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Abstract—Wearable antennas can suffer from a variety of
mechanical deformations that are induced by the body dynamic.
The paper analyses how these complex deformations impact the
performance of a flexible antenna operating in the 5-6 GHz band.
The Green Coordinates spatial manipulation technique is used to
generate a range of complex two-dimensional deformations,
namely spherical, saddle, and twisting deformation. Generating
full geometries is a key enabler in this study. The results offer
valuable insight to the stability of antenna performance under in-
situ deformations.

Index Terms— computer graphics, flexible antenna, microstrip
antenna, numerical modelling.

I. INTRODUCTION

HE next-generation wireless communication systems have
increased the demand for flexible and wearable antennas

for a variety of applications ranging from sport to biomedical.
Considerable research has been focused on developing flexible
substrates [1, 2], and intrinsically stretchable conductors [3-6].
It is now well established that the polydimethylsiloxane
(PDMS) polymer is one of the most promising substrate
materials for wearable electronics due to its high conformability
compared to other polymer types, adjustable relative
permittivity, acceptable dielectric losses and low-cost
fabrication methods [2, 7, 8]. In addition to PDMS substrates,
textile substrates, such as e-textile, woven and knitted textile
structures are favorable alternatives [9-12] but exhibit lower
stability in combination with conductive prints and limited
design performance predictability due to complex geometrical
details of conductive threads [9-14].

Integration of antennas into clothing means that the antennas
will be affected by the dynamics of the human body that can
cause a variety of deformations [15-19] which in turn can
degrade the overall system's performance and present a
challenging design task for wearable antenna design.

One major issue in the design of wearable antennas is the fact
that they are initially designed as flat components. The impact
of deformations are predominantly assessed by assuming that
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Fig.1. Two-dimensional deformations of antenna – example of a) spherical
bending, b) saddle and c) twisting deformations.

antennas are bent in situ along a cylindrical plane, primarily
using experimental measurements [2, 3, 19-24] and less
frequently using commercial software such as Ansys and CST
[21, 22, 24-26].

Although there are numerous, unfortunately often
conflicting, results on the impact of cylindrical bending on
antenna performance, it is now widely accepted that bending
antennas along antenna length is more critical for performance
as it increases the resonant frequency of antennas [20, 21, 24].
The bending does not significantly affect the bandwidth of
antenna or the far field radiation pattern [20, 21, 24]. More
recently, the impact of twisting on flexible interconnects [27]
and wideband dipole antennas [17] was reported showing a
small impact on their performance.

However, the impact of other types of deformations, in
particular more complex two-dimensional (2D) deformations,
such as spherical, saddle and twisting deformations as shown in
Fig.1, have not been considered. The focus on simpler
cylindrical deformations is due to the fact that it is relatively
straightforward to generate these geometries in standard
computational electromagnetic (EM) software, such as Ansys
and CST, that are based on Constructive Solid Geometry (CSG)
primitives and Boolean geometry. It is commented here that the
subsequent choice of modelling method, Finite Elements, Finite
Integration Technique, Method of Moments, or their
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Fig.2. GC methodology: a) flat antenna within a flat cage (only faces of the flat
cage are shown); b) warped cage that describes the nature of the deformation;
c) deformed antenna inside the warped cage (only edges of the warped cage
shown) and d) final geometry of a deformed antenna.

implementation within particular software packages is not the
issue, rather it is the geometrical data upon which they operate
that has the failing. The main difficulty when generating
arbitrary deformations is in obtaining well behaved interfaces
between the constitutive parts of the antenna, free of
misalignments and microscopic gaps, as discussed in [28-30],
which can undermine subsequent EM numerical simulations.
Our recent work [28] proposed the use of a computer graphics
spatial manipulation technique based on Green Coordinates
(GC) for generating arbitrary deformations of antennas [31,32].
The GC technique belongs to a class of cage-based methods that
enclose the object of interest by a so-called bounding cage that
has a similar, but less complicated shape than the object of
interest. The GC method stands out from other similar spatial
manipulation techniques (Mean Value Coordinates [33, 34],
and Harmonic Coordinates [33]) as it is the most shape-
preserving, i.e., introduces a minimal amount of unphysical
distortions and is computationally efficient as is implemented
using a closed-form analytical expression [31, 32]. Our recent
work demonstrated that GC method provides a robust approach
to generating highly variable geometries of deformed antennas
without introducing the disruptive CAD artefacts that can either
block or seriously undermine EM characterization.

