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Benchmarking framework for
machine learning classification
from fNIRS data

Johann Benerradi*, Jeremie Clos, Aleksandra Landowska,

Michel F. Valstar and Max L. Wilson

School of Computer Science, University of Nottingham, Nottingham, United Kingdom

Background:While e�orts to establish best practices with functional near infrared

spectroscopy (fNIRS) signal processing have been published, there are still no

community standards for applying machine learning to fNIRS data. Moreover, the

lack of open source benchmarks and standard expectations for reporting means

that published works often claim high generalisation capabilities, but with poor

practices or missing details in the paper. These issues make it hard to evaluate

the performance of models when it comes to choosing them for brain-computer

interfaces.

Methods: We present an open-source benchmarking framework, BenchNIRS,

to establish a best practice machine learning methodology to evaluate models

applied to fNIRS data, using five open access datasets for brain-computer interface

(BCI) applications. The BenchNIRS framework, using a robust methodology with

nested cross-validation, enables researchers to optimise models and evaluate

them without bias. The framework also enables us to produce useful metrics and

figures to detail the performance of new models for comparison. To demonstrate

the utility of the framework, we present a benchmarking of six baseline models

[linear discriminant analysis (LDA), support-vector machine (SVM), k-nearest

neighbours (kNN), artificial neural network (ANN), convolutional neural network

(CNN), and long short-term memory (LSTM)] on the five datasets and investigate

the influence of di�erent factors on the classification performance, including:

number of training examples and size of the time window of each fNIRS sample

used for classification. We also present results with a sliding window as opposed to

simple classification of epochs, and with a personalised approach (within subject

data classification) as opposed to a generalised approach (unseen subject data

classification).

Results and discussion: Results show that the performance is typically lower than

the scores often reported in literature, and without great di�erences between

models, highlighting that predicting unseen data remains a di�cult task. Our

benchmarking framework provides future authors, who are achieving significant

high classification scores, with a tool to demonstrate the advances in a comparable

way. To complement our framework, we contribute a set of recommendations for

methodology decisions and writing papers, when applying machine learning to

fNIRS data.
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1. Introduction

Many research fields, including computer vision and natural
language processing, benefit from strong standards, with state-
of-the-art models, and established ways to benchmark machine
learning on common datasets (LeCun et al., 1998; Krizhevsky
and Hinto, 2009; Maas et al., 2011). For relatively new areas
of application, like the classification of fNIRS data however, our
community still lacks clear standards and approaches to compare
and recognise significant advances in performance. This lack of
standards creates a large discrepancy in how machine learning
is applied to fNIRS, and how the methodology and results are
reported in fNIRS papers, and this makes it hard to draw clear
conclusions as to whether some approaches are really better than
others. Notably, fNIRS machine learning papers sometimes fall
foul of common mistakes, and the way that methods and results
are presented are often missing critical information that would
make them reproducible. These problems are exacerbated by the
fact that the field lacks commonly recognised open access datasets
for machine learning benchmarking, even though this journey is
going in the right direction with the more frequent publication of
open access datasets and a will to gather them in a single place.1

Moreover, the lack of code sharing practices, which would enable
inspection by others and improve reproducibility, is another issue
that ultimately slows the progress of our field.

The same way the fNIRS community is going toward more
established practices for signal processing (Pinti et al., 2018b;
Santosa et al., 2020) and reporting (Yücel et al., 2021), we aim
in this research to provide a community resource specifically for
machine learning in the context of fNIRS BCI applications. Our
work enables researchers to: (1) reuse the implementation of a
robust machine learning framework methodology on common
open access fNIRS datasets in an open source code repository, (2)
share the implementation of fNIRS machine learning approaches
such that they can be inspected and validated by others, (3) apply
new machine learning approaches easily on multiple common
open access fNIRS datasets such that they can be compared to
baseline implementations as well as recent contributions, and (4)
contribute to a community best practice checklist of expectations
for both decisions made during implementation and analysis, and
for reporting detail in papers.

Since in-depth comparisons of signal processing pipelines
have already been conducted in the literature (Pinti et al., 2018b;
Santosa et al., 2020), this paper will use a signal processing pipeline
based on those recommended best practices for all the experiments
and focus on comparing various machine learning algorithms
with a robust methodology. More specifically, we describe the
implementation of a range of baseline machine learning algorithms
on a specific set of public datasets in Section 2, and present
the results of such a multi-algorithm multi-dataset benchmarking
comparison in Section 3. Finally in Section 4 we present a
recommended checklist for researchers that are implementing
machine learning approaches for classification from fNIRS data
(Section 4.7) and the details of the Python framework developed to
perform multi-dataset comparison with a robust machine learning
methodology (Section 4.8).

1 https://openfnirs.org/data/

Further, we consider this work as a call to action,
toward helping the community establish, from the variety of
unstandardised approaches that have been published so far,
consolidated best practices for identifying advances in our
community. We list our initial recommended practices in this
paper, but we invite community members to contribute to a
growing working document of best practices on our repository.2

1.1. fNIRS and brain-computer interfaces

Even though electroencephalography (EEG) is the most
popular brain imaging technique for BCIs, research into
continuous wave fNIRS is increasing due to its relative tolerance
to user motion (Nishiyori, 2016). fNIRS is based on the absorption
properties of hemoglobin in the near infrared spectrum (Jobsis,
1977) and enables us to measure relative changes in both
oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) (Delpy et al.,
1988). It is characterised by a lower temporal resolution but is
capable of higher spacial resolution than EEG (Nishiyori, 2016),
and the frequencies of interest with fNIRS (under 1 Hz) are usually
lower than the ones studied with EEG (Clerc et al., 2016; Rahman
et al., 2019). fNIRS still faces challenges to be used reliably in real
life conditions, but more and more lab settings experiments are
working toward this goal (Pinti et al., 2018a), with some studies
focusing for instance on walking (Vitorio et al., 2017) and climbing
(Carius et al., 2020). fNIRS is currently mostly used for passive
(rather than active) BCIs (Zander and Kothe, 2011; Zephaniah and
Kim, 2014) due to the 1–2 s delay in cerebral blood flow and a peak
response 4–6 s after a stimulus (Buxton et al., 2004).

A lot of tasks have been used in lab settings in order to
advance BCI research. The first category falls under the active BCI
category, where the user actively attempts to control an application
through purposeful thought (Clerc et al., 2016). Researchers often
use motor tasks for this purpose, where finger tapping is most
commonly used in fNIRS research (Sitaram et al., 2007; Cui et al.,
2010). Research can also involve motor imagery (Pfurtscheller and
Neuper, 2001), which consists of imagining a movement without
actually performing it. Indeed, motor imagery has been shown to
elicit similar brain activity to motor execution (Miller et al., 2010).

For passive BCIs, which are not used to voluntarily control an
application, fNIRS data is used to monitor and classify a user’s
mental state (Clerc et al., 2016) while they perform a task. A range
of different mental workload tasks are often used to train such
passive BCIs (Maior et al., 2014; Benerradi et al., 2019). One of
the most popular is the n-back task, which involves remembering
the recurrence of regularly presented stimuli (Wang et al., 2015;
Aghajani et al., 2017; Le et al., 2018). A second task used to elicit
mental workload is the word generation task, where subjects are
asked to give as many word starting by a designated letter as
possible (Faress and Chau, 2013; Hong et al., 2018). Finally, mental
arithmetic tasks are often used, in which subjects are asked to solve
simple mathematics operations such as additions, subtractions,
multiplications, and divisions (Hong et al., 2018; Yoo et al., 2018).

