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Abstract

The vibration response of a capacitive ring-based Coriolis Vibrating Gyroscope (CVG)
subjected to in-plane shock is modelled and analysed to quantify the effect of shock on
angular velocity measurement. The model developed considers a ring resonator with 8
uniformly spaced support legs and describes the in-plane ring response as the sum of the
first 3 modes of a perfect ring and the nonlinear electrostatic force as a Taylor series.
When a severe in-plane shock is applied, the rigid body response of the ring reduces the
electrode gap significantly and a high order expansion is needed to represent the electro-
static force. These nonlinear forces are shown to cause direct and mixed mode coupling
to occur, which can significantly modify the response characteristics. Numerical results
are presented and interpreted for a range of shock cases to demonstrate the importance of
mode coupling, and estimates are made to quantify the angular rate measurement error
caused by shock for devices based on 2θ- and 3θ-modes of operation. To aid the design of
devices that are more resilient to shock, a parameter study is performed to identify the
modal frequency ratios that minimise this coupling.

Keywords: Micro Electro Mechanical System (MEMS), Ring resonator, Gyroscopic
sensor, Shock sensitivity analysis, Nonlinear electrostatics, Modal coupling

1. Background and introduction

Micro-engineered CVGs are present in an increasingly wide range of applications,
where their small size and low cost provide a significant advantage compared to macro-
scale devices. For applications such as in-flight inertial guidance and control of aircraft
and space satellites, the sensors operate in harsh environmental conditions [26] and high
accuracy measurements are required, particularly in the presence of external shock inputs.
Micro ring-based CVGs use flexural ring vibration to detect angular rate and are well
suited to shock environments compared to other gyro types because the flexural ring
modes are unaffected by external shock inputs under linear conditions [9]. This paper
investigates the influence of nonlinear electrostatic forces on the in-plane response of these
sensors under severe shock conditions. A mathematical model of the ring resonator is
developed to highlight the different types of nonlinear coupling and simulate the resulting
response under shock conditions.

∗Corresponding author
Email address: stefan.sieberer@jku.at (Stefan Sieberer)

Preprint submitted to Elsevier April 15, 2019



Figure 1 shows the dominant in-plane modes of a ring that contribute to the dy-
namics of a vibrating ring-based rate sensor. The modes of vibration for a perfect ring
occur in degenerate pairs [8] having the same frequency and indeterminate mode orien-
tation. Figure 1(a) shows one of the rigid-body (1θ-) modes, whilst Figures 1(b) and
1(c) show one of the two flexural 2θ- and 3θ-modes, respectively. In ring-based CVGs
the in-plane 2θ- or 3θ-flexural vibrations are used to detect angular rate applied about
the polar ring axis, and this is achieved by driving one of the modes into resonance and
measuring the response amplitude of the companion mode, which is proportional to the
angular rate. For state-of-the-art devices, drive forces and response measurements are
achieved electrostatically using curved electrodes located around the ring (see Figure 2).
Under severe shock conditions, rigid-body motion of the ring on its supports causes the
gap between the ring and electrodes to vary significantly around the ring circumference
and induce nonlinear electrostatic forces to act on the ring. The applied shock induces
nonlinear coupling between the rigid-body and flexural modes of the ring, and a conse-
quence of this coupling is that severe shock responses can induce flexural responses in the
ring. Given that the vibration is used to measure angular rate, the shock-induced flex-
ural response may be misinterpreted by the sensor as angular rate causing measurement
inaccuracies. The motivation for this paper is to model the nonlinear coupling arising
from the electrostatics in detail to quantify and better understand its influence on sensor
performance.

Previous work on the shock response of micro-engineered or MEMS (Micro-Electro-
Mechanical-Systems) often describe the resulting response as being quasi-static [27],
where the shock pulse is much longer than half the time period of natural oscillation.
More recently, the dynamic response of micro-structures in shock conditions has been
reported by Younis and co-workers [37, 36, 35, 19] who studied electrostatically actuated
micro-beams under large amplitude shock excitation. The severe shock response of elec-
trostatically operated ring based resonators, like those used in vibrating ring rate sensors,
has had little attention in the research literature. These resonators are normally designed
to have low levels of damping to reduce energy consumption, but most research on shock
considers responses under critical damping conditions [16, 29], like those typically expe-
rienced in micro-accelerometers incorporating micro-beams.

Figure 1: In-plane rigid-body and flexural ring modes.

The behaviour of micro-ring resonators under standard ‘no shock’ operating condi-
tions is well understood and much attention has focused on enhancing performance by
trimming the in-plane [15,10,4] and out-of-plane [7,21] frequencies. Serandour et al. [23]
studied nonlinear geometric and electrostatic effects in vibrating ring-based resonators,
but did not consider shock response. Yoon et al. [34] analysed the influence of elec-
trostatic nonlinearities on motion detection for capacitive ring-resonators under external
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vibration, but linearised the electrostatic forces and only considered the sensing process
as being nonlinear. Sieberer et al. [25] analysed the in-plane shock response of an electro-
statically operated ring by representing the ring response in terms of the 1θ- and 2θ-modes
of vibration for a perfect ring, and included quadratic nonlinear forces in the equations
of motion. However, the analysis was restricted to quadratic electrostatic terms. The
current paper extends this approach to include higher order electrostatic terms when the
ring response is expressed as the sum of the rigid body (1θ-) and flexural (2θ- and 3θ-)
modes of a perfect ring with ideal supports. Different levels of approximation (linear,
quadratic, cubic, etc.) are used to model the nonlinear electrostatic forces and the de-
veloped model is used to calculate the in-plane ring response via numerical simulation.
The model developed is similar to Chouvion [5], which showed that severe shocks can
cause the vibrating response to jump to another stable state under certain circumstances,
but focuses on the 8 support leg case and presents the resulting equations of motion in
detail together with numerical results to explicitly demonstrate the importance of direct
and mixed mode coupling. Calculations are also performed to quantify angular rate mea-
surement error caused by the nonlinear coupling mechanism, for devices operating using
2θ- and 3θ-vibrations. This is achieved by converting the induced flexural 2θ-response
into an equivalent rate output and comparing the results against typical noise levels for
a sensor.

The shock-induced response of a typical ring design is investigated by numerically
simulating the governing equations of motion. Different electrode configurations are con-
sidered to highlight the difference in shock performance achieved using both inner and
outer electrodes compared to using outer electrodes only [3,2,33]. Also to aid the design
of devices that are resilient to shock, parameter studies are performed to investigates how
the ratio of 2θ- to 3θ-frequencies affects the resulting shock induced response, for devices
operating using 2θ- and 3θ-vibrations.

The paper is organised as follows. The equations of motion governing the in-plane
shock response of a vibrating ring rate sensor with 8 support legs under electrostatic
loading are developed in Section 2. Numerical results for the shock response are pre-
sented in Section 3, including the impact of using different electrostatic configurations
in Sections 3.2 and 3.4, together with a brief convergence study in Section 3.5. Section
3.6 converts the flexural response produced by nonlinear mode coupling from shock to an
equivalent angular rate of the sensor, and Section 3.7 presents a parameter study showing
the influence of different resonator frequencies on the induced shock response.

2. Ring resonator modelling

A linear mechanical model of a ring resonator with 8 uniformly spaced flexible supports
that is surrounded by capacitive electrodes is developed in this section. The in-plane
displacements of the ring are described in terms of the mode shapes for a perfect ring
(see Figure 1). For axisymmetric structures, like rings, modes occur in pairs having the
same natural frequency and are aligned orthogonally to form a degenerate pair of modes
[30].