The systematic distortions that are introduced by the GC
method can be effectively compensated for by using an iterative
pre-scaling approach, as shown in [28-30], that guarantees
physical reality of the final geometries. This approach was
calibrated against the simple case of cylindrical bending for
which no distortion is expected to occur and proved that the
performance of the GC generated cylindrically bent antenna
agrees well with the CSG generated antennas opening the way
for robust generation of more general antenna deformations

[28]. A few representative complex, double curved antenna
geometries have been demonstrated in [28] but a more general
analysis of antenna performance under varying degrees of these
complex deformations is needed in order to: a) assess the
general sensitivity of an antenna to a variety of deformations,
b) identify which class of deformations have the most disruptive
impact on the antenna performance and c) investigate whether
simpler cylindrical deformations can indeed be used to predict
the impact of more complex deformations.

This paper extends the approach of [28] to consider a more
systematic parameter sweep of the problem space for several
cases of doubly curved deformations, namely, spherical and
saddle bending and twisting deformation. Although these still
do not span all “irregular” deformations, they are in nature more
complex than the simpler case of cylindrical bending.
Specifically, the paper explores how these deformations affect
the performance of flexible antenna fabricated on PDMS
substrates operating in the 5.5-6 GHz wireless band.

The paper is structured as follows: Section II briefly
overviews the GC method in the context of arbitrary antenna
generation and defines the parameters of the warped cages for
spherical, saddle and twisting deformations. Section III assesses
the impact of spherical, saddle, and twisting deformation on
antenna performance, namely S11, bandwidth and far field
profile. This section further investigates whether the impact of
2D antenna deformations can be predicted by simpler
cylindrical deformations. Section IV gives the overall
conclusions of the paper.

II. COMPLEX ANTENNA DEFORMATIONS

In this section the main principle of the GC method is
overviewed and applied to a variety of complex 2D antenna
deformations.

The GC technique belongs to a type of cage-based methods
that enclose the object of interest by a so-called bounding cage
that has a similar, but less complicated shape than the object of
interest, and, as shown in Fig. 2a), for the case of patch antenna
the bounding cage is a simple polygonal tube [28-30]. All
spatial points within the interior of the cage can be expressed in
terms of the cage’s geometry e.g. vertices and face normals of
the cage’s surface triangulations [28-30]. The vertices of the
simple cage are then manipulated to generate a wanted
deformation as shown in Fig. 2b) for the case of saddle
deformation. The deformation of the cage is then mapped onto
the geometry of the enclosed object, as shown in Fig. 2c).
Removing the warped cage leaves the deformed object, as
shown in Fig. 2d). It is a highly valuable feature of the GC
method that it maps relatively crudely defined deformations of
the warped cage onto the smooth deformations of the final
geometry, beyond the scope of explicit manual intervention.

For the patch antenna with a coaxial feed two approaches can
be adopted when constructing the flat cage namely, a) construct
the cage that follows the shape of antenna and antenna cross
section that includes the extrusion around the coaxial cable.
That part of the cage that surrounds the coaxial feed does not
experience any deformation, but the rest of the cage is deformed
as required, or, b) define the flat cages as shown in Fig.2a), i.e.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

Fig. 3. The flat patch antenna geometry, a) the top view of antenna where the
x-axis is the H-plane of the antenna and z-axis is the E-plane of the antenna; b)
the side view where the y-axis is the propagation direction of the excitation
pulse.

a simple polyhedron, deform the cage as required, and then add
the coaxial cable to the deformed antenna using Boolean
“through” operation. In this paper the latter approach is used
due to the controlled nature of deformations. However, in case
of more general or irregular deformations the former approach
may be better suited.