2 https://gitlab.com/HanBnrd/benchnirs/-/blob/main/CHECKLIST.md
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1.2. Machine learning for fNIRS
brain-computer interfaces

Many standard machine learning approaches have been used to
classify fNIRS data in the context of different tasks and applications.
For instance, Herff et al. (2013) used LDA to classify mental tasks
describing results of 71, 70, and 62% accuracy onmental arithmetic,
word generation andmental rotation tasks respectively against rest.
Hong et al. (2015) used LDA to classify between mental arithmetic,
left- and right-hand motor imagery and obtained and average
classification accuracy of 75.6%. Nazeer et al. (2020) also used LDA
with features extracted using vector-based phase analysis on finger
tapping tasks presenting classification accuracies of 98.7 and 85.4%
with two classes (left-hand, right-hand) and three classes (left-hand,
right-hand, rest), respectively. Shin et al. (2016a) also used SVM
for classifying mental arithmetic against baseline and obtained
performances around 77% with eyes opened and around 75% with
eyes closed. Other standard machine learning models such as kNN
have been also used, for example, to classify three different mental
workload levels on n-back tasks and reached accuracies up to
52.08% (Kesedžić et al., 2020).

Deep learning has also been used extensively with fNIRS data
to classify activity during tasks. For example, Chan et al. (2012)
used anANN and reported an accuracy of 63.0% for classification of
mental signing against rest. Trakoolwilaiwan et al. (2017) compared
an ANN and a CNN to classify between left-, right-hand finger
tapping and rest and report accuracies of 89.35 and 92.68%,
respectively. Yoo et al. (2018) used a LSTMmodel for classification
between mental arithmetic, mental counting, and puzzle solving,
and report accuracies up to 83.3%.

The classification performances reported are extremely high,
and would suggest that this research is ready for technology transfer
by industry, however our findings suggest otherwise.

1.3. Limitations of current literature

Recent work has produced strong examples for recommending
best practices for processing of fNIRS data (Pinti et al., 2018b), and
considerations regarding the reporting of works with fNIRS (Yücel
et al., 2021). In this trend, we highlight issues specific to machine
learning classification with fNIRS data.

Machine learning, while popular, often suffers from flaws in
many existing publications across various domains of applications
(Kapoor and Narayanan, 2022), including in the domain of BCIs
(Nakanishi et al., 2020). In reviewing the literature of machine
learning applied to fNIRS, it is common to see limitations that
can be categorised into two types.3 The first type regards the
methodology, including potential mistakes, flaws, and lack of rigor.
Common issues with published research include:

• not taking into consideration the experimental design when
selecting instances to classify, this includes for example using
resting periods used for return to baseline the same way as
intentionally designed control baseline tasks;

3 We choose not to call out specific papers and authors, but rather highlight

things that researchers should look out for.

• randomly selecting hyperparameters without justification and
not performing hyperparameter tuning;

• optimising themodel’s hyperparameters using the test set (also
called overfitting to the hyperparameters);

• testing classifiers with data already seen during training and
neglecting the potential overlap between the different sets
(training, validation, test), this includes for example issues
related to sliding windows with overlapping;

• not using cross-validation or permutation testing to validate
results;

• not performing a statistical analysis to compare results;
• not handling class imbalance.

This first type of limitations is however difficult to highlight
with certainty in most cases, this being related to the second
type of limitations which is the reporting of works using
machine learning with fNIRS. This makes reproducibility of
previous works often impossible, which is even more problematic
when the data and/or the code are not available. Those
limitations include:

• not explaining what data is used as input of the classifier;
• not providing enough details regarding the machine learning

models, including for example the hyperparameters or the
architecture;

• not describing the split between training, validation and
test sets, and how many input examples are used (in this
manuscript we call example an instance used as one input of
a machine learning model);

• not referring results to the number of classes or chance level.

All those issues often make it hard to be confident when writing
related work sections in machine learning papers with fNIRS,
especially when it comes to reporting the state-of-the-art results
because they are not reproducible in most cases.

1.4. Research questions

Overall, our three key research questions are:

• RQ1: How can we make the comparison of machine learning
approaches for task classification from fNIRS data more
rigorous and robust?

• RQ2: What are the benchmarkings of popular machine
learning models on various tasks from open access fNIRS
datasets?

• RQ3: Across these benchmarks, what factors influence the
machine learning classification accuracy?

Further, as we delve into the specifics of what influences
classification accuracy (RQ3), we ask:

• RQ3a: What is the influence of the number of examples
used for training machine learning models on classification
accuracy?

• RQ3b: What is the influence of the time window length of
inputs on classification accuracy?
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• RQ3c: What is the influence of using a sliding window on
classification accuracy as opposed to using epochs starting at
the beginning of each task?

• RQ3d: What is the influence of using a personalised approach
(classification of data within subjects) on classification
accuracy as opposed to a generalised approach (classification
of data from unseen subjects)?

2. Methods

2.1. Data

Multiple datasets were used for this comparison of machine
learning methods with fNIRS. The focus was put here on cognitive
tasks as it is an important domain of application for fNIRS, but one
dataset with a motor task was also used for comparison purposes.
They were also chosen based on characteristic of having at least a
sampling frequency of 10 Hz as recommended by Yücel et al. (2021)
so that optode-scalp coupling can be checked. All the datasets used
are openly accessible and have been produced as part of previous
studies by researchers of the fNIRS community. Appropriate ethical
approvals were attained as stated in the datasets’ dedicated papers,
and participants gave written informed consent.

2.1.1. n-back dataset collected by Her� et al. in
2014

This dataset consists of n-back tasks performed by 10 healthy
participants. The experiment consisted, for each participant, of 10
epochs of each 1-back, 2-back, and 3-back; each epoch containing
3 ± 1 targets. Each epoch consisted of 5 s of instruction, 44 s of n-
back with a letter every 2 s displayed for 500 ms, and a 15 s rest
period. The data was recorded with an OxyMon Mark III from
Artinis Medical Systems, with wavelengths of 765 and 856 nm and
a sampling rate of 25 Hz. It is composed of four sources and four
detectors on the prefrontal cortex (PFC), resulting in eight channels
of HbO and eight channels of HbR, with a source-detector distance
of 35 mm. More details can be found in Herff et al. (2014). This
dataset has been used for classification between 1-back, 2-back, and
3-back.

2.1.2. n-back dataset collected by Shin et al. in
2018

This dataset consists of n-back tasks performed by 26 healthy
participants. The experiment consisted, for each participant, of nine
epochs (divided into three sessions) of each 0-back, 2-back, and 3-
back. Each epoch consisted of 2 s of instructions, 40 s of task and
20 s of rest period. A random digit was given every 2 s displayed
for 0.5 s and the targets appeared with a 30% chance. The data was
recorded with a NIRScout from NIRx Medical Technologies, with
wavelengths of 760 and 850 nm and a sampling rate of 10 Hz. It is
composed of 16 sources and 16 detectors on the PFC, resulting in
36 channels of HbO and 36 channels of HbR, with a source-detector
distance of 30 mm. More details can be found in Shin et al. (2018).
This dataset has been used for classification between 0-back, 2-back,
and 3-back.

2.1.3. Word generation dataset collected by Shin
et al. in 2018

This dataset consists in word generation tasks performed by
the same 26 healthy participants as the previous dataset. The
experiment consisted, for each participant, of 30 epochs (divided
into three sessions) of each word generation and baseline task. Each
epoch consisted of a 2 s instruction showing an initial single letter
for word generation or the fixation cross for baseline, a 10 s task
period with a fixation cross, and a 13–15 s rest period also with a
fixation cross. The hardware settings were the same as the previous
dataset. More details can be found in Shin et al. (2018). This dataset
has been used for classification between baseline task and word
generation.

2.1.4. Mental arithmetic dataset collected by Shin
et al. in 2016

This dataset consists of mental arithmetic tasks performed
by 29 healthy participants. The experiment consisted, for each
participant, of 30 epochs (divided into three sessions) of each
mental arithmetic and baseline task. Each epoch displayed the
subtraction for 2 s, had a 10 s task period with a fixation cross, and a
15–17 s rest period also with a fixation cross. The data was recorded
with a NIRScout fromNIRxMedical Technologies, with a sampling
rate of 10 Hz. It is composed of 14 sources and 16 detectors on
the PFC, resulting in 36 channels at 760 nm and 36 channels at
850 nm, with a source-detector distance of 30 mm. More details
can be found in Shin et al. (2016b). This dataset has been used for
classification between baseline task and mental arithmetic.

