recommend using a glass brain (Madan, 2015a), preferably shown from two 

viewing angles with a slight offset to aid in the interpretation of overlapping clusters 

and the perception of depth. If space is available this may be complemented with 

https://github.com/CPernet/MRI_FaceData_Wakeman-Henson
https://www.github.com/cMadan/MRIdataviz
https://doi.org/10.7488/ds/2516


 

slices when subcortical structures are involved as only presenting a glass brain view 

makes it difficult for the reader to determine the depth of the activation cluster. To 

illustrate the anatomical location of an effect, slices and (orthogonal) cross-sectional 

views are recommended. For deep structures, additional three-dimensional 

representations may also be useful (Ruisoto et al., 2012) to provide information 

about the volume of activation relative to anatomical structures. This principle is 

illustrated in Figure 2 with all areas significantly activated by stimuli (simple effects) 

displayed on a render, thus creating a representation of the overall pattern of 

activation for this task. In contrast to these large effects, localized effects were 

observed for the contrast of interest famous faces + unfamiliar faces > scrambled 

faces and are thus displayed on slices. 

 

 

Figure 1. Slice, surface, and glass brain representations of the intact faces > 

scrambled pictures contrast. Slice view was generated using bspmview. Surface 

views were generated using mni2fs (Price, 2015). Glass brain views were 

generated following the procedure described in Madan (2015a). An unthresholded 

statistical map of the contrast can be viewed at 

https://neurovault.org/images/68963/. 

 

 

https://neurovault.org/images/68963/
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Figure 2. Random effect results from Wakeman and Henson (2015). At the top is 
shown areas involved in each condition and the contrast of interest famous faces + 

unfamiliar faces > scrambled faces is shown in the middle. Maps show the T-values 
with significant areas outlined in white (cluster FDR<0.5 CDT=0.001). Responses 
observed at the peak coordinate for each of the four clusters are shown per condition 
(reconstructed hemodynamic response: famous faces in brown, unfamiliar faces in 
blue and scrambled faces in green; shaded areas show the bootstrapped 95% 
confidence intervals) along with the scatter plots and kernel density estimates of the 
resulting contrast. Lateralization curves in the fusiform gyri (i.e. lateralization index 

computed on maps with increasing threshold) for each subject are also shown for 
that contrast. At the bottom is shown the association map for the term faces from 
NeuroSynth meta-analysis, with the percentage signal change (contrast 
maximum(event)/constant, see Pernet, 2014) in those a priori regions of interests 
(data scatter with kernel density estimates in shaded colours, with rectangles 
showing the means and 95% Bayesian credible intervals). Data behind all the plots 

are available from the online repository. 
 



 

 

For group studies, we recommend using the average of normalized participants’ T1 

volumes as an underlay to more accurately portray the anatomical locations of 

effects relative to structures (and incidentally show the alignment of anatomical 

structures among subjects). For instance, results from Wakeman and Henson 

(2015) shown in Figures 2 and 4 are using such average. By using the average T1, 

one can appreciate better the amount of smoothness in registration and true brain 

coverage. When this approach is impractical, e.g., the study involves a between 

groups analysis where anatomical differences are expected (such as young vs. 

older adults), we recommend using the ICBM 2009c nonlinear asymmetric 

structural volume (Fonov et al., 2011) (‘mni_icbm152_t1_tal_nlin_asym_09c) or the 

study template, if one was created. When considering individual participant’s 

activation (fMRI, PET), results must be presented on their own structural images, 

and never on a ‘standard’ brain as it leads to inaccurate reporting of the anatomy 

(Devlin & Poldrack, 2007). As shown on Figure 3, for some participants differences 

in activation locations between the subject anatomy and the template are small (e.g. 

participant 15) and for others, the anatomy is very different from the template (e.g. 

participant 3). 

 

It should finally be noted that figures do not have to be static. No doubt science 

communication is moving away from paper and Portable Document Format (pdf), 

and we encourage the community to embrace interactive figures using visualization 

software such as Papaya (Mango Team, 2016), NiftyView (Deng,2016), 

BrainBrowser (Sherif et al.,2015), BrainNetBrowser (Xia et al.,2013), PySurfer 

(Waskom et al.,2016), or Pycortex (Gao et al.,2015). NeuroVault (Gorgolewski et 

al.,2015) also provides a useful demonstration of such visualizations where raw 

statistical maps can be seen and exchanged (see our results from Figure 3 at: 

https://neurovault.org/collections/4319/). 

 

Beyond blobs 

The second principle for graphic design is the assemblage of visual information. 

The goal is to provide readers with a visual summary of the different information 

available to help with inference and interpretation. As discussed in Poldrack et al. 