Figure 2 shows a schematic diagram for a capacitively operated CVG. The ring res-
onator (1) is supported by flexible legs (2) and surrounded by electrodes, used for ca-
pacitive actuation and sensing (3). The support legs are attached to a rigid base (4)
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Figure 2: Ring layer displaying: the ring
(1), support legs (2), a central hub (5),
and electrodes (3). The base is indicated
by (4).

Figure 3: A section of the ring with the
centre-line axis, the mean radius r, the
axial height l, the radial width h, and the
ring cross-sectional area A.

via central hub (5). Under standard operating conditions, capacitive forces are used to
excite the ring resonator and under shock conditions elastic deformations in the supports
change the radial spacing between the ring and surrounding electrodes, modifying the
capacitor gap and resultant electrostatic forcing.

The ring resonator is modelled as a uniform, thin, perfect ring, and Figure 3 shows
a section of the ring with mean radius r, radial thickness h, axial length l, and cross-
sectional area A = hl. The in-plane ring motion is limited by the capacitor gap size, which
is much smaller than the ring radial thickness. Given that the rigid-body displacement
and elastic deformation of the ring is small, a linear model of the ring and supports
is used to describe the ring motion [1]. For the purposes of analysis, the ring motion
is expressed in terms of the responses of the modes of an unsupported perfect ring, as
shown in Figure 1. Table 1 summarises the notation used to describe the generalised
coordinates associated with the different ring mode-shape functions.

The support legs connecting the ring and hub consist of thin beam structures, which
can be modelled as radial and tangential linear springs for the assumed range of ring
deflections. The shock excitation is included in the model as base excitation applied to
the central hub, and the equations of motion of the system are obtained using Lagrange’s
equation.

Assuming inextensional ring motion, the radial and tangential displacements, w and
v respectively (see Figure 4) of the ring relative to the hub at ring angle ϕ satisfy and
are given by [31]:

w(ϕ) = P1 cos(ϕ) + P2 sin(ϕ) +Q1 cos(2ϕ) +Q2 sin(2ϕ) +R1 cos(3ϕ) +R2 sin(3ϕ)

(1a)

v(ϕ) = P1 sin(ϕ) − P2 sin(ϕ) +
Q1

2
sin(2ϕ) − Q2

2
sin(2ϕ) +

R1

3
sin(3ϕ) − R2

3
sin(3ϕ)

(1b)
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Mode of Amplitudes of gen- Mode
vibration eralised coordinates shape function

1θ P1 cos(ϕ)
1θ P2 sin(ϕ)
2θ Q1 cos(2ϕ)
2θ Q2 sin(2ϕ)
3θ R1 cos(3ϕ)
3θ R2 sin(3ϕ)

Table 1: Generalised coordinates for the 1θ-, 2θ-, and 3θ-modes of vibration, and mode shape function
dependent on the ring angle ϕ (see Figure 4).

These displacements are the sums of the modal radial and tangential displacements and
are dependent on the angular position on the ring, described by the ring angle ϕ which
is shown in Figure 4. Note that the factors 1/2 and 1/3 accompanying 2θ- and 3θ-
flexural generalised coordinates of the tangential displacement, respectively, arise from
the assumption of linear inextensional flexural ring vibration.
The radial and tangential displacements of the ring relative to the hub are defined by
Equations (1a) and (1b). These expressions are combined with the hub displacements xb
and yb shown in Figure 4 and then used to obtain energy expressions for the resonator,
required in Lagrange‘s equations. The relevant energy expressions are provided in the
next section.

2.1. Energies of the mechanical resonator

In this paper Lagrange’s equation is used to derive the equations of motion governing
the rigid-body and flexural in-plane deformation of the ring based on the generalised
coordinates summarised in Table 1. Lagrange’s equation is based on the energies of the
system and is given by

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
+
∂D

∂q̇j
+
∂(U +W )

∂qj
=
∂Ecap

∂qj
, (j = 1, 2, · · · , n) (2)

where T is the kinetic energy of the ring, U is the strain energy of the ring, W is the
potential energy of deformation of the support structure, D is the Rayleigh dissipation
function and Ecap is the electrostatic potential energy. Each of the mechanical quantities
is considered in this section. The electrostatic potential energy is considered in detail in
Section 2.3.

2.1.1. Kinetic energy of the ring

Figure 4 shows the components of absolute motion of the hub (xb and yb) and the
relative motions of the ring relative to the hub (w, v). These components can be combined
easily to obtain the absolute displacement (x, y) of the element of the ring at ring angle
ϕ. Taking the time derivative, it can be shown easily that the components of absolute
velocity (ẋ and ẏ) of the ring element are given by:

ẋ = ẇ cos(ϕ) + v̇ sin(ϕ) + ẋb (3a)

ẏ = v̇ cos(ϕ) − ẇ sin(ϕ) + ẏb (3b)
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where a dot implies differentiation with respect to time.

Figure 4: The absolute Cartesian coordinate system x-y, the base motion xb-yb, the local, relative ring
motion v-w, and the ring angle ϕ. The angle ϕ = 0 is aligned with the x-axis.

The kinetic energy of the ring is given by:

T =
1

2

2π∫
0

(ẋ2 + ẏ2)Aρr dϕ (4)

where ρ is the density of the ring material.
Using Equations (3a) and (3b) in Equation (4) and integrating it can be shown that the
kinetic energy of the ring is given by:

T =
m

2

[
(Ṗ1 + ẋb)

2 + (Ṗ2 − ẏb)
2 +

5

8

(
Q̇1

2
+ Q̇2

2
)

+
10

18

(
Ṙ1

2
+ Ṙ2

2
)]

(5)

where m is the physical ring mass. The kinetic energy expression includes contributions
from the ring rigid-body motion and flexural in-plane vibrations relative to the ring, as
well as the base excitation. Equation (5) indicates that the generalised coordinates of the
ring are not coupled in the equation for kinetic energy.

2.1.2. Strain energy of the ring

As the in-plane displacement of the ring is small compared to the radial thickness of
the structure, the ring can be considered to be inextensible and linear, and the bending
strain energy U can be expressed as [31]:

U =
EIc
2r3

2π∫
0

(
∂2w

∂ϕ2
+ w

)2

dϕ, (6)

where E is the Young’s modulus and Ic = lh3/12 is the second moment of area. The
radial displacement w of the ring is defined by Equation (1a), and using this equation in
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Equation (6) it can be shown that

U =
EIcπ

2r3
[
9
(
Q1

2 +Q2
2
)

+ 64
(
R1

2 +R2
2
)]

(7)

The strain energy expression accounts for flexural bending of the ring relative to the hub,
and Equation (7) indicates that the generalised coordinates of the ring are not coupled
in the equation for strain energy.

2.1.3. Support leg contributions

Figure 2 shows a ring resonator with 8 uniformly spaced supports. Each support leg is
modelled as a thin beam structure connecting the ring to the central hub. The purpose of
the legs is to support the ring without significantly influencing the vibration of the ring.
Here it is assumed that the legs add negligible mass to the ring, so their contribution to
the kinetic energy of the system is considered to be zero.

For simplicity, each support leg is modelled by incorporating radial and tangential
springs at the attachment position of the leg to the ring. Denoting the radial and tan-
gential spring stiffness as kr and kt, respectively, it can be shown easily that the strain
energy for the j’th support leg located at ring angle ϕj is given by:

Wj = w(ϕj)
2kr/2 + v(ϕj)

2kt/2 (8)

where w(ϕj) and v(ϕj) are the radial and tangential displacements of the ring at the
attachment position of the j’th leg. For 8 uniformly spaced identical legs, the total leg
strain energy is given by:

W =
8∑
j=1

(
w
(
jπ
4

))2
2

kr +
8∑
j=1

(
v
(
jπ
4

))2
2

kt (9)

where one of the legs is assumed to be located at angle ϕ = 0 . Using Equations (1a)
and (1b) in Equation (9), it can be shown that the total leg strain energy is given by:

W =
kr
2

[
4P1

2 + 4P2
2 + 4Q1

2 + 4Q2
2 + 4R1

2 + 4R2
2
]
· · ·

+
kt
2

[
4
(
P1

2 + P2
2
)

+
(
Q1

2 +Q2
2
)

+
4

9

(
R1

2 +R2
2
)]

(10)

The number of legs is selected based on the so-called frequency splitting rules [8, 18]
which ensures each pair of selected generalised coordinates experiences equal stiffness
contributions and the frequencies of the perfect resonator remain equal.

