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A Highly Active Bidentate Magnesium Catalyst for Amine-Borane
Dehydrocoupling: Kinetic and Mechanistic Studies
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William Lewis,[c] Alexander J. Blake,[a] and Deborah L. Kays*[a]

Abstract: A magnesium complex (1) featuring a bidentate

aminopyridinato ligand is a remarkably selective catalyst for
the dehydrocoupling of amine-boranes. This reaction pro-
ceeds to completion with low catalyst loadings (1 mol %)

under mild conditions (60 8C), exceeding previously reported
s-block systems in terms of selectivity, rate, and turnover

number (TON). Mechanistic studies by in situ NMR analysis

reveals the reaction to be first order in both catalyst and

substrate. A reaction mechanism is proposed to account for
these findings, with the high TON of the catalyst attributed
to the bidentate nature of the ligand, which allows for

reversible deprotonation of the substrate and regeneration
of 1 as a stable resting state.

Introduction

The transition from fossil fuels to a sustainable global energy

system is one of the key challenges of the 21st century. The in-
creasing use of alternative sources has given rise to significant

obstacles in storage and mobility ; that is, how to utilize gener-
ated electricity for transportation or later use. Hydrogen is a

promising option for a clean burning fuel, although issues
remain over its storage.[1, 2] Possible solutions include physical
approaches such as high pressures, low temperatures and

physisorption, as well as chemical storage in the form of hy-
drides.[3, 4]

Of these, amine-boranes have emerged as lead candidates
due to their high storage capacity, stability, and low environ-

mental impact.[5] These compounds have been the focus of
considerable attention, with the presence of adjacent protic

and hydridic hydrogens providing an excellent system for hy-

drogen storage and release.[6–8] Hydrogen evolution from
amine-boranes may be achieved by solvolysis, thermolysis, cat-

alysis, or some combination of the above. Of these, solvolysis
creates an undesirable thermodynamic sink through the forma-

tion of very strong B@O bonds;[9, 10] and thermolysis tempera-
tures are often high, affording a complex mixture of prod-
ucts.[11]

In contrast, catalytic hydrogen release can occur at moder-
ate temperatures, often yielding well-defined products. Given

the dominance of transition metals in catalysis, it is unsurpris-
ing that the d-block has received the most attention in this
field, with early dehydrocoupling catalysts based on rhodium
and iridium.[12, 13] Driven by considerations of resource availabil-

ity and sustainability, recent investigations have focused on
base metals such as titanium,[14, 15] manganese,[16–19] iron,[20, 21]

cobalt,[22, 23] and nickel.[5]

Looking beyond the transition metals, there has been signifi-
cant work in recent years on catalysis with main group spe-

cies.[24, 25] This expansion has carried through to amine-borane
dehydrocoupling,[26–28] with one of the most noteworthy exam-

ples being a bis-(borane) reported by Wegner et al. capable of
releasing 2.45 equivalents of H2 from NH3·BH3.[29] Despite their
ubiquitous nature, low cost, and low toxicity (barring beryllium

and barium), the s-block elements are underrepresented in this
area. Predominantly investigated as storage materials rather

than catalysts,[30–33] their lack of popularity may be due to poor
selectivity and extended reaction times of, for example, 124 h
(72 % conversion) with Me2NH·BH3 as a substrate, as reported

for Group 1 bis-(trimethylsilyl)amides.[34] However, recent work
is yielding more active systems.[35, 36] Whilst Group 2 systems

have shown greater activity towards more complex amine-
borane substrates,[37–39] it should be noted that some systems

studied have subsequently been shown to exhibit “spontane-
ous” dehydrocoupling.[40] In contrast, the Me2NH·BH3 and
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iPr2NH·BH3 substrates investigated here showed no hydrogen
release in the absence of catalyst.

Herein, we report a highly active magnesium catalyst for the
dehydrocoupling of Me2NH·BH3 and dehydrogenation of

iPr2NH·BH3. In addition to being readily synthesized on a multi-
gram scale, the catalyst exceeds previously published examples

in terms of selectivity, substrate scope, turnover number (TON),
and reaction rate. We present a detailed mechanistic investiga-
tion into this catalysis, including stoichiometric reactivity stud-

ies and kinetic measurements, and propose a catalytic cycle to
account for these data.

Results and Discussion

Catalyst synthesis and investigation

Two magnesium complexes, 1 and 2, were synthesized from

the reaction of the proligands (L1H or L2H)[41, 42] with Me-
MgI·(OEt2)1.5 and tetramethylethylenediamine (TMEDA) in dieth-
yl ether (Scheme 1 a and b), and obtained in high yields and
purity (1: 63 % yield; 2 : 86 % yield; see Supporting Information,

Figures S2–S5, sections S3.2 and S4.1). The complexes were in-
vestigated as catalysts for the dehydrocoupling of Me2NH·BH3.