(2017), claims of absence of effect and selective activations as well as usage of 

reverse inference are common in neuroimaging, but are often wrong because they 

require additional quantitative testing. We contend that these errors partly relate to 

which information and how information is displayed in figures and that better figure 

designs can help with inference. 

 

https://neurovault.org/collections/4319/


 

Figure 3. Single participant results from Wakeman and Henson (2015) displayed 

for each subject in MNI space (MNI template, average study T1, normalized T1) and 

in native (back-reconstructed SPM) space, illustrating the importance of using 

adequate anatomical underlays when looking at SPMs. For instance, when the 

subject anatomy is similar to the template results appear at the same location 

(subject 15) but large displacements can occur because of spatial normalization 

(subject 3). Looking at the fusiform face area (marked by the blue cross), each 

subject (except 11 and 13) show a right fusiform activation although the locations 

seen on individual’s brain indicate that some subjects (e.g. 1, 2, 5, 6, 7) have 

maximum activations located in a more inferior part of the gyrus than what is 

expected from the group result. 

 

 
Absence of effect 

Absence of statistical significance is not an absence of effect (Killeen, 2005) and in 

the absence of significance one only fails to reject the null hypothesis (Pernet, 2017; 

Lakens, 2017). Whilst the error is common in behavioural sciences, it becomes the 

norm when describing results from statistical parametric maps: if there is no 

activation (above a statistical threshold signal), one typically infers that there is no 

effect. Unless using equivalence testing or Bayesian statistics, it is however 

impossible to infer that a given experiment or comparison did not lead to activation 

in a given region. For instance, results from Wakeman and Henson (2015) show a 

significant activation for faces compared to scrambled faces in the medial fusiform 



 

gyri (Figures 2 and 4) but that does not indicate that other regions are not also 

activated in response to face stimuli, or even more activated by intact faces than 

scrambled faces. In fact, strong but non-significant effects can also be seen more 

laterally.  

Reporting all effects, no matter the level of significance is the most effective way to 

convince readers of the results. Showing raw (unthresholded) statistical maps is thus 

a step in that direction (Jernigan et al., 2003). We recommend here to go even 

further and plot and test effects for all areas expected to be a priori activated, given 

the experimental hypotheses. Thanks to the vast literature on face perception, we 

can generate spatial predictions using meta-analysis engines such as NeuroSynth 

(Yarkoni et al., 2011). Here, we can predict bilateral activations in the posterior 

middle occipital gyri, lateral fusiform, parahippocamplal regions, amygdalae, 

temporo-parietal junctions and right inferior frontal gyrus (reverse inference map 

thresholded with a minimal extent of 20 voxels from 

http://www.neurosynth.org/analyses/terms/face/). Since our whole brain analysis did 

not reveal significant differences between intact faces and scrambled faces in 

these regions, one might infer that there is no effect. Statistical testing in these a 

priori ROIs, however, shows that this would be the wrong inference to make, as 

differences can be observed. As shown in Figure 2, the Bayesian bootstrap of the 

mean reveals stronger activations for faces than scrambled faces in the right 

(lateral) fusiform gyrus and left and right middle occipital gyri (i.e. highest density 

intervals of the difference did not include 0, see Table 1). Because of expectations 

(i.e., hypotheses) about where effects should be localized, and that many studies 

found effects or differences at these locations, reporting results using such priors is 

worthwhile as this allows comparing results across studies and reduce false 

inference. A practical aspect to consider when using a priori ROIs is how to 

generate them. When possible, using NeuroSynth or GingerALE (Eickhoff et 

al.,2009) is recommended as these meta-analysis tools can generate unbiased 

ROI. For investigators interested in checking across the whole brain where are ”in 

limbo” areas (above baseline but also under the statistical threshold of 

significance), sandwich estimator can be used (de Hollander et al., 2014) testing if 

the difference relative to significant areas is itself significant (Gelman & Stern, 

2006). 

 
 

 

 

 

 

 

 

 

 

 

Table 1. Summary of choices and designs to use based on the messages to convey. 