2.2. Rayleigh’s dissipation function

The dominant damping mechanism for millimetre-scale resonators operating in vac-
uum is thermoelastic damping [32,6,14]. The influence of this and other energy dissipation
mechanisms is included in an approximate way via Rayleigh’s dissipation function. For
the supported ring resonator model considered, Rayleigh’s dissipation function [28] can
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be expressed as:

D =
1

2

[
cP

(
Ṗ1

2
+ Ṗ2

2
)

+ cQ

(
Q̇1

2
+ Q̇2

2
)

+ cR

(
Ṙ1

2
+ Ṙ2

2
)]

(11)

where cP , cQ, and cR are the viscous damping coefficients for the 1θ-, 2θ-, and 3θ-
generalised coordinates, respectively.

2.3. Electrostatic energies

The capacitive electrodes shown in Figure 2 are used to apply electrostatic forces to
the ring. The electrodes form capacitors with the ring resonator, and for the purposes
of analysis the voltages across all outer and inner capacitors are denoted by Vo and Vi,
respectively. As the mean radius of the arc capacitors is large compared to the nominal
capacitor gap size, over a differential ring angle the capacitors are approximated as parallel
plate capacitors. The electrostatic potential energy for a differential element of a parallel
plate capacitor is given by [22]

dEcap =
ε0εV

2

2d
dAc (12)

where ε is the relative permittivity, ε0 is the absolute permittivity, V is the electrical
potential across the capacitor, d is the gap size, and dAc is the differential capacitor
area. For a constant radius capacitor plate dAc = l rc dϕ, where rc is the mean radius
of the capacitor. Figure 5 shows that as the ring vibrates, the gap size d varies around
the circumference of the ring, deviating from its nominal gap size dg. The magnitude of
the deviation depends on the radial deflection w defined in Equation (1a). For the outer
capacitors, the gap size is do = dg − w, whilst for the inner capacitors the gap size is
di = dg + w.

The electrostatic energy for differential elements for the outer and inner capacitors,
respectively, can be expressed as

dEcap,o =
ε0εVo

2

2(dg − w)
l ro dϕ (13a)

dEcap,i =
ε0εVi

2

2(dg + w)
l ri dϕ (13b)

Figure 5: A section of the ring and surrounding plates
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where ro and ri are the mean radii of the outer and inner capacitors. Based on the
geometry of the gap, the mean outer and inner radii of the capacitors can be expressed
as:

ro = r +
h+ dg

2
(14a)

ri = r − h+ dg
2

(14b)

To facilitate the development of analytical expressions to take account of capacitors
extending around ring circumference, the gap size terms appearing in Equation (13) are
expanded as follows:

1

dg − w
=

1

dg

[
1 +

w

dg
+

(
w

dg

)2

+

(
w

dg

)3

+ · · ·

]
(15a)

1

dg + w
=

1

dg

[
1 − w

dg
+

(
w

dg

)2

−
(
w

dg

)3

+ − · · ·

]
(15b)

for the outer and inner capacitors, respectively.
Figure 2 indicates that neighbouring electrodes are separated by circumferential gaps

to insulate the electrodes from each other and to allow space for the support legs. These
gaps are small compared to the span of the electrodes and are neglected here. This as-
sumption allows the electrodes to be combined together to form one continuous electrode
around the complete ring circumference. A detailed study on the significance of insulat-
ing gaps between electrodes has been performed in the thesis by Sieberer [24], where it
was found that the above assumption yields errors < 10 % for a combined gap span of
less than 5 % of the ring circumference. Using Equation (15), the electrostatic potential
energies arising from the outer and inner electrodes can be expressed as:

Ecap,o =
ε0εVo

2

2dg

2π∫
0

[
1 +

w

dg
+

(
w

dg

)2

+

(
w

dg

)3

+ · · ·

]
lrodϕ (16a)

Ecap,i =
ε0εVi

2

2dg

2π∫
0

[
1 − w

dg
+

(
w

dg

)2

−
(
w

dg

)3

+ − · · ·

]
lridϕ (16b)

Using Equation (1a) and performing the integration with respect to ϕ, expressions for
the electrostatic energies for the outer and inner rings of electrodes can be determined.
The full derivation of these energies is shown in Appendix A. In what follows the
quadratic, cubic and quartic order terms in the generalised coordinates are denoted by
S2, S3, and S4. Higher order terms are not stated for brevity but are included in numerical
calculations later. The total electrostatic potential energy Ecap = Ecap,o + Ecap,i is given
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by:

Ecap =
ε0εl

2dg

[(
Vo

2ro + Vi
2ri
)
2π +

(
Vo

2ro + Vi
2ri
)
S2 · · ·

+
(
Vo

2ro − Vi
2ri
)
S3 +

(
Vo

2ro + Vi
2ri
)
S4

]
(17)

where

S2 =
π

dg
2

[
Ṗ1

2
+ Ṗ2

2
+ Q̇1

2
+ Q̇2

2
+ Ṙ1

2
+ Ṙ2

2
]

(18a)

S3 =
3π

2dg
3

[
−Q1P2

2 +Q1P1
2 + 2Q1R1P1 · · ·

+ 2Q2P1P2 − 2R1Q2P2 + 2Q1R2P2 + 2Q2R2P1

]
(18b)

S4 =
π

4dg
4

[
12Q1

2R1
2 + 3R2

4 + 12Q2
2R2

2 + 12Q1
2R2

2 + 6R1
2R2

2 · · ·

+ 12Q2
2R2P2 + 3Q1

4 + 3R1
4 + 3Q2

4 + 3P2
4 + 3P1

4 + 12P1
2R2P2 · · ·

+ 24Q2R2Q1P1 + 24Q1R1Q2P2 − 12R1P1Q2
2 − 12Q1

2R2P2 · · ·
− 12R1P1P2

2 + 12Q1
2R1P1 + 12R1

2Q2
2 + 12R2

2P1
2 + 6Q1

2Q2
2 · · ·

+ 12R1
2P2

2 + 12P1
2Q2

2 + 12R2
2P2

2 − 4P2
3R2 + 12P2

2Q2
2 · · ·

+ 12Q1
2P2

2 + 6P1
2P2

2 + 12R1
2P1

2 + 4P1
3R1 + 12P1

2Q1
2

]
(18c)

The equation for S2 indicates that in the linear case the generalised coordinates of the
ring are not coupled. However, the equations for S3 and S4 indicate that the electrostatic
nonlinearity couples the generalised coordinates.