The GC method opens a way of generating more complex
antenna deformations and these will now be investigated on a
typical example of wearable patch antenna fabricated on a
flexible PDMS substrate and operating in the wireless 5.5-
6GHz band. The schematic of the flat patch antenna is shown
in Fig. 3. The substrate’s length, Lsub, width, Wsub, and
thickness, h, are 36 mm, 36 mm and 1.5 mm respectively. The
metallic patch has width, W=18 mm, and length, L= 14.3 mm.
The feed position is offset by zo=2.8 mm in the z- direction from
the middle of the patch and is designed to give an optimal S11

parameter of antenna and 3.5% of fractional bandwidth. The
coaxial cable feed has inner, rin, and outer radius, rout of 0.625
mm and 2.15 mm respectively. The cable dielectric constant is
2.2. The dielectric constant of the PDMS substrate is 2.7 and its
dielectric losses are neglected. The radiating patch and the

ground plane are assumed to be perfect conductors of 35 m
thickness.

Fig. 4 illustrates the cages that are considered in this paper. In
all cases the flat cage width, length and height are 56 mm, 56 mm
and 7.5 mm respectively and the antenna is positioned in the center
of the flat cage. The concave and convex spherical deformations
are characterized by a spherical radius, r. To generate these
spherical deformations a cross-section of a polygonal tube is
defined and then extruded along the width or the length of the
cage (Fig. 4a)). By changing the origin of the sphere, i.e. above
or below the top antenna surface, the concave and convex
deformations can be obtained and the radius of the sphere
defines the strength of imposed deformation.

Similarly, to generate saddle deformations a cross-section of
a polygonal tube is defined across the width (length) of the cage
as a sinusoidal parabola and the tube is extruded along the
length (width) along a defined parabola. Fig.4c) shows an
example of a saddle cage where the saddle deformation of the
cage is controlled by the half period of the sine function
AWsin(x) along the width of antenna and ALsin(z) along the
length of antenna. The strength of the deformation is controlled
by the parameter AW and AL with the peak value centered at

Fig. 4. Warped cages describe the nature and level of deformation for
generating (a) concave (b) convex (c) saddle and (d) twisting deformation.

the midpoint along the width and length of the cage
respectively. Saddle deformations are obtained when
amplitudes AW and AL have opposite signs. Finally, the twisting
deformation is generated by defining a cross section of the cage
which is then extruded and twisted along the length or width of
antenna, Fig.4d), with a twisting deformation controlled by a
mean twist per meter parameter.

To re-assure the reader of the accuracy of the GC method in
the context of 2D deformations, Fig. 5 shows the relative
distortion in the length and width of the radiating patch. The
iterative pre-scaling approach described in [28-30] is applied to
each deformation namely the spherical convex (r = 30 mm),
saddle (A=AW=AL=20 mm) and twisting (0.0125 twist/m)
deformations. It can be seen that relative distortion is initially
high but rapidly reduces after only a few iterations. Fig.5 also
shows that distortion errors for the spherical and twisting
deformations reduce more rapidly than for the case of saddle
deformation.

Fig.5 GC induced relative distortion error in the width (solid line) and length
(dashed line) of the radiating patch as a function of number of pre-scaling
iterations for generating convex, saddle and twisting antenna deformations.
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III. DEFORMED ANTENNA PERFORMANCE

In this section the impact of complex deformations on
antenna performance, namely on antenna resonant frequency,
reflection coefficient and bandwidth, is investigated. The change
in material properties of the antenna substrate and the metallic
patch due to deformations is not included in the model.

The generated geometries of deformed antennas are imported
into in-house time-domain electromagnetic (EM) solver based on
Transmission Line Modelling (TLM) method [37] and tetrahedral
Delaunay meshing [38]. The tetrahedral TLM method [38] is a
well-established extension of the Cartesian TLM method [37],
and has been demonstrated to be second-order accurate with
respect to wavelength, provides both smooth boundary and

Fig. 6. Computational box with antenna, depicting the fictitious box in the near
field of antenna that is meshed more finely. The inset of the figure depicts the
hybrid mesh of the concave antenna.

graded mesh capabilities and has been industrially
characterized and deployed for a range of applications,
including EMC and aerospace [39-42]. Space precludes a more
detailed description of the method and readers are specifically
referred to [38, 39] for further details.