2.1.5. Motor execution dataset collected by Bak et
al. in 2019

This dataset consists of finger and foot tapping tasks performed
by 30 healthy participants. The experiment consisted, for each
participant, of 25 epochs of each right-hand finger tapping, left-
hand finger tapping and foot tapping. Each epoch contained a 2
s introduction, 10 s of actual task and a 17–19 s rest period. The
finger tapping was performed at 2 Hz and the foot tapping at 1 Hz.
The data was recorded with a LIGHTNIRS from Shimadzu, with a
sampling rate of 13.3 Hz. It is composed of eight sources and eight
detectors around the motor cortex, resulting in 20 channels of HbO
and 20 channels of HbR, with a source-detector distance of 30 mm.
More details can be found in Bak et al. (2019). This dataset has been
used for classification between right-hand finger tapping, left-hand
finger tapping, and foot tapping.

2.2. Signal processing and data cleansing

Datasets from Herff et al. (2014), Shin et al. (2018), and Bak
et al. (2019) provided HbO and HbR concentration change data
while the dataset from Shin et al. (2016b) provided light intensity
data. This is why data from Shin et al. (2016b) was first converted
into optical density changes, relative to the average on the whole
measurements for each channel. Then the modified Beer-Lambert
law (MBLL) (Delpy et al., 1988) was applied to obtain changes in
HbO and HbR. The Wray et al. (1988) molar extinction coefficient
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TABLE 1 Information about the datasets.

Dataset Classes No. of participants No. of examples per class

Herff et al. (2014) 1-back; 2-back; 3-back 10 100

n-back

Shin et al. (2018) 0-back; 2-back; 3-back 26 234

n-back

Shin et al. (2018) Baseline; word generation 26 780

word generation

Shin et al. (2016b) Baseline; mental arithmetic 29 870

mental arithmetic

Bak et al. (2019) Right hand; left hand; foot 30 750

motor execution

table was used and the differential pathlength factor (DPF)s set
to 6.0, as those are the most common in the literature and fNIRS
softwares. As per Shin et al. (2016b), the source-detector distances
used were 3 cm. This preprocessing was performed with the
NIRSimple library4 (version 0.1.2) created for fNIRS preprocessing
in Python and giving control on many parameters including the
choice between different molar extinction coefficient tables from
the literature.

The rest of the signal processing has been performed with
MNE-Python version 0.23.4 (Gramfort et al., 2013) with methods
as follow. From HbO and HbR changes the data was first corrected
with temporal derivative distribution repair (TDDR) (Fishburn
et al., 2019) to remove motion artifacts and then bandpass filtered
with an infinite impulse response (IIR) Butterworth filter of order
4. The band-pass edges of 0.01 and 0.5 Hz were used to remove
noise related to heart beat and slow drifts (Naseer and Hong, 2015),
without clashing with the experimental design of the different
datasets used in our work (task durations ranging from 10 to 44 s
resulting in task frequencies from 1/44 = 0.02 to 1/10 = 0.1 Hz).
The channels were averaged by region of interest (Poldrack, 2007;
Naseer and Hong, 2015) to end up with a left-side average and
right-side average for each HbO and HbR in the appropriate brain
area depending on the task:

• mental workload tasks such as n-back, mental arithmetic and
word generation have been shown to elicit brain activity in the
PFC so the region of interest side averages were performed in
that area for the mental workload task datasets (Naseer and
Hong, 2015; Friedman and Robbins, 2021);

• motor execution have been shown to elicit brain activity in
the motor cortex so the region of interest side averages were
performed in that area for the motor execution task dataset
(Naseer and Hong, 2015; Bhattacharjee et al., 2021).

This resulted in a total of four regions of interest for each
dataset (a detail of the regions of interest can be found in the
Supplementary material). This region of interest averaging was
made to have the same resulting number of channels for each
dataset in the comparison, since different fNIRS devices with
different number of optodes were used. The measurements were
then epoched thanks to the onset triggers according to each dataset

4 https://github.com/HanBnrd/NIRSimple

description, and a baseline correction was performed such that the
average concentration change on the baseline prior to each task is
null for each region of interest of each type. The baseline duration
used was the instruction segments just prior to each task. For
comparison purposes between the different datasets, the shortest
duration of instruction of 2 s (from Shin et al., 2018; Bak et al., 2019)
was used for every dataset, meaning that longer durations would be
cropped down to 2 s. The epochs were down-sampled to 10 Hz so
that every dataset ends up with the same sampling frequency and
to reduce computing demand for the machine learning execution.
Finally, every epoch of every dataset was cropped down to the
shortest epoch duration available of 10 s from the onset triggers
(Shin et al., 2016b, 2018; Bak et al., 2019) for easier comparison
between datasets.

Finally the data in M was converted into µM, and the baseline
was cropped such that only the task segments are used as inputs
for following analysis. Table 1 summarises the size of each dataset.
In the end, the shape of each example is 4 × 100, representing 2
channels of HbO and 2 channels of HbR by 100 time points (10 s of
10 Hz signals).

2.3. Feature extraction

Temporal features have been extracted and used as input of four
of the six models tested here: the LDA, SVM, kNN, and ANN. This
was not done for the CNN to let it extract features from raw data
and the LSTM to let it learn temporal dependencies from the raw
data. The features extracted here are three of the most popular in
the fNIRS literature (Naseer and Hong, 2015):

• the mean for each region of interest of each type across time;
• the standard deviation for each region of interest of each type

across time;
• the slope of the linear regression for each region of interest of

each type across time.

2.4. Machine learning models

Six supervised machine learning models were compared on all
the datasets, this includes three standard machine learning models
and three deep learning models.
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2.4.1. Standard machine learning
Firstly, three standard machine learning models are

implemented:

• LDA (Cohen et al., 2014) classifiers learn a linear decision
surface to split the data into the different classes. They have
the advantage of not having any hyperparameter to tune and a
low computational cost. The LDA model implemented in this
work uses the features extracted from the signals as described
above.

• SVM (Hearst et al., 1998) classifiers or support-vector classifier
(SVC)s aim to find a hyperplane able to separate the data
with maximal margin with respect to data points of each
class. A SVC with a linear kernel or linear SVC uses a linear
decision surface similarly to the LDA with the difference of it
being fitted with margin maximisation. It uses a regularisation
hyperparameter that needs to be tuned. The SVC implemented
in this work also uses the features extracted from the
signals. The regularisation parameter was optimised following
the hyperparameter tuning procedure described bellow. The
maximum number of iterations was set to 250,000 in order to
guarantee convergence.

• kNN (Altman, 1992) is a non-parametric classification
algorithm using the closest k points from the training data
in order to make a prediction on the class. Here, we use a
majority vote with those labeled k points. The kNN classifier
implemented here also uses features extracted from the
signals, and the algorithm uses a uniform weighting of the
k nearest neighbours meaning that each point is weighted
equally in the voting. The number of neighbours k is a
hyperparameter of the algorithm that is tuned according to the
same procedure as the other models described below.

Scikit-learn (Pedregosa et al., 2011) version 0.24.2 was
used for the implementation of those standard machine
learning models.

2.4.2. Deep learning
Secondly, three deep-learning models are implemented:

• ANNs (McCulloch and Pitts, 1943) are the simplest type
of neural network. Neural networks are composed of units
called artificial neurons arranged into layers, which outputs
are computed by a non-linear function of the weighted sum
of it inputs from the previous layer. This process happens
until the last layer, where a probability distribution for the
classes is computed, enabling to get a prediction. The ANN
implemented here uses features extracted from the signals
as well. Hence, the input layer is composed of 12 neurons,
followed by two fully connected layers of respectively 8 and
4 neurons, finished by an output layer of 2 or 3 neurons
depending on the number of classes for the dataset. It uses
ReLu as the activation function for each layer, Adam as the
optimiser and a cross-entropy loss. The learning rate and
mini-batch size were optimised following the hyperparameter
tuning procedure described bellow.