2.4. Governing equations of motion

The governing equations of motion are derived by substituting the relevant expressions
into Equation (2) and performing the required differentiations. It can be shown that the
equations of motion can be expressed as:

P̈1 +
ω∗
P

Qf,P

Ṗ1 + ω∗
P
2P1 = −ẍb +

Fc,nl,P1

mP

(19a)

P̈2 +
ω∗
P

Qf,P

Ṗ2 + ω∗
P
2P2 = −ÿb +

Fc,nl,P2

mP

(19b)

Q̈1 +
ω∗
Q

Qf,Q

Q̇1 + ω∗
Q
2Q1 =

Fc,nl,Q1

mQ

(19c)

Q̈2 +
ω∗
Q

Qf,Q

Q̇2 + ω∗
Q
2Q2 =

Fc,nl,Q2

mQ

(19d)
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R̈1 +
ω∗
R

Qf,R

Ṙ1 + ω∗
R
2R1 =

Fc,nl,R1

mR

(19e)

R̈2 +
ω∗
R

Qf,R

Ṙ2 + ω∗
R
2R2 =

Fc,nl,R2

mR

(19f)

where the damping is represented by quality factors Qf,N = mNω
∗
N/cN (N=P , Q, R),

the natural frequencies of the electromechanical resonator, including the influence of
electrostatic forces, are given by

ω∗
N =

√
kN − (kel,o + kel,i)

mN

(20)

and Fc,nl,Ni
/mN are mass-normalised generalised nonlinear electrostatic forces. The modal

masses are mP = m, mQ = 5m/8, and mR = 10m/18 and the modal stiffnesses are
kP = 4kr + 4kt, kQ = 4kr + kt + 9EIxπ/r

3, and kR = 4kr + 4kt/9 + 64EIxπ/r
3.

In these equations the linear electrostatic forces provided by the outer and inner
capacitors change the stiffness of the ring by applying a softening effect. These effects
are represented by the linear electrostatic stiffness coefficients:

kel,o =
πε0εlroVo

2

dg
3 (21a)

kel,i =
πε0εlriVi

2

dg
3 (21b)

for the outer and inner capacitors respectively and affect the natural frequency equation.
The electrostatic forces provide the only source of nonlinearity (Fc,nl) and in most practi-
cal cases it is valid to neglect these terms because the displacement of the ring (compared
to the gap size) is normally small under standard operating conditions. Under these
conditions, the electrostatics are linear so there is no coupling between the generalised
coordinates, and the pairs of generalised coordinates have equal mass, damping, and stiff-
ness coefficients with the softening effect for all coordinates, increasing as voltages Vo and
Vi are increased.

In this work severe shock conditions are investigated and so it is necessary to include
the nonlinear electrostatic force terms as well. As the nonlinearity was expressed in
power-series form (see Equation (15)) the level of approximation depends on the number
of terms included in Equation (16). The quadratic and cubic nonlinear electrostatic gen-
eralised forces Fc,nl,Ni

(with nl=2, 3) are discussed below.
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The quadratic electrostatic forcing terms for the six coordinates are:

Fc,2,P1 =
3 (kel,o − kel,i)

2dg
(Q2 P2 + Q1 P1 + Q1R1 + Q2R2) (22a)

Fc,2,P2 =
3 (kel,o − kel,i)

2dg
(Q2 P1 − Q1 P2 + Q1R2 − Q2R1) (22b)

Fc,2,Q1 =
3 (kel,o − kel,i)

4dg

(
P1

2 − P2
2 + 2P1R1 + 2P2R2

)
(22c)

Fc,2,Q2 =
3 (kel,o − kel,i)

2dg
(P1 P2 + P1R2 − P2R1) (22d)

Fc,2,R1 =
3 (kel,o − kel,i)

2dg
(P1Q1 − P2Q2) (22e)

Fc,2,R2 =
3 (kel,o − kel,i)

2dg
(P1Q2 + P2Q1) (22f)

These terms are all proportional to
(
roVo

2 − riVi
2
)
, indicating that their magnitude can

be reduced by equalising the outer and inner capacitor voltages. These expressions illus-
trate the presence of quadratic coupling between generalised coordinates (P1, P2, Q1, Q2,
R1, and R2).

Coupling terms involving only one pair of generalised coordinates are referred to
here as ‘direct coupling’. In Equation (22), direct coupling only occurs for the rigid-
body generalised coordinates (P1 and P2), i.e. the terms P1

2 and P2
2 in Fc,2,Q1 , and the

term P1P2 in Fc,2,Q2 . The resulting forcing is called ‘direct forcing’, and can exist in
higher order terms also. However, no direct coupling exists between the flexural pairs of
generalised coordinates in Equation (22). All other coupling terms are referred to here
as ‘mixed coupling’. These terms include two or more different generalised coordinates
and examples of quadratic mixed coupling in Equation (22) include: Q1P1, Q2R2. For
the rigid-body equations (Equations (22a) and (22b)), the mixed coupling terms include
products of P - and Q-generalised coordinates, and R- and Q-generalised coordinates.
These terms induce forcing on the rigid-body coordinates when the relevant P - and Q-
generalised coordinates or R- and Q-generalised coordinates have non-zero displacements.
The mixed coupling terms appearing in the 2θ- and 3θ-equations (Equations (22c) to
(22f)) act in a similar way.

The cubic electrostatic forcing terms for the six coordinates are:

Fc,3,P1 =
3 (kel,o + kel,i)

2dg
2

(
P1

3 +
(
P1

2 − P2
2
)
R1 + P1

(
2Q1

2 + 2Q2
2 + P2

2 · · ·

+2R1
2 + 2R2

2 + 2R2P2

)
+ 2Q1Q2R2 +R1Q1

2 −R1Q2
2

)
(23a)

Fc,3,P2 =
3 (kel,o + kel,i)

2dg
2

(
P2

3 + (R2 −R2)P2
2 +

(
2R1

2 + 2Q2
2 + P1

2 · · ·

+2R2
2 + 2Q1

2 − 2R1P1

)
P2 +

(
Q2

2 −Q1
2
)
R2 + 2Q1R1Q2

)
(23b)
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Fc,3,Q1 =
3 (kel,o + kel,i)

2dg
2

(
Q1

3 +
(
Q2

2 + 2P1
2 + 2R1P1 + 2R1

2 + 2R2
2 · · ·

+2P2
2 − 2R2P2

)
Q1 + 2R1Q2P2 + 2Q2R2P1

)
(23c)

Fc,3,Q2 =
3 (kel,o + kel,i)

2dg
2

(
Q2

3 +
(
Q1

2 + 2R1
2 + 2P1

2 + 2P2
2 + 2R2P2 · · ·

+2R2
2 − 2R1P1

)
Q2 + 2Q1R1P2 + 2R2Q1P1

)
(23d)

Fc,3,R1 =
(kel,o + kel,i)

2dg
2

(
3R1

3 +
(
6P2

2 + 6Q2
2 + 6P1

2 + 6Q1
2 + 3R2

2
)
R1 · · ·

+ P1
3 − 3P1P2

2 − 3P1Q2
2 + 3P1Q1

2 + 6Q1Q2P2

)
(23e)

Fc,3,R2 =
(kel,o + kel,i)

2dg
2

(
3R2

3 +
(
3R1

2 + 6Q2
2 + 6P1

2 + 6Q1
2 + 6P2

2
)
R2 · · ·

− P2
3 + 3P1

2P2 − 3Q1
2P2 + 6Q2Q1P1 + 3P2Q2

2

)
(23f)

These terms are all proportional to
(
roVo

2 + riVi
2
)
, indicating that the magnitude can

only be diminished by simultaneously reducing the outer and inner capacitor voltages,
and illustrate the presence of ‘modal softening’ terms, direct coupling and mixed coupling.
Cubic modal softening occurs in all cases (Equations (23a) to (23f)), when the equation
of motion for a particular generalised coordinate contains a pure cubic term in the same
generalised coordinate, indicating nonlinear behaviour of the generalised coordinate for
large modal displacements. The only direct forcing occurring in these equations is in
Equations (23e) and (23f). These equations govern the 3θ-response but are directly
influenced by the 1θ-motion through the (P1

3 − 3P1P2
2) and (−P2

3 + 3P1
2P2) terms. All

other couplings involve mixed coupling terms.
Quartic and higher order nonlinear forcing terms can be obtained by including higher

order terms in the power series in the electrostatic energy expression in Equation (16).
It can be shown that all even order forcing terms (e.g. quartic order) are proportional
to
(
roVo

2 − riVi
2
)

and all odd order forcing terms (e.g. quintic order) are proportional
to
(
roVo

2 + riVi
2
)
. Furthermore, direct forcing of 1θ-motion to flexural response is given

by direct coupling terms in the equations governing the 2θ-response for even higher or-
der terms, and in the equations governing the 3θ-response for odd higher order terms.
The significance of higher order terms for a specific shock situation is investigated in
Section 3.5.