In all cases the whole problem is meshed with a hybrid mesh
that is a combination of a 2.5 mm cubic mesh and a tetrahedral
mesh. The antenna near field is meshed more finely with 0.625
mm hybrid mesh as described in [40]. The antenna near field

region is captured in a fictitious box of size 0.92  × 0.92  ×

0.55 , where is the operating wavelength of 5.5 GHz. A free
space impedance boundary condition is imposed on the
boundaries of the computational box. An example of the
meshed computational problem is given in Fig. 6 where the
inset in Fig.6 gives a closer view of the sampled antenna surface
within the computational box. In all cases the antenna is excited
with the fundamental TEM mode of the coaxial feed modulated
by a time-domain pulse with 3 dB frequencies of 4.6 and 7 GHz.
The fundamental TEM mode is obtained as an eigen solution of
the discretized 2D cross section of the coaxial cable [43]. All
simulations are run on 8 processor cores of a commodity cluster
for 2 million time steps. The threshold for forming cell clusters
is 5 μm and the timestep is 0.018 ps [39]. The performance of

the flat patch antenna is taken as a reference with a resonant
frequency of 5.68 GHz, reflection coefficient (S11) at the
resonant frequency of -30.6 dB and fractional bandwidth of
3.5%.

A. Spherical Convex and Concave Deformations

In this section the impact of spherical convex and concave
deformations on antenna performance is considered. The flat
antenna is generated using Boolean geometry. To achieve
desired spherical deformation the deformed cage is generated
by placing the origin of the sphere below (concave) or above
(convex) the antenna ground plane and the cage cross section is
extruded along the length of the antenna. The deformation of
the cage is controlled by the radius parameter as shown in
Fig.4a,b) with the radius varying from 50 mm to 20 mm for the
concave case and from 50 mm to 30mm for the convex case.

Fig. 7 shows the impact of the spherical concave and convex
deformation on the change of the resonant frequency compared
to the resonant frequency of the flat antenna, f0. The dB values
in the figure denote the value of the S11 parameter at the
resonant frequency for the given spherical radius and the shaded
region defines the 3.5% fractional bandwidth of the flat
antenna. The inset of the figure shows the deformed antenna
geometries for selected spherical radii, namely r =50 mm,
30 mm and 20 mm, where the reduction of the radius
corresponds to increased deformation. It can be seen that in the
case of both convex and concave bending the resonant
frequency increases with increased deformation. The concave
deformation can cause up to 5% shift of the antenna resonant
frequency whilst the antenna resonant frequency is less
sensitive to the convex spherical deformation. In all cases the
S11 value at the resonant frequency stays below -24 dB as
indicated in Fig. 6. Furthermore, it can be seen that for
deformation radius smaller than 30 mm the concave antenna
performance moves outside the operating bandwidth of the flat
antenna which is a key practical observation. This can be
intuitively explained by the fact that the spherical bending acts
so as to reduce the effective length of antenna. This effect is
stronger in the case of concave bending whilst in the case of
convex bending, the fringing fields at radiating edges act to
counteract this effective length reduction resulting in smaller
change in resonant frequency.

Fig. 7. Impact of the spherical concave and convex deformation on the resonant
frequency of the deformed antenna compared to that of the flat antenna (f0) for
different spherical radii. Values (dB) indicate the value of S11 parameter at the
resonant frequency and the shaded region indicates the 3.5% fractional
bandwidth of the flat antenna.
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Fig.8. Impact of the spherical concave and convex deformations on the
fractional bandwidth of the deformed antenna.

Fig.8 shows the impact of the concave and convex spherical
deformations on the fractional bandwidth of antenna. The blue
horizontal line denotes the 3.5% fractional bandwidth of the flat
antenna. It can be seen that concave deformation marginally
increases the bandwidth of antenna (up to 0.2%) whilst the
convex deformation has the opposite effect on antenna
bandwidth and results in bandwidth reduction (up to 0.5%).
This may be explained by the fact that the fringing fields in the
case of concave bending essentially decrease the effective
dielectric constant which in turns increases the bandwidth of the
antenna whilst the opposite is happening in the case of convex
bending.