While 2 was found to be unreactive, complex 1 gave excellent

conversion of Me2NH·BH3 to the dimeric dehydrocoupling
product [Me2NBH2]2 (3) with concomitant formation of H2 in

C6D6 at 60 8C (Scheme 1 c, Figures S17–S18).

The reaction was monitored by in situ 11B NMR spectroscopy

(Figure 2 a), discontinuous 1H and 11B NMR measurements (Fig-
ure S15), and volumetrically by the measurement of hydrogen

evolution (Figures S25–S26). The reaction is remarkably selec-

tive, affording [Me2NBH2]2 (3) almost exclusively (<3 % Me2N=

BH2, 4, formed, Figure S18). High conversions are achieved in a

relatively short time with low catalyst loadings (at 60 8C; ca.
99 % conversion after 80 mins at 10 mol % [1] , 150 mins at

5 mol % [1] ; Figure 1 a). High conversions were obtained even
at catalyst loadings as low as 1 mol %, with >99 % in 60 h at

60 8C (implying a TON+100; Figure S19). Increasing the tem-
perature to 80 8C gives >95 % conversion in around 23 min-

utes with a catalyst loading of just 1.5 mol % (Figure S29d). The
catalyst also works in THF, albeit at a significantly reduced rate
(Figure S16), which is attributed to co-ordination of the solvent
to the catalyst active site.[43] A similar solvent effect was seen
with a lithium-based dehydrocoupling catalyst studied by

Mulvey and co-workers.[44]

Reactions with the related amine-borane iPr2NH·BH3 afforded

the dehydrogenated compound iPr2N=BH2 as the dominant

product (>95 %, Scheme 1 d). This reaction proceeded (albeit
slowly) at room temperature (Figure S21 and S22) and increas-

ing the temperature to 60 8C gave near total conversion in less
than 1 hour (5 mol % catalyst loading, Figure S23). The forma-

tion of iPr2N=BH2 has been observed in previous work on the
catalytic dehydrogenation of iPr2NH·BH3.[45–47]

Scheme 1. Synthesis of compounds 1 (a) and 2 (b), and catalytic dehydro-
coupling/dehydrogenation of Me2NH·BH3 (c) and iPr2NH·BH3 (d) by 1.

Figure 1. a) Conversion (mol %) vs. time (min) for the dehydrocoupling of
Me2NH·BH3 with 5 mol % (*) and 10 mol % (&) of 1 in C6D6 at 60 8C. Data
obtained by in situ monitoring of the reaction by 11B NMR. b) Graph tracking
concentration of substrate (Me2NH·BH3), product ([Me2NBH2]2 ; 3), Me2N=BH2

(4), and Me2NH-BH2-NMe2-BH3 (5) over reaction course. Concentrations de-
termined by in situ 11B NMR measurements at 60 8C in C6D6. Initial concentra-
tions [3] = 0.29 m, [1] = 15 mm.
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To put this reactivity into context, the most effective previ-
ous alkaline earth catalyst for the reaction in Scheme 1 c was

published by Hill et al. in 2010.[38] This catalyst required 72 h at
60 8C to effect high (>90 %) conversions, and was less selective

than 1, affording several side products including (Me2N)2BH.
The same catalyst proved more effective at amine-borane de-

hydrocoupling with other substrates, catalyzing the reaction
between secondary and primary amines with either pinacol-
borane (HBPin) or 9-borabicyclo[3.3.1]nonane (9-BBN).[48] In

most cases these reactions proceeded to completion in 1 h at
room temperature (10 mol % catalyst loading).[48] A related
magnesium complex was effective at catalyzing the dehydro-
genation of iPr2NH·BH3 to iPr2N=BH2, but could only effect stoi-

chiometric conversions of Me2NH·BH3 to 3.[47] There have also
been reports of magnesium and calcium bis(trimethylsilyl)-

amides catalyzing the dehydrocoupling of amine-boranes with

amines to afford asymmetric diaminoboranes.[49] In most cases,
however, these transformations required high temperatures

and long reaction times (i.e. 70 8C, 48 h for coupling
Me2NH·BH3 and tBuNH2, 2.5 mol % catalyst loading).[49]

