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1 Introduction

Usually we try to constrain the laws of physics at very high energies by attentively staring
into the night sky. In this work, we instead stare into a mirror that stares into the night
sky. If the relevant laws of physics during the primordial universe violate parity (point
inversion), the image in the mirror will appear to belong to a universe that is not ours.

When inquiring about parity violation in the primordial universe, it is natural to ask
what observables are most sensitive to this effect. The answer splits into two relevant cases:
either we only have access to the scalar sector of primordial correlators, or we also observe
correlators of spinning fields such as the tensor sector involving primordial gravitational
waves. When considering spinning fields, parity violation can already be detected at the
level of the two-point function, where for example, the two helicities of the graviton can
have a different power [2]. All higher order correlators involving spinning fields can also
show signs of parity violation, although they are often more constrained compared to their
parity-even counterparts as recently shown for the graviton bispectrum [3] (see also [4]).
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Conversely, if we are only allowed to consider correlators of scalar fields,1 we have to dig
much deeper. In this case, for the two- and three-point scalar correlators, namely the power
spectrum and the bispectrum, invariance under rotations and translations automatically
implies invariance under parity. The reason is simple: working in Fourier space, momentum
conservation requires all momenta to lie on one plane and then a rotation perpendicular
to this plane is identical to a parity transformation.2 The first time that parity violation
can manifest itself in scalar correlators is therefore in the four-point function, a.k.a. the
trispectrum, which is the focus of this work. We will derive a set of no-go theorems and
yes-go examples for parity violation in this scalar trispectrum. Other discussions of the
parity-odd scalar trispectrum in the literature can be found in [1, 5], while for the parity-
even trispectrum see [6–9].

Our motivation for this work is twofold. As we have just discussed, in the scalar
sector the trispectrum is the leading possible signal of parity violation so understanding its
properties is important. Given that parity violation in the graviton bispectrum is highly
restricted [3], one might expect similar restrictions for the scalar trispectrum and indeed
we will show that this is the case. Furthermore, two recent papers [10, 11] (see also [12])
searched for signs of parity violation in the BOSS galaxy survey, and found hints of parity
violation. Although further investigation is clearly necessary to exclude non-primordial
sources of parity violation, we take these preliminary and tantalising findings as further
motivation to ask about the microscopic underpinning of parity violation in the primordial
scalar trispectrum.

It will be convenient to decompose a general parity violating scalar correlator into a
parity odd (PO) and a parity even contribution (PE) as

〈 n∏
a=1

φ(ka)
〉

= (2π)3δ
(3)
D

( n∑
a=1

ka
)
Bn({k}) , (1.1)

BPE
n (k1, . . . ,kn) ≡ 1

2 [Bn({k}) +Bn(−{k})] , (1.2)

BPO
n (k1, . . . ,kn) ≡ 1

2 [Bn({k})−Bn(−{k})] , (1.3)

where in Bn we factor out the ever-present momentum conserving delta function that
appears due to spatial homogeneity. Recall that the expectation value of Hermitian opera-
tors must be real. Real fields are Hermitian operators in position space, φ(x)† = φ(x), but
their Fourier transform is not. Indeed, the reality of φ(x) requires φ(k)† = φ(−k) and so
φ(k) is a parity transformation away from being Hermitian. As a consequence, a general
parity-violating correlator in Fourier space is a complex number and its parity-even and

1By scalar field we mean a field invariant under rotations and under parity. In particular, in our
nomenclature a pseudo-scalar is not a scalar field.

2More generally, parity violation must vanish for any n-point scalar correlation function in d spatial
dimensions where the n−1 independent momenta span a subspace of dimension less than d. As a corollary,
parity violation can appear only for n > d. It would be interesting to see if this has any implications for
theories with extra dimensions.
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parity-odd components correspond to its real and (i times) imaginary part respectively i.e.