• CNNs (LeCun et al., 1989) are an extensions of neural
networks to which convolutional and pooling layers have been
added. They use kernels sliding along the input dimensions
so that it is transformed in a space invariant way. A CNN
is typically composed of convolutional layers followed by
standard neural network layers. The CNN implemented here
uses the signal processed data without any feature extraction
prior to that. It is composed of two one-dimensional
convolutional layers across the time axis: the first one with four
input channels and four output channels, a kernel size of 10
(one dimension kernel) and a stride of 2; the second one with
four input channels and four output channels, a kernel size of
5 (one dimension kernel) and a stride of 2. Each convolutional
layer is followed by a one-dimensional max pooling across the
time axis with a kernel size of 2. Those convolutions and max
poolings are followed by two fully connected layers of 20 and
10 neurons, respectively, followed to finish with by an output
layer of 2 or 3 neurons depending on the number of classes for
the dataset. It uses ReLu as the activation function for each
layer, Adam as the optimiser and a cross-entropy loss. The
learning rate andmini-batch size were optimised following the
procedure described bellow.

• LSTM neural networks (Hochreiter and Schmidhuber, 1997)
belong to the family of recurent neural network (RNN)s.
RNNs (Rumelhart et al., 1986) can be seen as simple neural
networks allowing new inputs of a sequence to be treated in
the context of previous inputs of that sequence. LSTMs are
an extension of that using a memory cell in order to learn
longer-term dependencies. They are useful compared to RNNs
as they allow to overcome the vanishing gradient problem.
The LSTM implemented here uses the signal processed data
without feature extraction as well. It uses one LSTM recurring
unit with an input size of 80 (each input being arranged as a
sequence of five elements of 2 s of 10Hz data on four channels)
and a hidden size of 36. It is then followed by a fully connected
layer of 16 neurons, followed to finish with by an output layer
of 2 or 3 neurons depending on the number of classes of
the dataset. The model uses ReLu as the activation function
for each layer except the LSTM unit using tanh, Adam as
the optimiser and a cross-entropy loss function. Again, the
learning rate and themini-batch size were optimised following
the procedure described bellow.

PyTorch (Paszke et al., 2019) version 1.5.1 was used for the
implementation of those deep learningmodels and themodels were
run on the CPU as GPUs did not providemuch time advantage. The
CPU was an Intel Xeon E5 v3 processor.

2.5. Procedure and metrics

Each dataset was analysed separately, and a nested cross-
validation approach was used. Statistical tests were then used to test
various assumptions as described, the threshold of significance was
set at 5% for all of them. All the statistical tests were performed with
SciPy (Virtanen et al., 2020) version 1.8.1.
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2.5.1. Generalised approach
The outer cross-validation consisted in a group five-fold cross-

validation to leave the test set out, such that a same subject’s data
cannot end up in both the training and validation set and the test
set. This outer cross-validation was used to evaluate the different
machine learning models for each dataset. This was made so that
the results reflect the performance of a classifier of data from unseen
subjects. The inner cross-validation consisted in another group
three-fold cross-validation to separate training and validation
set. This inner cross-validation was used for hyperparameter
optimisation, choosing hyperparameters based on the accuracy on
the validation set (accuracy was chosen since the classes of every
dataset were perfectly balanced).

The hyperparameters optimised for the standard machine
learning approaches were the regularisation parameter for the SVC
and k the number of nearest neighbours for the kNN. For the
deep learning approaches, the learning rate and the mini-batch
size were optimised, as those parameters are known to influence
models the most (Bengio, 2012). For every deep learningmodel, the
Adam optimiser was used due to its good and reliable performance
across many deep learning problems (Schmidt et al., 2020). It is
an optimiser based on adaptive estimates of lower-order moments
(Kingma and Ba, 2014).

In addition to that, early stopping was also performed for
the deep learning model’s number of epochs to avoid overfitting.
This early stopping was done after the best hyperparameters
were found and the model was retrained on the whole training
and validation set except 20% randomly left out to perform this
early stopping. This consisted in stopping deep learning training
before the maximum number of epoch of 100 if the loss on
the 20% left out increased (non-strictly) for five consecutive
epochs.

The optimisation was done within the following ranges
using grid search following common machine learning practice
(Pedregosa et al., 2011; Bengio, 2012):

• the regularisation parameter’s values tested were 0.001, 0.01,
0.1, and 1;

• the values of k (number of nearest neighbours) tested were the
integers from 1 to 9;

• the learning rate’s values tested were 1 × 10−5, 1 × 10−4,
1× 10−3, 1× 10−2, 1× 10−1;

• the min-batch sizes tested were 4, 8, 16, 32, and 64.

Overall, the parts of the method that could be affected by the
random seed were:

• the shuffling of the training and validation set (this has an
influence on the SVC and the deep learning models);

• the selection of the 20% validation set used for early stopping;
• the weight initialisation of the deep learning models.

Regarding the results, the accuracies on each of the five outer
folds were averaged to determine the overall accuracy for each
model of each dataset. This metric was used for reference rather
than others such as F1 score because of its simplicity and the perfect
class balance of each dataset (no epoch rejection was performed).

For each model and each dataset, a one-tailed t-test was used
(using the accuracy values on each outer fold) to determine whether
its accuracy was greater than chance level, if the distribution of
the accuracies of the model on the outer folds followed a normal
distribution as tested with a Shapiro test; otherwise a one-tailed
Wilcoxon test was used.

Next, a statistical analysis was run with the accuracy values
on each outer fold to compare models to each other within each
dataset. For this purpose a one-way analysis of variance (ANOVA)
test was performed if the normality and the homoscedasticity are
not excluded with Shapiro tests and a Bartlett test, respectively,
otherwise a non-parametric Kruskal–Wallis test was used. If an
effect of the model was identified, one-tailed paired t-tests with
Bonferroni correction were used to compare each model against
each other.

In addition to those results, a confusion matrix was
produced for each model of each dataset, comparing
the predictions made across all the outer folds against
the true class labels (those can be found in the
Supplementary material).

2.5.2. Influence of the number of training
examples on the generalised approach

In addition to comparing the different models, the influence
of the training set size was also studied. For that purpose, after
leaving out the test set, a proportion of the training and validation
set was discarded. This way we studied variations from 0 to 50%
discarded of the training data by stride of 10% for every dataset.
The same procedure was then applied in terms of validation and
hyperparameter search.

The correlation between the training set proportion used
and the accuracy was studied with a Pearson’s correlation test
for each model of each dataset if the assumption of normality
was verified as per a Shapiro test, otherwise a Spearman test
was used.

2.5.3. Influence of the time window length on the
generalised approach

The influence of the time window length was also studied.
We compared here epochs of 2, 3, 4, 5, 6, 7, 8, 9, and 10 s
from the onset trigger marking the start of each task. Again,
the same procedure of validation and hyperparameter search
was used.

The same way as before, correlations between the window
length and the accuracy were studied with a Pearson’s correlation
test for each model of each dataset if the assumption of normality
was verified as per a Shapiro test, otherwise a Spearman’s
correlation test was used.

This approach enabled the comparison of the fourmodels using
feature extraction: LDA, SVC, kNN, and ANN. This is because
comparing the models using the data without feature extraction
would have required to change the architecture of those models for
each window length which would have added too much variables in
the comparison.
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2.5.4. Generalised approach with sliding window
Finally, the same procedure as the generalised approach was

used but with a 2 s sliding window on the 10 s epochs instead of
the 10 s at once. No overlapping was used between the different
time windows, and a prediction was done for each time window.