Region [ x, y, z ] Mean 95% CI 
left fusiform -40 -50 -18 -0.0286 [-0.1616, 0.0141] 

right fusiform 45 -50 -22 -0.0589 [-0.1407, -0.0170] 

left middle occipital -38 -84 -10 -0.0620 [-0.1513, -0.0242] 

right middle occipital 44 -78 -12 -0.1174 [-0.2771, -0.0388] 

left parahipocampal -26 0 -30 0.0046 [-0.0520, 0.0331] 

right parahipocampal 34 -8 -32 -0.0109 [-0.0541, 0.0173] 

left amygdala -20 -6 -18 -0.0163 [-0.0966, 0.0311] 

right amygdala 22 -6 -18 -0.0174 [-0.0772, 0.0225] 

left temporo-parietal junction -56 -54 8 0.0032 [-0.0396, 0.0266] 

right temporo-parietal junction 54 -44 8 -0.0055 [-0.0525, 0.0197] 

right middle frontal gyrus 42 14 22 0.0079 [-0.0377, 0.0293] 

http://www.neurosynth.org/analyses/terms/face/


 

Plotting effects 

Because of the non-stationary spatial nature of baseline activity, summary statistics 

(average values, T or F values, etc) displayed on slices and renders can have 

widely different physiological interpretations, and it is, therefore, essential to plot 

results for all a priori ROI but also all regions seen as significant. It may, of course, 

be impractical to have all plots in the core of a publication when many results are 

observed, but it is easy to provide this information as supplementary material, along 

with csv files or raw data behind the plots. 

Consider for instance a positive contrast (i.e. the mean value is bigger than 0). 
Such result can be obtained from three configurations: (i) all conditions are superior 
or equal to zero (e.g., left/right fusiform gyri), (ii) all conditions are inferior or equal 
to 0, (iii) conditions vary around baseline. The two first scenarios are ‘easily’ 
interpretable, while the last case is much harder to understand. This is well 
illustrated in Figure 2, with the contrast famous faces + unfamiliar faces > 

scrambled faces. The contrast values in significant areas have similar distributions, 
yet the right MOG has a completely different pattern of response. We, therefore, 
recommend to systematically show data points (e.g., beta estimates or percentage 
signal change) for each condition along with the summary statistics of contrasts 
(typically the mean, but not always). For these plots, showing means and standard 
deviations using bar graphs is inadequate (Rousselet et al., 2016; Weissgerber et 

al., 2015), and box-plots or violin plots along with data scatter are recommended. 
Similarly, reconstructed hemodynamic responses can be plotted if they convey 
enough information about variance across subjects. 

 

Selective activations 

The perception of a lack of effect in areas not significantly activated leads to 

incorrect inferences about the selectivity of significantly activated areas, an 

inferential error known as the ‘imager fallacy’ (Henson, 2005). Engel and Burton 

(2013) showed that over 80% of naive readers are making such error when looking 

at a thresholded SPM. What we detect as face-selective depends on both the task 

and the baseline used (Stark & Squire, 2001), here scrambled faces, and on the 

statistical threshold used. The issue of selectivity or specificity of activations in the 

brain has been hotly debated (see, for example, Pernet et al., 2007) but all agree 

that it requires statistical testing and cannot be inferred merely from showing a 

qualitative different activation pattern. What a qualitatively different pattern of 

activation between stimuli or conditions does allow one to infer (although it would 

need actual statistical testing of the interaction regions * stimuli or conditions), is 

that information processing differ in at least one function (function-to-structure 

deduction as opposed to structure-to-function induction; Henson, 2005). We, 

therefore, recommended showing raw statistical maps (Jernigan et al., 2003), 

assembling results of simple effects and contrast of interests as shown in Figure 2. 

This allows addressing, at least visually, issues of the absence of effects, selectivity, 

and qualitative difference. In Figure 4, the raw maps of simple effects allow inferring 

that information processing was similar across all three conditions because we have 

similar activation pattern. Sharing such unthresholded statistical maps is also highly 

encouraged, using online repositories such as NeuroVault (Gorgolewski et al.,2015). 

The result from the contrast of interest is also shown unthresholded thus addressing 



 

the issue of non-significant areas. It is however also important to point at where the 

evidence supports the existence of an effect, thus highlighting significant areas 

(Allen et al., 2012), here using contours (this can be achieved easily using tools 

such as nanslice; Wood, 2018). 

 

 

Figure 4. Random effect results illustrating the selective response of the medial 
fusiform cortex. Activations, relative to baseline, are seen for each condition 
across the entire inferior occipital cortex while the contrast intact Faces > 
Scrambled (= 0.5∗Famous+0.5∗Unfamiliar−1∗Scrambled) leads to significant 
differences (cluster FDR<=.005, CDT=.001, outlined in black) only in medial 
fusiform regions. 