BPE
n = ReBn ∈ R , (1.4)

BPO
n = i ImBn ∈ i× R . (1.5)

In this paper we study BPO
4 for curvature perturbations generated during inflation around

a quasi de Sitter spacetime. We work in perturbation theory at tree-level and we make
ample use of many recent results derived within the cosmological bootstrap program. In
particular, we use the Cosmological Optical Theorem (COT) [13], which is a consequence
of unitary time evolution and the choice of the Bunch-Davies vacuum, the Manifestly Local
Test (MLT) [14], which is necessary condition for manifestly local interactions, and recent
results that provide exact expressions for correlators involving massive fields [15, 16]. We
derive a series of no-go theorems and discuss a number of yes-go examples that invalidate
different assumptions of the no-go theorems. We work in the decoupling limit of the
Effective Field Theory of Inflation (EFTI) [17], where the small effects of dynamical gravity
are ignored, so our main object of interest is the trispectrum of the EFTI Goldstone mode
π(η,x) that non-linearly realises the broken de Sitter boosts. Our no-go theorems crucially
rely on scale invariance, which in turn fixes the overall scaling of cosmological correlators
with the various momenta, and we will show how breaking scale invariance allows for many
possible parity odd trispectra giving concrete examples.

Summary of the results. Our main results are summarized as follows. We prove a
series of no-go theorems for generating a parity-odd scalar trispectrum BPO

4 and higher-
point correlation functions BPO

n of curvature perturbations. In particular, we prove that
BPO
n = 0 for any n ≥ 2 at tree-level assuming scale invariance and a Bunch-Davies state

in single-clock inflation. This had already been derived by Liu, Tong, Wang and Xianyu
in [1] by manipulation of the explicit perturbative contributions. Our re-derivation stresses
the importance of the assumption of unitarity and the choice of vacuum. We extend these
results in a few different directions, always under the assumption of a Bunch-Davies vacuum
and scale invariance at tree level.

• BPO
4 = 0 in the presence of any number of scalars of any mass.

• BPO
n = 0 for any number of fields of any spin as long as they all have massless

or conformally-coupled de Sitter mode functions (see (3.14)). Crucially, this relies
on the interaction being IR-finite, which corresponds to the restriction ni + 2nη ≥
4 with ni,η the number of spatial and time derivatives respectively. Interactions
with only three spatial derivatives, such as the one in (4.2), give rise to log[η0] late-
time divergences in the wavefunction and then unitarity demands an associated non-
vanishing contribution to the n-point correlator (see (4.3)), BPO

n 6= 0, as anticipated
in [3].

• BPO
4 = 0 in the presence of full de Sitter isometries, or equivalently full conformal

invariance at the boundary (section 3.1). This is true even before imposing soft
theorems, which would require this contribution to vanish anyways in single-clock
inflation [18].
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• Small corrections to the linear dispersion implied by the Bunch-Davies vacuum do
not alter any of the above conclusions in perturbation theory. This applies also to
quadratic mixing operators in the action.

Then, we derive a series of yes-go examples in which one of the assumptions of the no-go
results is relaxed.

• For non-scale-invariant interactions we find BPO 6= 0, as expected for example from
the discussion in [19]. This can happen in two ways: via IR-divergences that break
scale invariance at the scale we cut-off the time integrals η0, as discussed above, or
because of time-dependent couplings that can generally arise in the EFTI. A non-
vanishing contribution arises already at the level of a single contact interaction in
single-clock models. The size of the parity-odd non-Gaussianity depends on how
strongly scale invariance is broken.

• As an example of a non-Bunch-Davies vacuum we consider the non-linear dispersion
relation of the Ghost condensate [20, 21], ω2 ∝ k4. We show that both the leading
and the subleading (in the EFT expansion) parity-odd self-interactions can give rise
to a non-zero parity-odd signal. Our final results are, respectively

Bζ
4 = 128iπ3Λ5(HΛ̃)1/2

MPOΛ̃5Γ(3
4)2

(∆2
ζ)3 (k2 ·k3×k4)(k1 ·k3)(k1 ·k2)(k3 ·k4)

k
3
2
1 k

3
2
2 k

3
2
3 k

3
2
4

ImT (k1,k2,k3,k4)

+23 perms. , (1.6)