This approach enabled the comparison of the fourmodels using
feature extraction: LDA, SVC, kNN, and ANN. This is because
comparing the models using the data without feature extraction
would have required to change the architecture of those models
compared to the initial approach.

2.5.5. Personalised approach
The same procedure as the generalised approach was used

but with each participant of each dataset individually. The only
difference being that the outer and inner cross-validations consisted
in stratified five- and three-fold cross-validations, respectively
instead of group k-fold, such that the class distribution remained
balanced in the training, validation, and test sets.

3. Results

3.1. Generalised approach

Themodels are first compared to each other with themaximum
number of training examples available and the maximum time
window length of 10 s, which took 29 h and 7 min to run with the
configuration described in Section 2.

The results for each dataset can be found in Figure 1 and
Table 2.

On the n-back tasks from Herff et al. (2014) and Shin et al.
(2018) the accuracy was found significantly higher than chance level
(33.3%) with the LDAwith p-values of 0.020 and 0.006, respectively,
reaching with three classes 40.7 and 38.9%, respectively. For the
Shin et al. (2018) dataset of n-back tasks the CNN accuracy of 39.3%
was also found significantly higher than chance level with a p-value
of 0.037.

For the Shin et al. (2018) dataset of word generation tasks,
significant differences compared to chance level (50%) were found
for the LDA, SVC, ANN, CNN, and LSTM with p-values of 0.001,
0.031, 0.005, <0.001, and <0.001, respectively. For those models,
the accuracy ranges from 57.0 to 59.6% for standard machine
learning and from 56.2 to 58.7% for deep learning. A Wilcoxon
test was used to test the significance on the SVC due to the
non-normality of the distribution as measured with a Shapiro test.

For the Shin et al. (2016b) dataset of mental arithmetic tasks,
significant differences compared to chance level (50%) were found
for all the models with p-values ranging from 0.001 to 0.004. A
Wilcoxon test was used here to test the significance on the kNN
due to the non-normality of the distribution as measured with
a Shapiro test. The accuracies range from 54.5 to 59.1% for the
machine learning models and from 57.9 to 60.2% for the deep
learning models.

Finally, for the Bak et al. (2019) dataset of motor execution
tasks, significant differences compared to chance level (33.3%) were
also found for all the models implemented with p-values up to
0.004. The accuracies range from 40.7 to 51.8% for the machine

learning models and from 46.7 to 51.1% for the deep learning
models.

A statistical influence of the model on the accuracy was found
for each dataset except the Shin et al. (2016b) dataset of mental
arithmetic tasks (Kruskal–Wallis tests were used for the Shin et al.
(2018) dataset of word generation and the Shin et al. (2016b) dataset
of mental arithmetic because of non-normality). More specifically
with pairwise t-tests, on the Shin et al. (2018) dataset of n-back
tasks, the accuracy of the LDA was found significantly greater than
the accuracy of the kNN. On the Shin et al. (2018) dataset of
word generation tasks, the LDA and CNN accuracies were found
significantly greater than the kNN. Finally on the Bak et al. (2019)
dataset of motor execution tasks, the LSTM accuracy was found
significantly greater than the kNN and ANN accuracies.

A detail of the hyperparameters selected with grid search for
each iteration of the outer cross-validation can be found in the
Supplementary material, as well as the results of the statistical tests.

3.2. Influence of the number of training
examples on the generalised approach

The correlation between the number of training examples and
the classification accuracy is shown, for each dataset and each
model, in Table 3. This took 93 h and 15 min to run.

Only two significant correlations were found with a threshold
of 5%. The kNN on the Herff et al. dataset of n-back tasks was
negatively influenced by a increase in training examples with a p-
value of 0.039 and a correlation coefficient of −0.378. The other
one was with the CNN on the Bak et al. (2019) dataset of motor
execution tasks where the accuracy was positively influenced by
the number of training examples with a p-value of 0.033 and a
correlation coefficient of 0.390.

3.3. Influence of the time window length
on the generalised approach

The influence of the time window length used as input of the
models on the classification accuracy of the LDA, SVC, kNN, and
ANN can be seen (Figure 2). This took 38 h and 41 min to run.

For the Herff et al. (2014) dataset of n-back tasks, a significant
positive correlation was found for the LDA (p-value of 0.004) with
a correlation coefficient of 0.417 and a negative correlation for the
ANN (p-value < 0.001) with a correlation coefficient of−0.513.

For the Shin et al. (2018) dataset of n-back tasks, a significant
negative correlation was found for the kNN with a correlation
coefficient of−0.319 (p-value of 0.033).

For the Shin et al. (2018) dataset of word generation tasks,
significant positive correlations were found for the LDA, SVC,
and ANN with p-values inferior or equal to 0.001. The correlation
coefficients are 0.732, 0.585, and 0.462, respectively. Spearman tests
were used for the LDA and the SVC because of the non-normality
of distributions.

For the Shin et al. (2018) dataset of mental arithmetic tasks,
significant positive correlations were found for the LDA, SVC,
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FIGURE 1

Accuracies of the models on each dataset with the generalised approach with (95% confidence intervals related to the variability on the five-fold

outer cross-validation are displayed).

TABLE 2 Accuracies of the models on each dataset with the generalised approach.

Dataset Chance level LDA SVC kNN ANN CNN LSTM

Herff et al. (2014) 0.333 0.407∗ 0.350 0.377 0.273 0.367 0.340

n-back (0.049) (0.038) (0.083) (0.033) (0.038) (0.049)

Shin et al. (2018) 0.333 0.389∗ 0.350 0.316 0.325 0.393∗ 0.344

n-back (0.026) (0.029) (0.026) (0.026) (0.049) (0.021)

Shin et al. (2018) 0.500 0.596∗ 0.570∗ 0.516 0.562∗ 0.587∗ 0.584∗

word generation (0.026) (0.026) (0.027) (0.028) (0.013) (0.008)

Shin et al. (2016b) 0.500 0.591∗ 0.576∗ 0.545∗ 0.579∗ 0.602∗ 0.592∗

mental arithmetic (0.035) (0.021) (0.022) (0.033) (0.026) (0.030)

Bak et al. (2019) 0.333 0.518∗ 0.494∗ 0.407∗ 0.467∗ 0.477∗ 0.511∗

motor execution (0.068) (0.048) (0.019) (0.030) (0.059) (0.033)

Fields marked with an asterisk indicate an accuracy significantly greater than chance level at a 5% threshold, the standard deviation on the five-fold outer cross-validation is in parenthesis.

TABLE 3 Correlation coe�cients of the relationship between accuracy and number of training examples.

Dataset LDA SVC kNN ANN CNN LSTM

Herff et al. (2014) 0.111 0.181 −0.378∗ −0.340 0.043 −0.342

n-back

Shin et al. (2018) 0.087 0.026 0.083 −0.333 0.317 0.160

n-back

Shin et al. (2018) 0.148 −0.206 −0.080 −0.035 0.243 0.007

word generation

Shin et al. (2016b) −0.102 −0.120 0.128 −0.268 −0.123 −0.008

mental arithmetic

Bak et al. (2019) 0.120 0.059 0.265 0.143 0.390∗ 0.187

motor execution

Fields marked with an asterisk indicate a significant correlation at a 5% threshold.

kNN, and ANN with p-values inferior to 0.001. The correlation
coefficients are 0.510, 0.665, 0.504, and 0.646, respectively.

For the Bak et al. (2019) dataset of motor execution tasks,
significant positive correlations were found for the LDA, SVC,
kNN, and ANN with all p-values inferior to 0.001. The correlation
coefficients are 0.803, 0.788, 0.618, and 0.836, respectively. A
Spearman test was used for the LDA because of the non-normality
of the distribution.

3.4. Generalised approach with sliding
window

The results with the generalised approach using a 2 s sliding
time window for the LDA, SVC, kNN, and ANN can be found in
Figure 3 and Table 4. This took 22 h and 19 min to run.