3. Numerical simulations

In this section, the influence of the nonlinear electrostatic coupling on the response
of the 2θ- and 3θ-generalised coordinates is determined for a specific sensor design. By
calculating the time histories and the spectral content of these responses, the dominant
coupling mechanisms are identified and quantified. The equations of motion derived in
Section 2 are used to calculate the shock response of the system to an applied half-
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sine shock pulse with zero initial conditions. An ‘ode23’ numerical integrator is used to
generate the simulation results and the spectral density of the time-responses is obtained
as the squared value of the FFT-transformation. For all simulation results presented, the
ring properties reported in Table 2 are used. These geometrical properties and natural
frequencies are based on the device described in [33] and the quality factors used are
assumed high for a resonator operating in an ultra-low pressure atmosphere.

Ring property Symbol Value

Material: Silicon Si(111)
Mean radius r 1.5Ö10−3 m
Axial length l 1.5Ö10−4 m

Radial thickness h 1.8Ö10−4 m
Nominal gap size dg 1.0Ö10−5 m
Capacitor voltage Vo 50 V

Ring motions Linear natural frequencies Qf -factors
1θ-motion fP 10900 Hz Qf,P 30000
2θ-motion fQ 17300 Hz Qf,Q 60000
3θ-motion fR 22100 Hz Qf,R 60000

Table 2: Properties for the ring resonator

The section is organised as follows. The applied shock is defined in Section 3.1. The
simulations presented in Sections 3.2 and 3.3 consider quadratic and cubic electrostatic
forces only and identify the dominant coupling mechanisms in the resonator. Results
comparing the cases when the outer electrodes only and the outer and inner electrodes
are activated are presented and discussed in Section 3.4. This is followed in Section
3.5 by a convergence study in which the significance of higher order electrostatic terms
on the response is studied for the shock input considered. Section 3.6 considers the
maximum shock induced flexural response and converts it to an applied rate input to
assess the significance of the coupling to sensor applications. Finally, Section 3.7 describes
a parameter study to investigate the influence of the ratio of the 2θ/1θ- and 3θ/1θ-
frequencies on the coupling and the ratio that minimises the nonlinear coupling.

3.1. Shock application

The shock is applied in the x-direction (see Figure 4) as a half-sine acceleration pulse,
i.e.

ẍ =

{
As sin( πt

Ts
) for t ≤ Ts

0 for t > Ts
(24a)

ÿ = 0 (24b)

where As is the shock amplitude and Ts is the shock duration. This form of shock can
be used to represent excitations applied in pendulum tests [27, 25] and is used in high
g shock testing. The shock response is characterised as being quasi-static or dynamic
and is governed by the shock duration. Figure 6 shows the rigid body shock response
spectrum obtained by determining the maximum rigid body response for different shock
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durations using the developed model. Sieberer [25] found that the dynamic rigid-body
responses include significant mode coupling and a practical shock duration yielding dy-
namic rigid-body shock responses is investigated here. Dynamic shock responses occur
when the shock duration is in the range of half of the natural period of vibration of the
rigid-body motion. A half-sine base excitation with shock amplitude As=16000 m/s2 and
shock duration Ts=0.1 ms is used. For the ring considered, half the time period for the
rigid-body frequency neglecting electrostatic softening is 0.046 ms.
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Figure 6: Time responses to different shocks and resulting shock response spectrum of the maximum
response. In (a), the solid line is a quasi-static response, and the dashed and dotted lines are dynamic
responses. The diagram in (b) shows the spectrum of maximum shock responses.

It has been reported by Harris [13] that different shock pulses with finite slope, e.g.
haversine or triangular pulses, exhibit a qualitatively similar response characteristic. This
means that for such shock pulses, the only significant difference in the rigid-body response
is expected to be a different maximum response amplitude. A rectangular acceleration
shock pulse yields dynamic response regardless of the shock duration, as the whole fre-
quency spectrum is excited. However, the residual vibration amplitude is not generally
large and can theoretically be zero in the case of the shock duration equalling the natural
period of the excited mode of vibration.

The applied shock does not excite the P2-generalised coordinate directly and the
structure of the nonlinear coupling terms in Equations (22) and (23) ensures there is
no coupling between the shock-excited P1-generalised coordinate and the P2-generalised
coordinate.

The following sections present numerical simulation results for the shock response and
quantify the responses of the generalised coordinates.

3.2. Simulations with outer electrode activated only

In this section, the influence of the nonlinear electrostatic coupling on the response of
the Q1- and R1-generalised coordinates is determined for the design specified in Table 2
with inactive inner electrodes (i.e. outer electrodes activated only). This is achieved by
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choosing the inner ring of electrodes to have the same potential as the ring which ensures
the inner capacitor voltage is zero.

Figures 7, 8, and 9 show the rigid-body and flexural responses obtained for each of
the generalised coordinates, and include time histories and power spectral densities of the
responses. These plots are used to help identify the dominant coupling terms.
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Figure 7: Time domain and frequency domain shock response of the rigid-body motion in the P1-
coordinate. The natural frequency for the rigid-body modes is given in Table 2.
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Figure 8: Time domain and frequency domain shock response of the motion in the Q1-coordinate. The
natural frequency for the 2θ-modes is given in Table 2.

Figure 7 indicates that the P1-generalised coordinate oscillates at the rigid body fP
frequency (10.9 kHz) and decays slowly because of the low levels of damping present in
the sensor.
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Figure 9: Time domain and frequency domain shock response of the motion in the R1-coordinate. The
natural frequency for the 3θ-modes is given in Table 2.

Figure 8 indicates that the Q1 response is much smaller than the P1 response and
contains frequency components at the fQ-frequency (16.9 k̇Hz) and twice the fP frequency
(2x10.9=21.8k̇Hz). The 2fP component arises because the P1

2 direct coupling terms in
Equation (22c) produce frequency content at twice the rigid-body frequency because
sin2 ωP = 0.5(1 − cos 2ωP ), which also explains the presence of the static term in the
spectrum.

Figure 9 indicates that the R1 response is much smaller than the Q1 response and
contains frequency components at fR (21.8k̇Hz), fP (10.9k̇Hz), 3fP (3x10.9=32.7k̇Hz)
and fP+fQ (10.9+16.9= 27.8 kHz). The 3fP component arises because the P1

3 direct
coupling terms in Equation (23e) produce frequency content at three times the rigid-body
frequency because sin3 ωP = 0.25(3 sinωP − sin 3ωP ), which also explains the presence of
fP . The fP+fQ component arises from the P1Q1 mixed coupling term in Equation (22e).

These results have shown that severe shocks can induce coupled responses in the Q1

and R1 generalised coordinates and have identified the dominant coupling mechanisms for
the Q1 and R1-generalised coordinates. In what follows, the influence of these responses
on rate measurements is considered.