Looking at Group 1 species, we can compare 1 to a recent
lithium-based catalyst published by Mulvey et al.[36] Although

relatively selective for the formation of [Me2NBH2]2 from

Me2NH·BH3, the catalyst showed significantly lower activity
than species 1, with 89 % conversion after 60 h at 80 8C in tolu-

ene (2.5 mol % catalyst loading). Broadening our scope to the
rare-earth metals, a lanthanum hydride complex published by

Okuda et al. catalyzed the dehydrocoupling of Me2NH·BH3 at a
comparable rate to species 1 (100 % conversion in 2 h at 60 8C,

3 mol % catalyst loading).[50] However, the catalyst was less se-

lective than 1, affording [Me2NBH2]2 and (Me2N)2BH in approxi-
mately 80:20 ratio.[50] To the best of our knowledge, there are

no examples of an alkaline earth catalyst (for any amine-
borane dehydrocoupling reaction) that are reported to be ef-

fective at <2.5 mol % loading,[39] with 1 the first catalyst for
which this has been demonstrated.[51]

Catalyst reusability was tested by repeated injections of

Me2NH·BH3 to a solution of 1 in toluene, with reaction progress
monitored by hydrogen evolution. At 10 mol % catalyst load-
ing, 1 was found to tolerate two consecutive injections before
a significant deterioration of activity was observed (Figure S26).

This is likely due to catalyst decomposition from the gradual
ingress of air and moisture with repeated injections. There are

very few studies in the literature where the recyclability of
main group catalysts for the dehydrocoupling of amine-bo-
ranes has been ascertained,[29] and to the best of our knowl-

edge this is the first such determination for an s-block metal
catalyst.

Using the data gathered from in situ reaction monitoring by
11B NMR spectroscopy (Figures 1 and 2; Figures S27–S31), it is

possible to gain significant mechanistic insight into this reac-

tion. In addition to starting material, product (3), and trace
amounts of Me2N=BH2 (4), the linear species Me2NH-BH2-NMe2-

BH3 (5) is also observed during the reaction.[52] Compound 5 is
a commonly observed intermediate in the dehydrocoupling of

Me2NH·BH3,[14, 16] and its concentration remains low throughout
the reaction, gradually dropping to zero as the reaction nears

completion (Figure 1 b). Compound 4 appears to form in the
early stages of the reaction, and its concentration remains rela-
tively constant throughout (Figure 1 b). Unlike 5, its concentra-
tion does not drop to zero. Monitoring by 1H NMR reveals that

1 is regenerated at the end of the reaction, with no apprecia-
ble change in the signals arising from the catalyst (Figure S20).

Plotting reaction rate (u) against substrate concentration
[Me2NH·BH3] (Figure S28) indicates that the reaction is pseudo-
first order with respect to substrate at high concentrations,

with a more complex rate dependence at low substrate con-
centrations.[53] A plot of turnover frequency (TOF=u·[1]@1)
against substrate concentration for three different catalyst
loadings shows overlay of the data sets (Figure 2 c), indicating

that the reaction is first order with respect to catalyst.[53] From
this, a rate equation (valid for [Me2NH·BH3] @ [1]) of u =

kobs[Me2NH·BH3][1] has been derived.

Further measurements were carried out over a range of tem-
peratures (50–80 8C) in toluene (Supporting Information, sec-

tion S4.3.2). Extraction of the pseudo-first order rate constants
for these reactions (Figure S30) allowed for the construction of

an Eyring plot (Figure 2 d) and determination of the activation
parameters (D*H8= + 155(8) kJ mol@1 and D*S8= +

140(20) J K@1 mol@1).

Kinetic isotope effect (KIE) experiments were performed
using deuterated substrate analogues. Reactions with

Me2ND·BH3 proceeded at approximately the same rate (within
error) as those with Me2NH·BH3, suggesting that N@D bond

cleavage does not feature in the rate-limiting step of the cata-
lytic cycle. This stands in contrast to, for example, the iron-cat-

alyzed dehydrocoupling of Me2NH·BH3 reported by Webster

et al. , which displayed a KIE of 2.5:0.2 with Me2ND·BH3.[45] The
distinctive 1:1:1 triplet of HD was also observed by 1H NMR as

the sole by-product in reactions with Me2ND·BH3 (Figure S32).
It was not possible to obtain a pure sample of Me2NH·BD3

from the literature procedure, which afforded mixtures of
Me2NH·BD3 and Me2NH·BH3 (Supporting Information, section

S4.1.4). The kinetic isotope effect for B@D bonds was thus cal-

culated from an intermolecular competition experiment with
this mixed sample,[54] which gave a value of kH/kD = 1.6:0.1

(Supporting Information, section 4.3.3). A mixture of H2 and HD
was observed by 1H NMR spectroscopy in this reaction.