For the n-back task datasets from Herff et al. (2014) and
Shin et al. (2018), the accuracy was found significantly greater
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FIGURE 2

Accuracy with respect to the time window length. The bands represent the 95% confidence interval related to the variability on the five-fold outer

cross-validation. Legend entries marked with an asterisk indicate a significant correlation at a 5% threshold.

chance level (33.3%) for the LDA with p-values of 0.001 and
0.010, respectively, corresponding to accuracies of 38.5 and 36.0%
respectively with 3 classes.

For the Shin et al. (2018) dataset of word generation tasks,
significant differences compared to chance level (50%) were
found for the LDA, SVC, kNN, and the ANN with p-values
up to 0.008. The accuracies range from 51.7 to 56.8% with
two classes.

For the Shin et al. (2016b) dataset of mental arithmetic tasks,
significant differences compared to chance level (50%) were found
for the LDA, SVC, kNN, and ANN with p-values ranging from
0.003 to 0.02 and accuracies ranging from 51.7 to 56.9% with two
classes.

For the Bak et al. (2019) dataset of motor execution tasks,
significant differences compared to chance level (33.3%) were
found also for the LDA, SVC, kNN, and ANNwith p-values inferior
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FIGURE 3

Accuracies of the models on each dataset with the generalised approach using a 2 s sliding time window (95% confidence intervals related to the

variability on the five-fold outer cross-validation are displayed).

TABLE 4 Accuracies of the models on each dataset with the generalised approach using a 2 s sliding time window.

Dataset Chance
level

LDA SVC kNN ANN

Herff et al. (2014) 0.333 0.385∗ 0.329 0.346 0.336

n-back (0.014) (0.040) (0.020) (0.028)

Shin et al. (2018) 0.333 0.360∗ 0.354 0.337 0.356

n-back (0.014) (0.021) (0.013) (0.023)

Shin et al. (2018) 0.500 0.568∗ 0.555∗ 0.517∗ 0.558∗

word generation (0.016) (0.019) (0.008) (0.017)

Shin et al. (2016b) 0.500 0.564∗ 0.569∗ 0.517∗ 0.564∗

Mental arithmetic (0.036) (0.028) (0.011) (0.024)

Bak et al. (2019) 0.333 0.427∗ 0.426∗ 0.376∗ 0.417∗

Motor execution (0.024) (0.023) (0.009) (0.019)

Fields marked with an asterisk indicate an accuracy significantly greater than chance level at a 5% threshold, the standard deviation on the five-fold outer cross-validation is in parenthesis.

to 0.001. The accuracies range from 37.6% with the kNN to 42.7%
with the LLDA.

A significant influence of the model on the classification
accuracy was found for all the datasets except the Shin et al. (2018)
dataset of n-back tasks. More specifically with pairwise t-tests, on
the Herff et al. dataset of n-back tasks, the accuracy of the LDA
was found significantly greater than the accuracy of the kNN.
On the Shin et al. (2018) dataset of word generation tasks, the
LDA accuracy was found significantly greater than all the other
models with sliding window, and the kNN accuracy was found
significantly lower than the SVC and ANN accuracies. Finally on
the Bak et al. (2019) dataset of motor execution tasks, the kNN
accuracy was found significantly lower than all the other models
with sliding window.

A detail of the hyperparameters selected with grid search
for each iteration of the outer cross-validation can be found

in the Supplementary material as well as the results of the
statistical tests.

3.5. Personalised approach

The results with the personalised approach
which took 24 h and 58 min to run can be found
in Table 5.

The detailed statistical analysis for each subject can be
found in the Supplementary material. The general trend
however follow the one of the generalised approach, with
more results significantly different from chance level with
the dataset from Bak et al. (2019) of motor execution tasks
and the dataset from Shin et al. (2016b) of mental arithmetic.
Moreover, the results are very subject dependant which is also
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TABLE 5 Accuracies of the models on each dataset with the personalised approach.

Dataset Chance LDA SVC kNN ANN CNN LSTM

Herff et al. (2014) 0.333 0.353[1/10] 0.350[1/10] 0.350[4/10] 0.373[2/10] 0.353[0/10] 0.360[2/10]

n-back (0.099) (0.065) (0.128) (0.076) (0.034) (0.099)

Shin et al. (2018) 0.333 0.360[3/26] 0.319[3/26] 0.329[0/26] 0.343[2/26] 0.317[0/26] 0.356[1/26]

n-back (0.103) (0.099) (0.095) (0.065) (0.049) (0.083)

Shin et al. (2018) 0.500 0.588[7/26] 0.562[6/26] 0.546[4/26] 0.562[8/26] 0.554[8/26] 0.549[6/26]

word generation (0.090) (0.099) (0.068) (0.088) (0.089) (0.076)

Shin et al. (2016b) 0.500 0.633[16/29] 0.594[12/29] 0.563[10/29] 0.585[10/29] 0.601[8/29] 0.608[10/29]

mental arithmetic (0.107) (0.104) (0.080) (0.087) (0.099) (0.092)

Bak et al. (2019) 0.333 0.513[18/30] 0.444[14/30] 0.380[7/30] 0.387[6/30] 0.402[8/30] 0.446[15/30]

motor execution (0.140) (0.100) (0.084) (0.078) (0.073) (0.107)

The number of participants out of the total number of participants of each dataset having an accuracy significantly greater than chance level at a 5% threshold is presented in brackets for each

model. The standard deviation on participants is in parenthesis.

shown by the high values of standard deviation as seen in
Table 5.

4. Discussion

4.1. Generalised approach (RQ2)

Regarding the benchmarkings of popular machine learning
models on the five datasets, the first thing that the results show is
that the performances are rather low overall (and typically lower
than reported in some published works), which can be explained
in multiple ways. First of all, the methodology prevents any kind
of optimisation of the hyperparameters on the test set, which
make the results representative of what would happen with actual
unseen data in the case of a real-life BCI application. Secondly, the
models evaluated in this work present largely optimised baseline
models that can be used in comparison for future machine learning
developments and new datasets. More complex deep learning
architectures, for example, could eventually help improve the
performance. Also, the signal processing and the extraction of
features have not been the focus of this work, and using approaches
more personalised to each case would likely lead to better results for
that case. Furthermore, most of the datasets found that meet our
criteria are comparatively small and research with more examples
could be beneficial as we discuss in the following subsection,
especially for the deep learning models. We hope that researchers
will contribute both more advanced models and larger datasets to
this benchmarking framework, as part of a shared community drive
toward making clear advances.

Another finding is that the performances appear different with
the type of task dataset. Indeed the performances on the Bak et al.
(2019) dataset of motor execution tasks are higher than on the
other datasets with three classes (Herff et al., 2014; Shin et al., 2018
datasets of n-back tasks). An explanation could lie in the nature
of the tasks: the brain activity elicited by motor execution is easier
to highlight than the brain activity elicited by mental workload
tasks which rely on higher level brain processes (Friedman and
Robbins, 2021). We also see that the datasets with two classes of

word generation (Shin et al., 2018) and mental arithmetic (Shin
et al., 2016b) also have classification accuracies generally greater
than chance level, which may be explained by the fact that both are
task detection datasets (baseline vs. task) as opposed to classifying
the level of a task as done with the n-back datasets.

It also appears that the variability with different test sets can
sometimes be quite high for somemodels and some datasets, which
could mean that it is more difficult to preform classification on
some unseen subjects compared to others, probably in cases where
their data looks different than the one from participants in the
training set.

Regardless, one of the outcomes is that in most cases the
kNN seems to underperform compared to other models, while the
other standard machine learning models with feature extraction,
especially the LDA, do not perform worst than deep learning
methods using raw data (CNN and LSTM). Standard machine
learning models (LDA and SVC) then remain a relevant choice
especially because of their low computational complexity. This goes
in the same direction as other works such as Hennrich et al. (2015)
showing that deep learningmethods achieve comparable accuracies
to conventional methods.