The impact of the spherical deformation on the far field
radiation pattern is shown in Fig. 9. Fig. 9(a) compares the E-
plane radiation pattern of the flat patch antenna (solid line) with
the convex and concave spherically deformed antenna for the
radius r = 30 mm (doted lines). Fig. 9(b) shows the same
information but for the H-plane radiation pattern. It can be seen
that convex and concave deformations do not significantly
affect the main beam in the E-plane, with the main change being
in the increased sidelobes. However, for the H-plane radiation
pattern, the concave deformation increases both the main beam
and the sidelobes whilst the convex spherical deformation
slightly reduces the width of the main beam and increases the
width and strength of the sidelobe. Again, the concave
deformation is shown to affect the radiation pattern more which
can be explained by that fact that fringing fields contribute to
the increased sidelobe radiation.

Fig. 9. Comparison of the far field radiation pattern at 5.6 GHz in a) E-plane
and b) H-plane of a flat patch antenna (solid line) with antenna deformed using
spherical concave deformation with r = 30 mm, (dotted line) and antenna
deformed using spherical convex deformation with r = 30 mm (dashed line).

B. Saddle Deformations

In this section the impact of the 2D saddle deformations on
antenna performance is considered. The cage for the saddle
deformation is constructed as in Fig. 4c) and the strength of the
deformation is controlled by the parameter |AW|=|AL|=A that is
varied from 0 mm (flat case) to 20 mm. Two cases are
considered, namely when convex bending is along the width of
antenna (concave bending is along the length of antenna) and
when convex bending is along the length of antenna (concave
bending is along the width of antenna).

The impact of saddle deformations on the change of resonant
frequency compared to the resonant frequency of the flat case
is shown in Fig. 10. As before, the dB values in the figure
indicate the valued of the S11 parameter for given deformation
and the shaded region defines the 3.5% fractional bandwidth of
the flat antenna. It can be seen that convex bending along the
width increases the antenna resonant frequency by up to 2%,
whilst the convex bending along the length of antenna causes
reduction in the antenna resonant frequency by up to 4% and
moves it outside the operating bandwidth of the flat antenna.
This can be explained by the fact that convex bending along the
antenna width (and concave along the antenna length) acts to
reduce the effective length of the antenna resulting in increased
resonant frequency. On the other hand, convex bending along
antenna length (and concave along the antenna width) means
that fringing fields can act to increase the effective length of
antenna and consequently decrease the antenna’s resonant
frequency. Moreover, the value of the S11 parameter at the
antenna resonant frequency decreases to -9.9 dB resulting in the
antenna not meeting the bandwidth requirements. This implies
that convex nature of the deformation along the length of
antenna is more critical for antenna resonant frequency.

Fig. 11 shows the impact of saddle deformations on the
fractional bandwidth of antenna. It can be seen that convex
deformation along the width of antenna generally reduces the
operating bandwidth of antenna, whilst the convex deformation

Fig. 10. Impact of saddle deformations (convex bending along the width and
length of antenna) on the resonant frequency of deformed antenna compared to
the resonant frequency of the flat antenna, f0, Values (dB) indicate the value of
S11 parameter at the resonant frequency and the shaded region indicates the
3.5% fractional bandwidth of the flat antenna.
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Fig. 11. Impact of the saddle deformations (convex bending along the width
and length of antenna) on the fractional bandwidth of antenna.

Fig. 12. Comparison of the far field radiation pattern at 5.6 GHz in a) E-plane
and b) H-plane of a flat patch antenna (solid line) with antenna deformed using
saddle deformation with convex bending along the length (dashed line) and
along the width (dotted line) with A = 20 mm.

along the length slightly increases the bandwidth. However,
Fig.10 also shows the increase in the S11 value at the resonant
frequency that can be attributed to the changes in the bandwidth
of antenna. Particularly in the case of convex deformation along
the length of the antenna, the value of S11 at the resonant
frequency increases with deformation, as shown in Fig.10, and
results in a complete loss of bandwidth for stronger
deformations.