3.3. Frequency filtering of the flexural response

In ring-based CVGs the angular rate is detected by measuring the response of the
sense mode at its resonant frequency. However, as severe shocks can induce responses in
the sense modes, these responses will be interpreted by the sensor as angular rate, when
angular rate is not applied. The sense electrodes can be arranged to detect the sense mode
response only, so the shock-induced erroneous rate output can be determined for a device
operating using 2θ-modes by analysing the shock induced response in the 2θ-mode at the
2θ-frequency. As this shock induced response includes a multitude of coupled responses it
is necessary to filter these responses to calculate the response at the 2θ-mode frequency.
In this work a 6th order elliptic band-pass filter is used to calculate the amplitude of
the 2θ-mode frequency over a frequency range centred on the natural frequencies. The
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elliptic filter is chosen because of the sharp cut-off, which enables the filtering of close
frequencies, and despite the ripple which is present over the whole frequency range [17]. A
similar approach can be used to evaluate a device operating using 3θ-modes, and the filter
properties selected for devices operating using 2θ- and 3θ-modes are summarised in Table
3, where ‘ripple in bandpass’ describes the fluctuation maxima in the transmissibility in
the pass-band, and ‘stop-band dB down’ indicates the reduction in transmissibility in the
stop-band. With this filter, the responses at the relevant frequencies are obtained.

Parameter 2θ-filter 3θ-filter

Lower cut-off frequency 15000 Hz 20000 Hz
Upper cut-off frequency 20000 Hz 25000 Hz

Ripple in bandpass 0.5 dB 0.5 dB
Stop-band dB down 30 dB 30 dB

Table 3: Parameters used in the filter design.

Figure 10 compares the time histories obtained in Figures 8 and 9 with those obtained
by filtering the responses.
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Figure 10: Time histories of the filtered responses to shock. The solid lines are the responses at the
natural frequency of the respective modes, and the dashed lines the unfiltered responses.

The filtered response, i.e. the response at the 2θ-frequency in the 2θ-response, is
0.209µm and is 25% smaller than the unfiltered 2θ-response, which includes response at
the 2fP -frequency and other frequencies. The amplitude of vibration at the 3θ-frequency
in the 3θ-response is 45.0 nm, and is 15% smaller than the unfiltered 3θ-response. As
such the response used in the rate detection process is smaller than the modal response
amplitude, and indicates that the modal response alone does not provide information
about the expected influence on the rate measurement. The filtered responses are used
later to calculate the equivalent shock induced rate output for devices operating using
2θ- and 3θ-modes.
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3.4. Inner electrode activation

Some ring rate sensors feature inner and outer electrodes to counteract the effects of
imperfections by applying different voltages to the inner capacitors [11]. For a perfect
ring resonator the capacitor voltage across all inner capacitors is equal. Equations (22)
indicate that the quadratic coupling terms are proportional to

(
roVo

2 − riVi
2
)
. These

quadratic terms (and all even-ordered terms) can be reduced by ensuring this term is
small. For example. if Vi=Vo this can be achieved by selecting (ro − ri) to be small.
Conversely, Equations (23) show that the cubic coupling terms depend on

(
roVo

2 + riVi
2
)
,

and so the magnitude of the cubic (and all higher odd-ordered coupling terms) increase
as the quadratic terms decrease. In practice this can be achieved by increasing Vi from
zero, which modifies the linear electrostatic stiffness and the nonlinear coupling terms:
the coupling to the 2θ-coordinate reduces as it is governed by quadratic terms, while the
coupling to the 3θ-coordinate increases as it is governed by cubic terms.

Vi Line-style Rel. Shock Rel. Shock Rel. Shock
(Figs. 11a, 11b) Response P1 Response Q1 Response R1

50 V solid 110 % 3 % 260 %
40 V dashed 106 % 46 % 187 %
30 V dotted 103 % 74 % 142 %
0 V dash-dotted 100 % 100 % 100 %

Table 4: Resulting coupled response of the rigid-body and flexural motions on gradual increase of the
inner capacitor voltage.
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Figure 11: Flexural Q1- and R1-responses on gradual inner electrode activation. The response is reduced
with increasing Vi. A legend is given in Table 4.

Figure 11 illustrates the change in flexural response as the voltage applied to the
inner electrodes is increased gradually from 0 to 50 V. Table 4 reports the values of Vi
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used in simulations together with the corresponding line styles used in Figure 11, and
reports the relative change in modal responses. Figure 11a indicates the reduction in
coupling that can be achieved for the 2θ-generalised coordinate, where the coupled 2θ-
response diminishes to 8 nm. Figure 11b shows that the 3θ-generalised coordinate more
than doubles when Vo=Vi, where the coupled 3θ-response increases to 143 nm. These
results indicate that having an inner ring of electrodes with non-zero voltage across the
inner capacitors can reduce the coupling to the 2θ-generalised coordinates. In contrast,
the response of the 3θ-generalised coordinates increases. In addition it is worth noting
that the frequencies all reduce as the voltage increases due to electrostatic softening, and
the separation of 3θ- and 1θ-frequencies does not affect direct coupling to the 3θ-response.

3.5. Higher order nonlinear terms

The results considered in previous sections are limited to quadratic and cubic elec-
trostatic generalised forcing functions ((22) and (23)) to illustrate and identify the domi-
nant coupling mechanisms. In the presence of severe shocks and large gap size variations,
higher order electrostatic terms can become important. In this section, higher order
nonlinear forcing terms up to 9th order are included in the force expressions Fc,nl,Ni

and
a convergence study is performed with the sensor and shock parameters used earlier to
assess the influence of higher order terms on the response.

As discussed at the end of Section 2.4, higher order coupling terms can be obtained
in a similar way to the quadratic and cubic coupling terms and included in the nonlinear
generalised forcing functions on the right hand side of the equations of motion. As higher
order terms are included, the nonlinear forcing terms become increasingly complicated
due to the increasingly large number of coupling terms. However, noting that the results
presented in Section 3.2 indicated that the coupling between the 1θ-motion and the 2θ-
and 3θ-responses is dominated by direct-forcing terms, and a shock applied to the P1-
coordinate does not excite the P2-, Q2- and R2-coordinates, the equations of motion can
be simplified by only including direct-forcing terms in the equations of motion for the
Q1- and R1-coordinates. The simplified higher order forcing terms up to 9th order are

Fc,4,df,Q1 =
10πε0εl

8dg
6 (roVo

2 − riVi
2)P 4 (25a)

Fc,5,df,R1 =
15πε0εl

16dg
7 (roVo

2 + riVi
2)P 5 (25b)

Fc,6,df,Q1 =
105πε0εl

64dg
8 (roVo

2 − riVi
2)P 6 (25c)

Fc,7,df,R1 =
21πε0εl

16dg
9 (roVo

2 + riVi
2)P 7 (25d)

Fc,8,df,Q1 =
63πε0εl

32dg
10 (roVo

2 − riVi
2P 8 (25e)

Fc,9,df,R1 =
315πε0εl

192dg
11 (roVo

2 + riVi
2)P 9 (25f)

Figure 12 shows how the Q1- and R1-responses change as higher order terms are included
in the electrostatic forcing functions, with the inner electrodes de-activated (i.e. Vi=0).
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The coupled responses increase as higher order terms are included and a relatively good
approximation is achieved using a 5th order forcing function. Converged responses are
achieved using 9th order forcing functions and for this case the response maxima are
0.552µm in the 2θ-coordinate and 0.120µm in the 3θ-coordinate.
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Figure 12: Flexural responses with higher order electrostatic coupling and inner electrodes deactivated.
Dashed, solid, dash-dotted, and dotted lines represent cubic, quintic, 7th order, and 9th order forcing
function, respectively.

Figure 13 shows how the Q1- and R1-responses change as higher order terms are
included in the electrostatic forcing functions, with the inner voltage activated Vi=Vo.
Similar to Figure 12, the coupled responses increase as higher order terms are included
and 5th order forcing functions yield good approximations for the 2θ- and 3θ-generalised
coordinates. Convergence is also reached for the 9th order forcing function, and the
maximum obtained 2θ- and 3θ-responses are 26 nm and 508 nm, respectively when the
inner electrode is activated.