4.2. Influence of training set size on
generalised approach (RQ3a)

Only two significant correlations of the accuracy to the
percentage of training examples have been found out of the 30
tested in total, which is quite low. Those are a negative correlation
with a kNN model and a positive correlation with a CNN model.
This positive correlation goes with the tendency of deep learning
models to perform better with bigger datasets, however in our case
it has only been highlighted with one deep learning model on the
motor execution dataset from Bak et al. (2019). Even though this
dataset is amongst those with the most examples with 750 per class
in total (leading in the training set to 600 examples per class with
100% and 300 per class with the minimum studied here of 50%
of training data), this trend is not shown with the biggest dataset
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containing 870 examples per class (mental arithmetic from Shin
et al., 2016b). It is likely that even with 100% of the training data,
the training sets remains very small for all the datasets, especially
for classification with deep learning. Indeed with three classes the
number of trainable parameters is 155, 491, and 17635 for the ANN,
CNN, and LSTM, respectively (150, 480, and 17,618, respectively
with two classes) which is to relate to the total number of examples
in the datasets between 300 and 2,250. The influence of the dataset
size would be interesting to study further with bigger fNIRS datasets
to see if there is really a clear effect with deep learning models.

4.3. Influence of window length on
generalised approach (RQ3b)

Based on the results, it appears that overall the length of the
time window used as input for classification does have an influence
on the performance of models using feature extraction, as the
correlations show.

Each of our correlations are positive except 2 negative
correlations which were found on the n-back datasets. Those
negative correlations are however hard to interpret with certainty
since the accuracy on those n-back tasks remains very low overall
and in most cases is not significantly higher than chance level
as seen with the generalised approach with 10 s epochs. Also,
precautions should be taken for short time windows on n-back
tasks because they do not enable to express the whole difficulty
of the task since a new stimulus is presented every 2 s from the
beginning of the task and n stimuli are required to reach the actual
task demand with n-back.

All other correlations were positive, for most of the models
with which the classification accuracy was significantly greater than
chance level, which makes us believe that bigger time window
actually benefits classification accuracy. This is especially striking
for the Bak et al. (2019) dataset of motor execution tasks as seen
in Figure 2. This benefit of longer time windows is likely explained
by the duration of the hemodynamic response, being around 4–6 s
(Buxton et al., 2004), making shorter time window too small to
capture relevant changes.

4.4. Generalised approach with sliding
window (RQ3c)

Using a sliding approach has two main advantages. First, it
enables us to multiply the number of examples that can be used as
input for the classifiers. Secondly, it enables us to make a prediction
on the class every 2 s which can be useful in the context of a BCI.

With the models using feature extraction, the accuracies using
a 2 s sliding window are found significantly greater than chance
level in the same cases as the generalised approach with non-sliding
10 s epochs. Here again, the kNN seems to underperform in most
cases compared to other models. For all the models tested here with
sliding window, results appear overall slightly lower than those with
the 10 s epochs, even though the performances are higher than
those obtained with a non-sliding window of 2 s which are around
chance level. It may be possible that the decrease in performance

observed with smaller time windows as described previously is
compensated by the increase in training examples. Also, even
though previous work has shown potential at classifying fNIRS
data using short time windows from the task trigger onset, hence
focusing on the initial dip part of the hemodynamic response (Zafar
and Hong, 2017; Khan and Hong, 2021), it may be possible that
later segments are more useful to discriminate between conditions.
Further studies would need to be conducted to compare different
centering of shorter time windows as an extension of RQ3b and
RQ3c. Regardless, such sliding window approaches remain relevant
for BCI applications when it is desired to have predictions made
regularly in real-time.

4.5. Personalised approach (RQ3d)

The results highlight a very high variability across subjects, and
the average results are not much different from the generalised
approach. This personalised approach, though, seems to produce
relatively high results on the Shin et al. (2016b) dataset of mental
arithmetic tasks. It also appears that the LDA model with feature
extraction preforms quite well on most of the datasets.

These results with our methodology however remain low
compared to what can be found in existing literature. Indeed, most
of the papers which have proposed a classification using machine
learning on the same datasets we used are using a personalised
approach. For example, Herff et al. (2014) reached slightly higher
accuracies on their n-back dataset with a LDA using the slope
on each channel and on a slightly longer time window (15 s)
than our experiments, with 44.0% on average with 10-fold cross-
validation (meaning more training data than five-fold) compared
to 35.3% with our baselines. Shin et al. (2016b) with shrinkage LDA
using average and slope for each channel on 3 s moving windows
reached 80.7% with HbR and 83.6% with HbO with five-fold cross-
validation on their mental arithmetic dataset, compared to 63.3%
with our baselines. Bak et al. (2019) with linear SVC using the
average for each channel on 5 s moving time windows reached
an average accuracy of 70.4% on their motor execution dataset,
compared to 44.4% in our results. Finally, compared to our results
around chance level with a CNN using temporal convolutions,
Saadati et al. (2019) reached an accuracy of 82% on average on
the Shin et al. (2018) dataset of n-back tasks with a CNN using
spatial convolutions, however they did not describe how the dataset
was split into training, validation and test sets. All those existing
results show the difficulty of comparison when lacking standardised
methodology, also when some methods cannot be applied to other
datasets due to constraints from the experimental design (e.g.,
length of time windows, number of channels). We hope that
BenchNIRS will allow future work with notably high accuracy
to now more easily demonstrate their advances for improved
performance in a comparable way, and more easily check against
common mistakes.

Another point of discussion is that the results of the
personalised approach do not, unfortunately, give the opportunity
to draw higher level conclusions, as every subject only took part for
one session in all the datasets, making it impossible to determine
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whether the results are related to session specific factors or subject
specific factors.

Finally, it should be noted that such personalised models are
hardly usable in the context of a real-life BCI, especially if they
require model training on each session. Indeed, in the case where
the results are obtained with a five-fold outer cross-validation,
it means that the model requires 80% of the data for training,
meaning that the majority of the time would be dedicated to
calibrating the BCI with the subject rather than using it. This
is also why our work mainly focuses on generalised approaches
which can be applied more easily in real-life BCI settings. Also,
this relates to why the data is not normalised with a min-max
feature scaling or standard score: computing those on the whole
dataset would bias the results on the test set (because test data
would have been seen already to normalise) and is not possible
in real time, and computing those with the mean or min-max
computed on the training set only could shift the distribution
of the test set if it is very different from the training set (if the
mean or min-max are quite different on the test set than the
training set).

4.6. Limitations and future work

Our work provides novel insights into factors influencing the
performance of machine learning classifiers using fNIRS data, in
the hope to help readers looking for the model that would best suit
their needs. This is however an entry point into the benchmarking
of machine learning for fNIRS. Therefore, some limitations remain
for future work to address.

First of all there are limitations due to the datasets used in this
framework. Most of the datasets contain a limited amount of data
which is critical for the performance of some machine learning
models, especially those having a lot of parameters. Datasets with
more subjects could be added to the framework in the future, such
as Huang et al. (2021), however the lower sampling frequency of
this dataset in particular would further affect the comparison across
the other datasets taken at a higher sampling frequency. Another
point is that none of the datasets have used an fNIRS device with
short-separation channels, which limits the extent of noise removal
that can be performed. Indeed, having such short-separation
channels for each dataset would have helped removing artifacts
due to superficial hemodynamics reflecting systemic physiological
changes (Brigadoi and Cooper, 2015; Sato et al., 2016). Also, the
datasets were based on recordings from participants that took part
in only one session, which limits the conclusions that can be drawn
when it comes to studying participant or session specificity. Those
constraints come with the limited availability of open access fNIRS
datasets, and future work would consist of extending the framework
to other newly published open access datasets addressing those
issues. Indeed, we welcome dataset contributions (see Section 4.8).