The impact of saddle deformations on the far field radiation
pattern is shown in Fig. 12. Fig.12(a) compares the E-plane
radiation pattern of the flat patch antenna (solid line) with the
deformed antenna for A=20 mm (doted lines). Fig.12(b) shows
the same information but for the H-plane radiation pattern. It
can be seen that saddle deformation with convex deformation
along the length of antenna is more critical as it contributes to
an increase of the main beam width as well as the sidelobe level.
Saddle deformation with convex deformation along the width
of antenna is seen to reduce the main radiation beam in the E-
plane compared to the flat antenna. This can be explained by
the complex interplay between fringing fields at antenna
radiating edges that act to increase the radiated power in the
sidelobes and also contribute to asymmetric radiation profile.

C. Twisting Deformations

In this section the impact of the twisting deformation on
antenna performance is investigated. Twisting deformations are

Fig. 13. Impact of twisting deformation applied along the width and length of
antenna on the resonant frequency of deformed antenna compared to that of the
flat antenna, f0. Values (dB) indicate the value of S11 parameter at the resonant
frequency and the shaded region indicates the 3.5% fractional bandwidth of the
flat antenna.

Fig. 14. Impact of the twisting deformation applied along the length and width
of antenna on the fractional bandwidth of antenna.

Fig. 15. Comparison of the far field radiation pattern at 5.6 GHz in a) E-plane
and b) H-plane of a flat patch antenna (solid line) with antenna deformed using
twisting deformation with 0.0125 twist/m along the length (dashed line) and
along the width (dotted line) of antenna

imposed on the warped cage by specifying mean rotating per
meter along the width and length of the antenna ranging from
0.0050 twist/m to 0.0125 twist/m.

Fig. 13 shows the ratio of the resonant frequency of the
deformed antenna to that of the flat antenna for twisting
deformation along length and width of antenna. It can be seen
that increasing the twisting along the width of antenna increases
the resonant frequency by about 1 % whilst twisting along the
length of antenna decreases the resonant frequency by about
2%. This implies that twisting deformation along the length of
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the antenna tends to increase the effective length of antenna
resulting in a higher resonant frequency whilst the opposite is
happening when antenna is twisted along its width. These
results agree with our previous investigation of the impact of
twisting on microstrip patch antenna operating at 2.45 GHz and
fed by a microstrip line [29]. However, as the dimensions of
5.68 GHz antenna are smaller the impact of the twisting results
in a smaller shift of the resonant frequency compared to the 2.45
GHz antenna.

The shaded region depicts the fractional bandwidth of 3.5%
of the flat antenna and it can be seen that the deformed antenna
resonant frequency stays within the bandwidth of the flat
antenna. In all cases the S11 values at the resonant frequency
tend to increase but more so for the case of twisting along the
length of the antenna.

Twisting deformation along the length of antenna decreases
the overall bandwidth of the antenna and has a larger impact
than twisting deformation along the width of antenna as shown
in Fig.14. In all cases considered the deformed antenna
predominantly operates within the band defined by the flat
antenna which is depicted by the shaded region in Fig.13.
Twisting deformation of the antenna tends to average the
effective dielectric constant and the impact of the fringing fields
so that the overall impact of the deformation on the bandwidth
and the resonant frequency of antenna is smaller compared to
other deformations investigated in this paper which is also
confirmed in [17,27].

The impact of the twisting deformation on the far field
radiation pattern is shown in Fig.15. Fig.15(a) compares the E-
plane radiation pattern of the flat patch antenna (solid line) with
the deformed antenna for maximum twisting parameter
considered in this paper i.e., 0.0125 twist/m. Fig.15(b) shows
the same information but for the H-plane radiation pattern.
Comparing Fig.15(a) and Fig.15(b) it can be seen that twisting
antenna along its length has much bigger impact on the antenna
radiation pattern, both in the terms of the main beam and also
in the increased back radiation compared to the case when
twisting is induced along the width of antenna.