 

Hemispheric asymmetry 

The same way as spatial selectivity can wrongly be inferred from the absence of 

statistically significant results, hemispheric asymmetry is often inferred from 

thresholded maps. As for selectivity, it is recommended to statistically test for 

hemispheric differences going beyond the single level of activation by computing 

lateralization indexes based on bootstrapped lateralization curves (i.e., using the 

size and intensity of clusters across all thresholds as e.g. implemented in the LI 

toolbox, Wilke & Lidzba, 2007). Here, when testing for fusiform activation 

asymmetry, individual conditions/stimuli were right lateralized (95% CI famous faces 

[-0.55, -0.14], unfamiliar faces [-0.45, -0.06], scrambled faces [-0.54, -0.13]) while 

visually, maps did not allow to see this pattern (Figure 5). When considering the 

whole brain, only famous faces [-0.38, -0.08] and scrambled faces [-0.37, -0.06] 

show right lateralization (unfamiliar faces [-0.029, 0.022]). To best understand the 

pattern of lateralization across stimuli/conditions, we also recommend using paired 

observations on scatter plots rather than (or in addition to) box plots or violin plots 

(Rousselet et al., 2016). 
 

 

Figure 5. Lateralization Indices (LI) for each condition obtained using the LI toolbox 

(Wilke & Lidzba, 2007). Box plots show the median LI and 1.5 times interquartile 

range. Scatter plots show LI for famous (blue) and unfamiliar faces (red) vs. 

scrambled faces, and the direct comparison famous vs. unfamiliar faces. Simple 

effects for each condition seen on slices (left) show no strong evidence of 

lateralization whilst lateralization indices tell otherwise. Compared to box plots, 

paired scatter plots allow to better understand relationships between items. In the 

fusiform gyri, all subjects lie along the diagonals, indicating very similar indices 

across stimuli and responses across subjects. For the whole brain, the box plots 

show the same pattern of results as for the fusiform gyri, although with a non-

significant asymmetry for unfamiliar faces. Paired scatter plots also show that 4 

subjects (indicated by the arrows on the scatter plots) have close to zero 

lateralization for unfamiliar faces while showing lateralization for familiar and 

scrambled faces, which is not seen for the fusiform gyri. 

Colouring maps and blobs 

The third principle in graphical design is the use of ‘accurate’ colour scales. 

Although imaging researchers know to be cautious when conducting their analyses 

to account for relevant nuisance regressors and determining cluster thresholds, 



 

they often pay little attention in selecting colours to visualize the results of their 

imaging study. When the message is about where active regions are, a single 

colour can be used. When information about the spatial distribution of statistical 

values is also of interest, colour palettes (scales) should be used. Such palettes must 

appropriately convey the underlying data and not introduce perceptual biases. This 

topic has been investigated at length within other fields of study including geography 

(Brewer et al., 2003; Thyng et al., 2016; Light & Bartlein, 2004) and astronomy 

(Green, 2011) and brain imagers should also be considering this issue. 

Colours in digital images are often generated as combinations of red, green, and 

blue (RGB) intensities. This is, however, not how colours are perceived by humans. 

An alternative colour space, CIELAB, has been developed to correspond to the 

human perceptual system. In 1976, the International Color Consortium (a.k.a. 

Commission Internationale de l’Eclairage, CIE) defined a colour space perceptually 

uniform that relies on luminance (L*), red-green (A*, ~550–700 nm wavelength), and 

blue-yellow (B*, ~400–550 nm wavelength) colours (International Color Consortium, 

2006). The critical factor is that changes in luminance are better perceived than hue 

to reflect changes in magnitude (Cleveland & McGill, 1985) and that averaging RGB 

values does not linearly correspond to changes in luminance. ‘Traditional’ colour 

map used in brain imaging are not informed by this and instead lead to distortions in 

how colour intensities are perceived and interpreted (Figure 6). Some colour maps 

have previously been developed with brain imaging in mind, e.g., Ridgway (2009), 

but it has saturation/luminance issues as most other maps. More recently, scientists 

have generally become more aware of this colour perception artefact with the change 

of default colour map in some software packages to veridic (Smith & van der Walt, 

2015) or parula (Edens, 2014). The luminance function of many sequential, 

diverging, and rainbow colour maps are shown in Figure A1. For more detailed 

discussions of luminance effects in colour maps, see Borland and Taylor (2007) and 

Niccoli (2012). 