To determine the response used in the rate detection process and obtain the equivalent
rate output, the filtered responses are calculated using the filters described in Table 3. The
filtered 2θ- and 3θ-responses are shown in Figure 14. The maximum filtered 2θ-response
at the 2θ-frequency is 535 nm, and the maximum filtered response in the 3θ-response
at the 3θ-frequency is 168 nm. When the inner electrodes are activated, the filtered 2θ-
response reduces to 30 nm indicating a significant improvement in performance. The
3θ-response increases to 563 nm, yielding reduced performance. The influence of these
responses on measured applied rate is considered next.

3.6. Comparison to an applied rate

When operating as a rate sensor, the response of the 2θ-companion mode is propor-
tional to the applied angular rate. It was shown in Sections 3.2 and 3.5 that severe shock
excitation can induce 2θ-responses, and these responses can be misinterpreted as having
arisen from angular rate. In this section, the 2θ-responses arising from severe shocks are
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Figure 13: Flexural responses with higher order electrostatic coupling and inner electrodes activated
with Vi=Vo. Dashed, solid, dash-dotted, and dotted lines represent cubic, quintic, 7th order, and 9th

order forcing function, respectively.
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Figure 14: Time histories of the filtered responses to shock including higher order nonlinear forces. The
solid lines are the responses at the natural frequency of the respective modes, and the dashed lines the
unfiltered responses.
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converted into an equivalent erroneous rate measurement and compared to noise levels
for a typical rate sensor.

When angular rate is measured, the 2θ-drive mode is maintained at resonance and
Coriolis coupling ensures that the response of the 2θ-companion mode is proportional to
the angular rate. For a sensor operating in the linear regime, the applied angular rate
about the polar axis of the ring can be expressed as:

Ωz =
Q̂sω

∗
Q

2Q̂dQf,Q

(26)

where ω∗
Q and Qf,Q are the natural frequency and Q factor for the 2θ-modes includ-

ing electrostatic effects, Q̂d is the resonant amplitude of the 2θ-drive mode, and Q̂s is
the resonant amplitude of the 2θ-sense mode. Similar angular rate expressions can be
obtained for the 3θ-pair of coordinates.

Assuming the drive amplitude Q̂d=2 µm and the Q̂s amplitude is the shock-induced
response reported in Section 3.5, then the angular rate error measured with inner elec-
trodes activated (Vi=Vo) is:

Ωz = −30Ö 10−9 m × 2π × 17000 Hz

2 × 2Ö 10−6 m × 60000
= −0.0134

rad

s
= −0.765

deg

s
(27)

Similar calculations can be performed for a sensor operating without the inner and outer
electrodes activated (Vi=0) and/or using the 3θ-response to make rate measurements.
Table 5 summarises the results obtained for the shock-induced rate errors for these cases.

Mode Vi=0 V Vi=Vo
Response Equivalent Response Equivalent
at f(Q,R) rate at f(Q,R) rate

Q 535 nm 13.64 deg
s

30 nm 0.77 deg
s

R 168 nm 5.52 deg
s

563 nm 18.49 deg
s

Table 5: Modal responses and angular rate errors for considered scenarios

The calculated rate output can be compared to the noise level for a typical micro-ring
rate sensor [2]. For an inductive MEMS ring-rate sensor, the noise level is reported to be
<0.04 deg/s. Assuming similar noise levels apply to the capacitive devices analysed here,
it clear that the 2θ-shock induced responses exceed the reported noise-level indicating
the possibility of erroneous rate measurement. The potential for this to occur is greatest
when only the outer ring of electrodes is present (13.64 deg/s > 0.04 deg/s). However,
when inner electrodes are included the 2θ-response is still significantly larger than the
quoted noise level (0.765 deg/s > 0.04 deg/s). It is also found that the 3θ-response yields
rate errors greater than the reported noise level for both electrode configurations, and the
rate level with inner and outer electrodes activated is three-times the value obtained when
outer electrodes only are activated. The reason for this large coupling is the proximity
of the 3θ-frequency to the 1θ+2θ frequency and the 3x1θ frequency.

In summary, for the resonator designs considered, using only an outer ring of elec-
trodes leads to sensors which are susceptible to shock when operating using 2θ-modes
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of vibration, but this can be reduced significantly by including an inner ring of elec-
trodes. Utilising 3θ-modes of vibration, the shock susceptibility increases by a factor of
three when inner and outer electrodes are used, compared to using outer electrodes only.
For the sensor design considered, no electrode configuration yields responses close to or
below reported levels of noise. The following section investigates how frequency separa-
tion affects the shock-induced angular rate error by considering the influence of changing
frequency ratios 2θ/1θ and 3θ/1θ.

3.7. Frequency variation

The results presented in earlier sections apply to one particular sensor design, with
specific 1θ-, 2θ- and 3θ-frequencies (fP , fQ, and fR respectively). It was shown that
the dominant coupling mechanism for exciting the 2θ- and 3θ-coordinates under shock
conditions is direct coupling from the 1θ-coordinates. To understand the influence of
frequency ratios 2θ/1θ and 3θ/1θ on the coupling, a parameter study is performed with
the aim of identifying those frequency ratios that yield minimal coupling.

The parameter study involves varying the fQ and fR natural frequencies and calcu-
lating the resulting modal responses. The range of 2θ/1θ- and 3θ/1θ-frequencies yielding
parametric response (i.e. around fQ=2fP ) is excluded because parametric resonance is
usually avoided in the design of rate sensors – although some studies have used parametric
resonance to excite the resonator [20, 12]. As such the behaviour at parametric response
is not the focus of this paper. As in previous sections, numerical results are obtained with
the inner electrodes activated and deactivated. The frequency ratios considered span the
ranges fQ/fP=1.2 to 4.2 and fR/fP=1.6 to 5.2. These ranges cover a wide range of ring
resonator designs and include the sensor design considered earlier, which corresponds to a
frequency ratio fQ/fP=1.7. It is worthwhile noting that electrostatic softening behaviour
is excluded for the frequency ratios considered, so the natural frequencies are calculated
using the mechanical stiffnesses only.

Figure 15a shows the response at the 2θ-frequency to shock for different ratios of
2θ/1θ-frequency, and Figure 15b shows the response at the 3θ-frequency to shock for
different ratios of 3θ/1θ-frequency. In both figures, the solid line shows the response with
inner electrodes deactivated, and the dashed line shows the response with inner electrodes
having the same voltage as the outer electrodes. In these results, 9th order electrostatic
generalised forcing functions are used.
The results indicate that having a 2θ natural frequency that is much greater than twice the
1θ natural frequency yields reduced levels of shock induced coupling to the 2θ-response.
This trend is clear when the outer electrodes only are activated (Vi=0) and when both
the outer and inner electrodes are active (Vi=Vo). Activating the inner electrodes has
the effect of reducing the coupling and the observed 2θ-response levels over the range of
parameters considered. In this case, the reduction achieved is approximately 97.5 %. The
design considered earlier has a frequency ratio fQ/fP=1.7 and is less favourable as the
response levels are generally higher for frequency ratios <2.

For the 3θ-response, large response values are expected to occur for frequency ratios
corresponding to parametric resonance, as cubic electrostatic direct-forcing terms induce
response peaks when fR/fP=3. The observed response peaks are at slightly lower fre-
quency ratios because linear and nonlinear electrostatic softening reduces the resonant
frequencies. In contrast to the 2θ-response, inner electrode activation increases the re-
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Figure 15: Shock response at the 2θ- and 3θ-frequency for different ratios of fQ/fP and fR/fP , respec-
tively. The solid line describes the response with outer electrodes only, and the dashed line the response
when the inner and outer electrodes have equal potential.

sponse for 3θ-responses by a factor of >3. Further parametric resonances are expected
to occur and are caused by higher order electrostatic nonlinear force terms.