Secondly, the performance of our models may be limited by
the compromises that had to be made for the sake of comparison
between datasets with different experimental design and different
equipment. For example, we had to accommodate for the sampling
frequency (which is why downsampling has been performed), the
number of channels (which is why region of interest averaging has

been performed) and epoch duration (which is why epoch cropping
was performed).

Also, the work is also potentially limited by the signal
processing and feature extraction used. The signal processing
selected in our framework follows a recommended approach with
TDDR and bandpass filtering to remove signal noise. This choice
was made because the comparison of signal processing is not the
focus here and has been studied in other published works such
as Brigadoi et al. (2014) and Pinti et al. (2018b). However, the
benchmarking could be extended by involving different and more
advanced signal processing techniques. Indeed, approaches more
tailored to each task would be more efficient at removing signal
noise for that dataset, but a classic approach was used here for
comparison. Similar remarks can be made regarding the feature
extraction. Further, as the datasets involved devices with different
numbers of channels, we needed to average the channels in regions
of interest for the sake of comparability of models, but more work
could be done regarding the spatiality of the brain activity.

Finally, each of the machine learning models used in our
study could have been developed and tweaked in different ways.
We decided to implement common baseline models to act as a
starting point for benchmarking, however, more complex models
could be implemented. For example here, shrinkage LDA could
be compared to standard LDA. Also, the architectures of the deep
learning models have been chosen keeping into consideration the
input data dimensions and the number of training examples, but
they could be more extensively optimised, and finding optimal
architectures could be the matter of future works. This could
include, for example, architectures valuing more the spatiality of
signals. Similarly, different kernels could be tested for the SVC
for example. Our work, however, means that is now possible to
implement such more-advanced models in future work, using
our framework, and for them to be validated robustly with the
recommended checklist of methodological steps.

4.7. Recommendations toward best
practices for machine learning with fNIRS

First and foremost, we would like to encourage fNIRS machine
learning researchers to follow fNIRS specific guidelines already
described in important previous work for signal processing with
Pinti et al. (2018b) and Santosa et al. (2020), but also best practices
for publications with Yücel et al. (2021). Further to these, to answer
RQ1 and in line with other fields of application (Mongan et al.,
2020), we provide recommendations that we believe important
when using machine learning for classification from fNIRS data,
based upon the practice of making our benchmarked comparisons
above. Some of these recommendations have become standard
process in machine learning, but aspects are often missed in recent
machine learning papers within the fNIRS community.

The first recommendations are methodology related:

• plan classes before designing the experiment (to avoid using
return to baseline as control baseline task);

• use nested cross-validation, also called double cross-validation
with the outer cross-validation (leaving out the test sets) for
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evaluation and the inner cross-validation (leaving out the
validation sets) for the optimisation of models;

• optimise the hyperparameters (with grid-search for instance)
on validation sets;

• use the test sets for evaluation and nothing else (no
optimisation should be performed with the test set);

• create the training, validation and test sets in accordance with
what the model is hypothesised to generalise (e.g., unseen
subject, unseen session, etc.), thanks to group k-fold cross-
validation for example;

• pay attention to not include test data when performing
normalisation;

• take extra care to not have any of the sets overlap (training,
validation, and test sets), the test set used to report results
more than anything must consist of unseen data only;

• pay attention to class imbalance (using metrics more
appropriate than accuracy such as F1 score for example);

• perform a statistical analysis to find significance of the results
when comparing results to chance level and classifiers to each
other.

Where relevant, these points have been implemented
in our framework and we therefore encourage
researchers to use it for time saving and reproducibility
purposes.

The second recommendations are related to the reporting:

• describe what data is used as input of the classifier and its
shape;

• describe the number of input examples in the dataset;
• describe the details of the cross-validations implementations;
• describe the details of each model used including the

architecture of the model and every hyperparameter;
• describe which hyperparameters have been optimised and

how;
• clearly state the number of classes and the chance level;
• provide all necessary information related to the statistical

analysis of the results, including the name of the
tests, the verification of their assumptions and the
p-values.

Finally, we invite researchers to have a look at guidances from
the machine learning community regarding reproducibility5 and
research code publication.6

We hope our recommendation list can act as a starting point
for the community to contribute to a more exhaustive checklist
for the field of machine learning applied to fNIRS BCIs (see text
footnote 2).

4.8. Description of the framework

To give concrete material to answer RQ1, the framework
developed and used for this work called BenchNIRS is

5 https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf

6 https://github.com/paperswithcode/releasing-research-code

made available as an online git repository.7 BenchNIRS
works on Python 3 and the application programming
interface (API) enables researchers to customise the analysis
pipeline, ranging from data loading to machine learning
classification.

4.8.1. Datasets
Functions to load 5 open access fNIRS datasets are available

to the user: n-back tasks from Herff et al. (2014), n-back tasks
from Shin et al. (2018), word generation tasks from Shin et al.
(2018), mental arithmetic tasks from Shin et al. (2016b), and motor
execution tasks from Bak et al. (2019). This enables us to load
epochs as designed in the original studies.

4.8.2. Signal processing
The framework implements various signal processing

techniques that can be adjusted by the user: motion artifact
correction, baseline correction, use of original channels or region
of interest channel averaging, filtering (low-pass, high-pass, and
band-pass) with adjustable edge frequencies and order. The
epochs can be cropped and the option for a sliding time window
can be selected.

4.8.3. Feature extraction
Features can be extracted including the mean, the standard

deviation, and the slope of the linear regression.

4.8.4. Machine learning methodology
Nested cross-validation is implemented: evaluation is

performed on the outer cross-validation and the inner cross-
validation is used for hyperparameter optimisation. One can use
this methodology with a generalised or personalised approach. The
training set size can be reduced to study the influence of its size.
Metrics including the accuracy, the precision, the recall, and the
F1 score can be produced. Graphs are drawn (with a color blind
palette for accessibility) including training graphs (accuracy and
loss), confusion matrices, as well as box plots and graphs with
95% confidence intervals for overall results. Default models can
be trained including the LDA, SVC, kNN, ANN, CNN, and LSTM
presented in this manuscript, but customised models can also be
used simply with this methodology.

4.8.5. Statistical analysis
Examples of statistical analysis produced under the form

of tables are provided including comparison to chance level,
comparison of models, correlation to training size, and time
window length.

7 https://gitlab.com/HanBnrd/benchnirs
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4.8.6. Community contributions
The repository also contains a checklist of recommendations

for machine learning with fNIRS (see text footnote 2). The
repository will be open to community contribution in order to
add support for new open access datasets, improve the checklist,
the implementation of the machine learning methodology, or the
production of results and figures. Guidance on how to contribute
can be found on the repository page.

Furthermore, we encourage researchers to use the framework
if they wish to compare the results obtained with their machine
learning models on the datasets supported by BenchNIRS with the
proposed methodology.

5. Conclusion

Our work has introduced a framework called BenchNIRS
for benchmarking of machine learning with fNIRS enabling
researchers to robustly validate classification results on five open
access datasets published by the community. This framework is
used to perform the analysis of six baseline machine learning
models: LDA, SVC, kNN, ANN, CNN, and LSTM. We also
used BenchNIRS to produce results with different approaches:
generalised, generalised with a sliding window, and personalised.
Further we studied the influence of the training set size as well as the
time window length (from 2 to 10 s) on the model performances.

Where most published research has studied specific models
applied to specific datasets, we show with our initial benchmarking
that no baseline model (standard machine learning or deep
learning) statistically stands out consistently compared to others
when applied across datasets except the LDA, hence remaining
a strong choice despite its simplicity. Furthermore, we found
no consistent influence of the training size on the classification
accuracy. Finally, our results show that when models using
common feature extraction techniques (mean, standard deviation,
slope) perform greater than chance level, they benefit from longer
time windows.

We invite the fNIRS community to use our framework when
performing classification with their own machine learning models
for a convenient evaluation on open access data and a comparison
to our initial baseline results. We welcome contributions to extend
and strengthen the guidelines that we propose as well as the
implementation of the machine learning methodology.
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