Bζ
4 = 512iπ3Λ5(HΛ̃)3/2

Λ2
POΛ̃6Γ(3

4)2
(∆2

ζ)3(k2 ·k3×k4)(k2 ·k3)k
1
2
1 k
− 3

2
2 k

1
2
3 k

1
2
4 T (k1,k2,k3,k4)

+23 perms. (1.7)

In these two equations T is given respectively by

T =
∫ +∞

0
dλλ11H

(1)
3
4

(2ik2
1λ

2)H(1)
3
4

(2ik2
2λ

2)H(1)
3
4

(2ik2
3λ

2)H(1)
3
4

(2ik2
4λ

2) (1.8)

and

T =
∫ +∞

0
dλλ13H

(1)
− 1

4
(2ik2

1λ
2)H(1)

3
4

(2ik2
2λ

2)H(1)
3
4

(2ik2
3λ

2)H(1)
3
4

(2ik2
4λ

2) , (1.9)

Λ and Λ̃ are the energy scales entering the non-linear dispersion relation (ω = Λ̃k2/Λ2

in flat space, see also eq. (5.5) for the quadratic action in de Sitter spacetime), MPO
and ΛPO set the scale of the parity-odd interaction for the leading and subleading
interactions (eqs. (5.22) and (5.12), respectively), and finally ∆2

ζ is the amplitude of
the curvature power spectrum, Pζ(k) = ∆2

ζ/k
3.

• The tree-level exchange of massive spinning fields leads to a non-vanishing BPO
4 ,

whose overall size depends on the mass. For the explicit example of a spin-1 vector
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field we find the final result in (6.40), which we report here

Bζ
4 =−

( 4∏
a=1

Pζ(ka)
)
c4
sλ1λ3
H3 (s2−k2

1−k2
2)(s2−k2

3−k2
4)(k1−k2)(k3−k4)(k3 ·k4×k2)

×[k12I3(csk12,s)+icsk1k2I4(csk12,s)][k34I4(csk34,s)+icsk3k4I5(csk34,s)]

×sin
(
π

2 (ν+1/2)
)

cos
(
π

2 (ν+1/2)
)

+[(1,2)↔ (3,4)]

+t+u.
(1.10)

Here In are the integrals defined in eq. (6.37):

In(a, b) = (−1)n+1 H√
2b

(
i

2b

)n Γ (α) Γ (β)
Γ(1 + n) × 2F1

(
α, β; 1 + n; 1

2 −
a

2b

)
, (1.11)

where α = 1
2 +n− ν, β = 1

2 +n+ ν and the mass m of the exchanged field enters via
ν =

√
9/4−m2/H2. The corresponding overall amplitude is shown in figure 5. In

agreement with the above no-go results we find that BPO
4 = 0 when the exchanged

vector field has mode functions corresponding to m = 0 or m2 = 2H2.

Before concluding, we stress that in this work we discuss exclusively tree-level processes.
Remarkably, loop contributions can be the leading source of BPO

4 , but we defer a thorough
discussion of this exciting possibility to an upcoming paper.

The rest of this paper is structured as follows. In section 2 we set the stage by
very briefly reviewing the Effective Field Theory of Inflation (EFTI), showing how the
trispectrum is related to the wavefunction of the Universe, and fixing a normalisation for
the trispectrum. In section 3 we discuss a series of no-go theorems to produce a non-
vanishing BPO

n using either scalars of any mass at tree-level or fields of any spin with
massless and conformally-coupled de Sitter mode functions. We then show how relaxing
different assumptions leads to different predictions for a non-vanishing BPO

4 . In section 4 we
relax the assumption of exact scale invariance and show how this can lead to non-vanishing
BPO

4 thanks to either IR-divergences or time-dependent couplings. In section 5, we relax
the condition of a Bunch-Davies vacuum and as a concrete example we study the Ghost
Condensate, which features a non-linear dispersion relation. Then, in section 6 we allow
for massive spinning fields and compute BPO

4 due to the exchange of a massive spin-1 field.
We conclude in section 7.

While this paper was being finalised, another paper appeared that also considers the
effects of massive particle exchange on parity-odd inflationary correlators [22].