Stoichiometric reactions between Me2NH·BH3 and 1 (Sup-
porting Information, section S4.4.1) resulted in the slow build-

up of 3, 4, 5, and two additional signals at dB = 3.4 (t) and
@14.6 (q) (Figure S35). This compound cannot be fully identi-
fied, but the signals are similar to previously reported magnesi-

um complexes of amine-boranes[38, 47] and thus may correspond
to an NMe2BH2NMe2BH3 chain bound to a magnesium atom.

This compound is likely to be an intermediate of the catalytic
cycle. Heating the sample to 60 8C resulted in the disappear-

ance of these signals in the 11B NMR spectrum. Despite repeat-

ed attempts, no reaction intermediates containing coordinated
magnesium could be crystallized from stoichiometric or sub-

stoichiometric experiments with Me2NH·BH3.
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Mechanistic discussion

We propose the catalytic cycle shown in Scheme 2 to account

for the observed mechanistic data. This mechanism is broadly
similar to those previously proposed for previous alkaline earth

metal dehydrocoupling catalysts,[24] but with some key differ-
ences due to the nature of the ligand L1. It should be noted

that there has been little work on the kinetics of such systems,
with the mechanism being inferred from the isolation of plau-
sible intermediates and qualitative reaction monitoring by

NMR spectroscopy.[38, 47] As such, the kinetic data presented in
this work provides useful supporting evidence for both this

mechanism and the generalized mechanism of alkaline earth
dehydrocoupling catalysts.

The first two steps involve reversible deprotonation of

Me2NH·BH3 by the silylamide group of 1, to give species I1, fol-
lowed by an irreversible b-hydride elimination; affording hy-

drogen, 4, and species 1. This step likely proceeds via a short-
lived magnesium hydride, which rapidly deprotonates the

pendant silyl amine to regenerate 1. This mechanism is some-
what different to previous alkaline earth catalysts, which were

added as pre-catalysts and underwent an initial irreversible de-

protonation reaction, typically with elimination of an alkyl or
amino species.[24] Here, because of the bidentate nature of L1,

the amine generated is held proximal to the magnesium and
continues to take part in the reaction. This also helps explain

the inactivity of 2 as a catalyst, as the less basic pyrrolide is un-
likely to deprotonate Me2NH·BH3.

Species I1 can also undergo an insertion reaction with 4 to
generate species I2. This intermediate is considered to corre-
spond to the unknown species observed by 11B NMR in the

stoichiometric experiments (Figure S35), and similar insertion
reactions are commonly invoked in mechanisms of this type.[24]

While it has not been possible to isolate the intermediates I1

and I2, we consider them plausible based on previously pro-

posed mechanisms for similar catalysts.[24, 38] Furthermore, the

silylamide is the only group on the complex sufficiently basic
to deprotonate the substrate. The partial dissociation of the

ligand, with the pyridine nitrogen remaining bound to the
magnesium atom, seems a reasonable explanation for the re-

generation of 1 at the end of the reaction with no loss of
ligand. Species I2, once formed, can undergo either a reversible

Figure 2. Mechanistic data from the dehydrocoupling of Me2NH·BH3 by 1. a) Stacked 11B NMR spectra from in situ NMR measurements. b) Plot of [Me2NH·BH3]
(mm, as determined by integration of 11B NMR spectra) vs. time for one set of kinetic data (toluene, 60 8C, 4.5 mm 1). c) Plot of turnover frequency (TOF,
u·[1]@1) vs. concentration of Me2NH·BH3 (mm) for three experiments with different catalyst concentrations. d) Eyring plot for data collected over the tempera-
ture range 50–80 8C.

Chem. Eur. J. 2019, 25, 6840 – 6846 www.chemeurj.org T 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim6843

Full Paper

http://www.chemeurj.org


proton exchange (affording linear intermediate 5) or an
irreversible d-hydride elimination to afford the major product

(3) and hydrogen.
Based on the first order dependence on both 1 and

Me2NH·BH3, the first two steps of the proposed mechanism
(formation of I1 and subsequent b-hydride elimination) must
control the overall rate of the catalytic cycle. This is best mod-

elled using the pre-equilibrium approximation,[55] in which an
equilibrium is established between (Me2NH·BH3 + 1) and I1, fol-

lowed by a slow b-hydride elimination (Scheme 3). A schematic
potential energy surface is shown in Figure 3 for illustrative

purposes. Denoting the rate constants as k1, k-1, and k2

(Scheme 3); it can be shown that the overall rate equation for

this process is given by Equation (1):[55]

v ¼ k1k2

k@1
½Me2NH ? BH3A ð1Þ

Use of Me2ND·BH3 as a substrate in this reaction will reduce
the rate of both k1 and k@1. As a result, the overall rate of reac-

tion does not change significantly. This can also be understood

as the overall rate of reaction being determined by the posi-
tion of equilibrium for this deprotonation, rather than the rate

of deprotonation. By contrast, use of Me2NH·BD3 will reduce
the rate of k2, resulting in a modest KIE for this substrate. The

fact that b-hydride elimination is the rate-limiting step (as indi-
cated by the KIE) suggests that the initial deprotonation must

be a reversible process. If it were irreversible, one would
expect intermediate I1 to accumulate in the reaction, which is
not observed.