D. Comparison with the Cylindrical Deformations

An important question to consider is how the results from the
previous section compare with those of representative one-
dimensional (1D) cylindrical deformations along the cylinder
plane and whether it is enough to just consider simpler 1D
deformations in order to assess antenna stability under
deformations. To answer this question this section compares
the impact of 2D spherical deformations on antenna
performance against the cylindrical deformation along both E
and H- plane. GC cage of the cylindrical deformation is
controlled by the cylinder radius that is varied from 20 to 50
mm. Four cases are considered, namely concave and convex
cylindrical bending, each along both the length and the width of
antenna.

Fig.16 compares the impact of the spherical concave
deformations on antenna resonant frequency and S11 parameter
against the concave cylindrical deformations along the length
and width of antenna. Our results for concave cylindrical
bending agree with majority of published literature that state
that bending along the length of antenna results in the increase

Fig. 16. Change in the resonant frequency of deformed antenna compared to the
flat antenna for the concave spherical and length and width axis cylindrical
bending. Values (dB) indicate the value of S11 parameter at the resonant
frequency and the shaded region indicates the 3.5% fractional bandwidth of the
flat antenna.

Fig. 17. The fractional bandwidth for a concave spherically deformed antenna
and antenna with length and width axis.

Fig.18. Comparison of the far field radiation pattern at 5.6 GHz in a) E-plane
and b) H-plane of a flat patch antenna (solid line) with antenna deformed using
concave deformation with radius 20mm, and respective length and width axis
deformation of antenna.

of resonant frequency due to the reduced effective length of the
antenna [20,21,24]. Concave bending along the width of
antenna does not have much impact on the resonant frequency
and has stronger impact on the bandwidth of antenna and is in
agreement with [21,24].

Fig.16 shows that the impact of concave spherical
deformation is more significant than representative cylindrical
deformations. Whilst there seems to be a correlation between
the results in the frequency shift between the cylindrical
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deformation along the antenna length and spherical
deformation, 1D deformations underestimate the amount of
frequency shift. Furthermore, the values of the S11 parameter at
the resonant frequency in the case of cylindrical bending tend
to increase for all cases but more significantly in the case of
cylindrical bending along the width of antenna, mostly due to
the introduced curvature in the excitation plane. This will have
most consequence for the bandwidth of antenna as explored in
Fig.17 that compares the impact of concave spherical and
cylindrical deformations on the antenna fractional bandwidth.
The cylindrical bending along the length of antenna acts to
decrease the antenna fractional bandwidth [21,24] which can be
explained by the fact that the fringing fields at radiating ends of
antenna are in different planes tending to decrease the
bandwidth of antenna. The cylindrical bending along the width
of antenna acts to increase the antenna bandwidth [21,24] as
the fringing fields at radiating ends are in the same plane.
Results for cylindrical bending along the width of antenna are
more strongly correlated with the results of spherical bending
but again, underestimate the change in bandwidth.

Comparisons of the impact of the concave spherical and
cylindrical bending on the far field radiation pattern are shown
in Fig.18 for the deformation radius r = 20 mm. Fig.18(a)
compares the far field radiation patterns in the E-plane of the
flat antenna with cylindrically deformed antenna along the
length and the width axis and spherically deformed antenna.
Fig.18(b) gives the same information but for the far field
radiation pattern in the H-plane. It can be seen that in both cases
the spherical and cylindrical deformations have similar impact
on the main lobe but that spherical deformation has a much
stronger impact on the back lobes.