Using the method described in Kovesi (2015), we have developed corrected colour 

maps now available as .mat (implemented by SPM via spm_colourmap.m),.csv, 

.cmap (implemented in FSLeyes 0.26.1), .lut (for MRIcroN, and implemented as 

.clut in MRICroGL v12): https://github.com/CPernet/brain colours, as demonstrated 

in Figure 7. At the bottom of the figure, is shown the difference between the 

common maps and the redesigned, corrected ones. On a linear scale such as hot, 

the corrected maps show less saturation within clusters, leading to better appreciate 

spatial variations, as best seen for the right frontal cluster. For diverging maps, the 

corrected maps show better the differences in space between positive and negative 

values, like here for negative values in the visual cortex or the right anterior 

fusiform gyrus. Linear colour scales (e.g., hot or BGY) are ideally suited for 

continuous positive or negative values (e.g., contrast T-maps) whilst diverging 

colour scales (e.g., NIH, BWR) are better suited for continuously negative to positive 

value maps (e.g., contrast F-maps), but it is essential to make them symmetric as to 

have the mid-luminance value reflecting the 0 value in the data. For this reason, we 

have added the CET-D1 and CET-D7 to the repository (referred to as Blue-White-

Red (BWR) and Blue-Grey-Yellow (BGY) in 7), the latter one having the advantage 

of having no perceptual dead-spot at the centre. Cyclic colour maps are ideal to 

display information about angles as in retinotopic mapping or fibre orientation (see 

Table 2 for a summary of designs). Other colour maps such as rainbow or spectrum 

https://github.com/CPernet/brain_colours
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should be avoided as they cycle through luminance. Finally, when using 3D 

renders, because lighting is used the give a three-dimensional aspect to the image, 

it interferes with the luminance of colour maps, and isoluminant colour maps (also 

available in the repository) or single colour should be used. Since inferential errors 

relate mostly to local effects (comparison of neighbouring regions, see above), this 

is, however, less problematic. 

 

 

Figure 6. Overview of luminance function for common and recently improved colour 

maps. “cmo” refers to colour maps from the cmocean package (Thyng et al., 2016). 

See Figure A1 for additional luminance functions of common colour maps. 

 

 

Figure 7. Same set of results shown using common and redesigned (marked with) 

colour maps. The first two rows show results on coronal and axial slices, with below 

the corresponding colour maps plotted as a function of luminance. For the hot, NIH 

and X-rain maps, the difference in presented SPMs between the old and redesigned 

maps is shown, highlighting where are the differences. 

 

Although the focus here is on visualizing tomographic mapping, these principles 

apply generally to heat maps (also see Gehlenborg & Wong, 2012) and should be 

of interest to all brain imagers, with other possible applications for magneto- and 



 

electroencephagraphy SPM, scalp maps and source reconstruction figures. 

Furthermore, it may be desirable to show categorical data rather than continuous, 

e.g., when showing several anatomical regions-of-interest or graphs of activations in 

different task conditions. Here we suggest using the distinctive colour sets proposed 

by Brewer et al. (2003), Wong (2011), or Kelly (1965). See Figure A2 for examples 

and details for these colours. 
 

 

 
Principle Design Message 

Detection          Render/Glass brain 

slices 

render and slices 

networks, set of areas 

localized effects 

set of areas including subcortical structures 

Assemblage simple effects and contrasts 

unthresholded maps 

unified view of results 

location of effects and selectivity 

Strength of Effect linear colour maps 

divergent colour maps 

cyclic colour maps 

negative or positive contrast 

unthresholded maps 

tonotopic mapping, fibre orientation 
 

Table 2. Summary of choices and designs to use based on the messages to convey. 
 

 

 

Conclusion 

SPM must be displayed in non-misleading ways. Our recommendations are simple 

to adopt and, we believe, should help in making further inference from the results. 

In general, use 3D renders and glass brains for sets of regions and networks; use 

slices for the precise anatomical location of an effect. Assemble visual information as 

to help with spatial inference, combining simple effects with contrast maps and use 

unthresholded maps highlighting significant areas (Allen et al., 2012). Carefully 

choose colour maps to reflect the magnitude of effects. Plot data for all a priori 

ROIs regardless of significance and plot data (simple effects and effects of interest) 

for each region declared significant during analyses. 
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Appendix 
 

 

Figure A1. Luminance functions for many popular colour maps. For some 

colormaps, the sequence of colours was reversed to make comparisons among 

maps clearer. Colour maps are used from the following papers, respectively: “Brew” 

(Brewer et al., 2003); “CET” (Kovesi, 2015); “mpl” (Smith & van der Walt, 2015); 

“cmo” (Thyng et al., 2016); “pm” (Niccoli, 2012); parula (Edens, 2014); bipolar 

(Ridgway, 2009); haxby (Haxby et al.,1983; Caress & Chayes, 2009); cubehelix 

(Green, 2011); several of the default colour maps (e.g., spring, autumn, bone) are 

originally from MATLAB, but were later included in other software packages (such 

as in Matplotlib). 

 

 



 

 

Figure A2. Suggested distinctive colours for categorical analyses. Colours 

selected from Brewer et al.(2003) ,Wong (2011), and Kelly (1965). 