Because of the pre-equilibrium in this reaction, the overall ki-
netic energy barrier for this process (D*G8) will depend on the

energy barriers for k1, k@1, and k2 according to Equation (2):[55]

D*G2 ¼ D*G1
2 þ D*G2

2@D*G@1
2 ð2Þ

This is shown visually with the schematic potential energy

surface in Figure 3. This means that the experimentally deter-
mined activation parameters for this reaction will depend on

all three of these processes. As D*G18 is the largest single term

in this expression (Figure 3), the activation parameters will be
dominated by the transition state for the deprotonation step,

even though the b-hydride elimination is the slowest step. This
results in the large positive entropy of activation (D*S8 =

+ 140(20) J K@1 mol@1, consistent with partial dissociation of the
bidentate ligand) and large enthalpy of activation (D*H8 =

Scheme 2. Proposed catalytic cycle for dehydrocoupling of Me2NH·BH3 by 1.

Scheme 3. Rate controlling steps of the proposed catalytic cycle.

Figure 3. Schematic potential energy surface (PES) for the first two steps of
the proposed catalytic cycle.
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+ 155(8) kJ mol@1, consistent with significant bond cleavage as
we approach the transition state). It should be noted that

similar activation parameters were obtained for the dehydro-
coupling of 9-BBN and N-methylaniline by Hill’s magnesium

catalyst (D*H8 = + 125.1(3) kJ mol@1 and D*S8 =

+ 85(2) J K@1 mol@1), and that this was also attributed to depro-

tonation of the amine.[48]

The observed deviation from first-order kinetics in
Me2NH·BH3 can be explained by the insertion reaction between

I1 and 4 being non-rate limiting provided [Me2NH·BH3] @ [1] ,
and becoming rate limiting as the reaction nears completion.
The fact that compound 5 is fully consumed at the end of the
reaction, while some 4 remains unreacted, can be explained by
both species being steady-state intermediates of the catalytic
cycle (i.e. their rate of formation and consumption is approxi-

mately equal). This means the concentration of both 4 and 5
remains low and relatively constant throughout. As the reac-
tion nears completion, 5 is fully converted to 3 through reac-

tion with the catalyst. However, compound 4 can only be con-
sumed in the presence of both Me2NH·BH3 and 1 (see

Scheme 2). As the reaction nears completion, all the
Me2NH·BH3 will be converted to 4 by reacting with the catalyst.

This means that there is no Me2NH·BH3 left for 4 to react with,

and thus a small amount of 4 is left unreacted once all sub-
strate is consumed. It should be noted that the off-metal di-

merization of 4 to 3 has been observed previously, and may
occur in our system given sufficient time.[56–58] However, we did

not observe this, and it is likely that this second-order process
is slow in the catalytic regime.[47] Finally, for the reaction of

iPr2NH·BH3 with 1, it is probable that the insertion reaction is

prevented by the increased steric bulk, leading to iPr2N=BH2 as
the major product. Thus, the mechanism shown in Scheme 2

accounts for all the observed mechanistic data; including the
rate dependencies, kinetic isotope effects, activation parame-

ters, and observed intermediates.

Conclusions

Magnesium complex 1 is an effective catalyst for the dehydro-

coupling/dehydrogenation of Me2NH·BH3 and iPr2NH·BH3. The
dehydrocoupling of Me2NH·BH3 afforded [Me2NBH2]2 more

cleanly, rapidly, and at lower catalyst loadings than any previ-
ously reported alkaline earth metal catalyst. We propose that

the bidentate ligand L1 allows the catalyst to reversibly regen-
erate 1 as the catalytic resting state, rather than irreversibly

forming a magnesium hydride species. This distinguishes the

system from previous catalysts and may account for the re-
markably high efficacy and stability of 1 as a catalyst for

amine-borane dehydrocoupling.

Experimental Section

All experimental details including synthetic methods, catalytic
studies, kinetic measurements, and crystallographic data are pro-
vided in the Supporting Information.
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