Fig.19 compares the impact of the convex spherical
deformation and the simpler cylindrical deformations on the
antenna resonant frequency and the value of S11 at the resonant
frequency. According to Fig. 18 convex cylindrical bending
along antenna length acts to reduce the resonant frequency of
antenna which is due to the larger effective length of antenna.
Convex cylindrical bending along the width of antenna again
does not have much impact on the resonant frequency. In both
cases 1D convex cylindrical bending underestimate the change
in the resonant frequency of antenna due to convex spherical
bending. Furthermore, the S11 value at the resonant frequency
in the case of spherical bending remains largely unaffected
whilst in the case of cylindrical bending the S11 values increase
and more so in the case of cylindrical bending along the antenna
width [22] which we believe is caused by the curvature in the
excitation plane. This can have potential consequences on the
antenna bandwidth and this is explored in Fig.20 where impact
of convex spherical and cylindrical deformations on antenna
fractional bandwidth is presented.
Fig.20 demonstrates that both spherical and cylindrical
deformation in the H-plane predict a reduction of antenna
fractional bandwidth whilst the cylindrical bending in E-plane
results in gradual increase in antenna bandwidth. Overall,
cylindrical bending tends to overestimate the impact on the
antenna bandwidth compared to the spherical case and this is
more pronounced as the deformations are increased.

The impact of convex spherical and cylindrical bending on the

Fig. 19. Change in the resonant frequency of deformed antenna compared to the
flat antenna for the convex spherical and length and width axis cylindrical
bending. Values (dB) indicate the value of S11 parameter at the resonant
frequency and the shaded region indicates the 3.5% fractional bandwidth of the
flat antenna.

Fig. 20. The fractional bandwidth for a convex spherically deformed antenna
and antenna with length and width axis cylindrical bending.

Fig. 21. Comparison of the far field radiation pattern at 5.6 GHz in a) E-plane
and b) H-plane of a flat patch antenna with antenna deformed using a convex
deformation with radius 30mm, and respective length and width axis
deformation of antenna.

antenna far field radiation pattern is shown in Fig. 21a,b) for the
case of deformation r = 30 mm and compared against the result
of the flat antenna. It can be seen that the major differences are
in the back lobes and that all deformations impact similarly the
main radiation beam.

Overall, comparing Figs.(16-21) it can be concluded that
when concave deformations are considered the spherical
deformation is better correlated with the cylindrical bending
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along antenna length when the impact on the resonant
frequency is considered but better correlated to the cylindrical
bending along the width of antenna when fractional bandwidth
is considered. For the case of convex deformations, the
spherical deformation is better correlated to the cylindrical
bending along the width of antenna when the impact on both
the resonant frequency and the bandwidth is considered.
However, in each case the simpler cylindrical deformations
either underestimate or overestimate the changes in antenna
performance parameters by up to 4%. This is a significant
observation fundamental to design. And finally, spherical
convex and concave antenna deformations predict similar
changes to the main beam pattern as simpler cylindrical
deformations with the main changes being in the back lobes.

IV. CONCLUSION

This paper investigates the impact of complex deformations
imposed on practical flexible antennas designed on the PDMS
substrate and operating in the wireless 5.5-6 GHz region. A
wide range of 2D deformations of varying strengths have been
considered namely, spherical deformations, both convex and
concave in nature, saddle type deformations and twisting
deformations. The parameters of deformations are defined in
terms of warped cages of the GC method.

Our results show that spherical bending of antenna shifts the
resonant frequency of antenna to higher frequencies and that the
concave spherical bending has particularly strong impact on the
resonant frequency. Concave spherical deformation can act to
move the bandwidth of deformed antenna outside the operating
bandwidth of the flat antenna.

Saddle and twisting deformation tend to reduce the antenna
resonant frequency and are more detrimental to antenna
operation when deformations are applied along the length of
antenna. In particular, saddle deformations where convex
bending is induced along the length of antenna can reduce the
resonant frequency of the antenna and move it outside the
operating band designed for the flat antenna.

Our analysis and comparison of the impact of spherical
bending with simpler cylindrical bending along the width and
length of antenna has found that, although some correlation
between results can be made when resonant frequency or
bandwidth is considered, it is found that simpler cylindrical
bending can underestimate or overestimate the prediction of
antenna performance by up to 4%. This is deemed to be
sufficiently high, and antenna can be out of the operating band
designed for the flat antenna.

The presented analysis of deformed antennas shows that the
GC method coupled with electromagnetic simulator is a
promising design toolkit that can be confidently used to assess
the impact of deformations on antenna performance and give a
more accurate prediction of antenna stability under
deformations.
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