Figure 16 shows the equivalent rate output of the filtered response in Figure 15. The 2θ-
and 3θ-response are filtered with elliptical band-pass filters with the natural frequencies
at the centre of the pass-band frequency range. The equivalent rate is calculated from
the filtered flexural responses using Equation (26). The obtained rate output in the case
of Vi=0 for 2θ-responses (Figure 16a) becomes comparatively large for frequency ratios
fQ/fP approaching 2, and ratios of fR/fP approaching 3 as the conditions necessary
for parametric response occur. The general level of erroneous rate output decreases for
smaller or larger frequency ratios. In the range fQ/fP <2, minimum coupling is achieved
for fQ/fP=1.32 with a rate output of approx. 0.43 deg/s. For frequency ratios above two,
the rate output error decreases sharply to values less than the reported noise level before
reaching a peak caused by higher order parametric responses close to fQ/fP=4. When
the inner electrodes are deactivated, the rate output exceeds the reported noise level for
all considered frequency ratios and falls below 0.5 deg/s only when 2θ/1θ-ratios >4.

For the 3θ rate response with the inner electrodes are deactivated, the minimum rate
response below fR/fP=3 is 2.76 deg/s which occurs when fR/fP=2.53. Above the first
parametric resonance peak, the response level falls significantly to about 0.18 deg/s when
fR/fP=4.50 with a small peak occurring close to fR/fP=5. When the inner electrodes are
active the responses are significantly larger and the minimum rate output is 1.35 deg/s
when fR/fP=3.90. Below a frequency ratio of 3θ/1θ=3, the minimum rate output is
13.6 deg/s when fR/fP=2.25.

In summary, the shock induced rate output error is negligible for the 2θ-response
over quite a large range of frequency ratios above 2 provided the inner electrodes are
active and there is no parametric resonance. This indicates that the effects of shock can
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Figure 16: Calculated rate outputs from responses in Figure 15. The graph with the solid line describes
the response with outer electrodes only, and the graph with the dashed line the response when the inner
and outer electrodes have equal potential.

be mitigated by properly spacing the 2θ- and 1θ-frequencies to design a resonator that
minimises coupling between 1θ- and 2θ-responses. In contrast, the results obtained for the
3θ-response indicate that the coupling is significant over the frequency range considered
with or without the inner electrodes activated and that devices operating using 3θ-modes
are more susceptible to shock than devices operating using 2θ-modes.

4. Conclusion

An analytical model was developed to investigate the effects of shock on the dynamic
behaviour of a capacitive ring based CVG with nonlinear electrostatic forcing. The model
describes the ring response in terms of the modes of a perfect ring and illustrates how
nonlinear electrostatic forces induce mode coupling. The nonlinear coupling of rigid-
body to flexural motions was demonstrated and direct-forcing terms were identified as
the dominant coupling terms. Shock induced mode coupling can have a detrimental affect
on device performance by producing erroneous angular rate measurements. For devices
operating using 2θ-modes, it was found that severe shock can induce high levels of coupling
if electrodes are only present outside the ring, but the coupling is reduced significantly
when electrodes are included inside the ring. In contrast, for devices operating using
3θ-modes, the coupling increases when inner electrodes are used. Parameter studies
were performed to minimise the mode coupling by modifying the frequency separation
as a ratio and it was found that the coupling could be reduced further in 2θ-devices by
carefully selecting the spacing between 2θ- and 1θ-frequencies, and avoiding parametric
resonance. For the range of frequencies considered it was found that devices operating
using 3θ-modes are more susceptible to shock than devices operating using 2θ-modes.
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Appendix A. Energy calculations

For the electrostatic energy Ecap, the intermediate calculations performed to yield
the final expressions are provided in this appendix. The expressions for the electrostatic
energies of the outer and inner rings of capacitors are given in Section 2.3. Drawing the
integrals in the parenthesis gives

Ecap,o =
ε0εVo

2lro
2dg

 2π∫
0

1 dϕ+

2π∫
0

w

dg
dϕ+

2π∫
0

(
w

dg

)2

dϕ+

2π∫
0

(
w

dg

)3

dϕ+ · · ·

 (A.1a)

Ecap,i =
ε0εVi

2lri
2dg

 2π∫
0

1 dϕ−
2π∫
0

w

dg
dϕ+

2π∫
0

(
w

dg

)2

dϕ−
2π∫
0

(
w

dg

)3

dϕ+ − · · ·

 (A.1b)

where the integration of 1 with respect to the ring angle gives 2π. Each fraction (w/dg)
(p+1)

can be evaluated separately, and is identified by the degree of electrostatic accuracy p. To
evaluate, which terms yield non-zero contributions to the final energy expression when in-
tegrated with respect to the angle ϕ over 0 to 2π, the radial displacement w is substituted
with the generalised coordinates.

The single integrals for the calculation of the electrostatic energy expression include
multiples and powers of the mode shape functions of the generalised coordinates, and
yield

2π∫
0

(
w

dg

)(p+1)

dϕ =
1

dg
(p+1)

2π∫
0

[
P1 cos(ϕ) + P2 sin(ϕ) +Q1 cos(2ϕ) · · ·

+Q2 sin(2ϕ) +R1 cos(3ϕ) +R2 sin(3ϕ)

](p+1)

dϕ

For p=0, the integrals of all trigonometric functions yield zero. This means, the static
forcing on the generalised coordinates is zero for all considered coordinates.

The p=1 terms yield multiples of the trigonometric functions, which yields

S2 =

2π∫
0

(
w

dg

)2

dϕ =
π

dg
2

[
Ṗ1

2
+ Ṗ2

2
+ Q̇1

2
+ Q̇2

2
+ Ṙ1

2
+ Ṙ2

2
]

(A.2)

These terms yield linear electrostatic forces when the derivative with respect to the gen-
eralised coordinates is calculated.

The nonlinear p=2 and p=3 terms contain cubic and quartic terms, with products
of three trigonometric functions. There are an increasing number of terms, yielding a
large number of possible trigonometric combinations. However, a large part of these
combinations leads to zero on evaluation of the integral. The integrals are evaluated
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symbolically and result in the electrostatic energies

S3 =

2π∫
0

(
w

dg

)3

dϕ =
3π

2dg
3

[
−Q1P2

2 +Q1P1
2 + 2Q1R1P1 · · ·

+ 2Q2P1P2 − 2R1Q2P2 + 2Q1R2P2 + 2Q2R2P1

]
(A.3)

and

S4 =

2π∫
0

(
w

dg

)4

dϕ =
π

4dg
4

[
12Q1

2R1
2 + 3R2

4 + 12Q2
2R2

2 + 12Q1
2R2

2 + 6R1
2R2

2 · · ·

+ 12Q2
2R2P2 + 3Q1

4 + 3R1
4 + 3Q2

4 + 3P2
4 + 3P1

4 + 12P1
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2R2P2 · · ·
− 12R1P1P2
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2R1P1 + 12R1

2Q2
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2P1
2 + 6Q1

2Q2
2 · · ·

+ 12R1
2P2

2 + 12P1
2Q2

2 + 12R2
2P2

2 − 4P2
3R2 + 12P2

2Q2
2 · · ·

+ 12Q1
2P2

2 + 6P1
2P2

2 + 12R1
2P1

2 + 4P1
3R1 + 12P1

2Q1
2

]
(A.4)

Substituting Equations (A.2) to (A.4) into Equations (A.1a) and (A.1b) yield the outer
and inner electrostatic energies.
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