Notations and conventions. The exchanged momenta and energy in a four-point ex-
change diagram are defined by

s = k1 + k2 , t = k1 + k3 , u = k2 + k3 , (1.12)
s = |k1 + k2| , t = |k1 + k3| , u = |k2 + k3| . (1.13)
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These energies satisfy the non-linear relation

4∑
a=1

k2
a = s2 + t2 + u2 . (1.14)

2 Generalities

In this section we summarize some results on the wavefunction approach to quantum field
theory in curved spacetime and discuss the action of the Effective Field Theory of Inflation
(EFTI) in the decoupling limit where we neglect the effects of dynamical gravity. Finally,
we setup the normalisation of the trispectrum that we will use throughout this paper.

2.1 The Effective Field Theory of Inflation and the decoupling limit

In the EFTI [17] (see e.g. [23] for a review), operators are constructed from building blocks
that are invariant under spatial diffeomorphisms. These can be constructed from g00 and
the normal nµ to the hypersurfaces of constant time. For example, one can consider the
extrinsic curvature Kµν of these hypersurfaces. In unitary gauge the action takes the
form [17]

S=
∫

d4x
√
−g
[
M2

P
2 R+M2

PḢg
00−M2

P(3H2+Ḣ)+M4
2

2 (g00+1)2+M4
3

6 (g00+1)3+· · ·

− M̄
3
1

2 (g00+1)δK− M̄
2
2

2 δK2+· · ·+higher-order operators
] ,

(2.1)

where δKµν = Kµν − Hhµν , and hµν = gµν + nµnν . The first three terms correspond to
the minimal action of slow-roll inflation, with Einstein gravity plus the terms required to
make the background metric a consistent solution. All remaining terms in the action start
at quadratic order or higher in perturbations, so tadpole cancellation is guaranteed to all
orders. Here we are primarily interested in the decoupling limit of inflationary theories,
which is well-suited to studying large non-Gaussianities. The ever-present fluctuations of
the clock, in this limit, are better described by the scalar degree of freedom π(t,x). In the
decoupling limit this scalar mode decouples from metric fluctuations, and we can view it
as the Goldstone boson of the spontaneously broken de Sitter boosts. Moreover, π inherits
a shift symmetry which ensures an approximately scale invariant power spectrum of scalar
fluctuations, as dictated by observations. On superhorizon scales, the relationship between
π and the comoving curvature perturbation is a simple rescaling: ζ = −Hπ. Throughout
we will take the background metric to be exact de Sitter,

ds2 = a2(η)(−dη2 + dx2) , a(η) = − 1
ηH

, (2.2)

where H is the approximately constant Hubble parameter during inflation. This allows us
to capture the leading contributions to inflationary correlators [24]. One can obtain the

– 6 –
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action for π via the Stückelberg trick, which in the decoupling limit and neglecting terms
suppressed by −Ḣ/H2 reads [25]3

g00+1 =−2π̇−π̇2+ (∂iπ)2

a2 , (2.3)

nµ =
δ0
µ+∂µπ√

1+2π̇+π̇2− (∂iπ)2

a2

, (2.4)

δKi
j =−(1−π̇)δ

ik∂k∂jπ

a2 +H

2
(∂kπ)2

a2 δij−H
δik∂kπ∂jπ

a2 + δik∂kπ̇∂jπ

a2 + δik∂j π̇∂kπ

a2 +O(π3) ,
(2.5)

where δKi
0, δK0

j and δK0
0 can be obtained using the relations δKµ

νn
ν = 0, δKµ

νnµ = 0
and δKµ

νnµn
ν = 0. For example, we have δK0

j(1 + π̇) = −δKi
j∂iπ. While the action for π

coming from eqs. (2.1), (2.3), (2.4), and (2.5) is naturally written in cosmic time t, it is in
conformal time η that scale invariance is manifest and is the time coordinate most suited
to computing late-time cosmological correlators. We will switch between t and η in the
rest of the work, while always denoting the Goldstone mode by π.

Two different regimes of the free theory of π will be of interest in this paper [17]:

• First, there is the case where the free theory is dictated by the tadpole M2
PḢg

00

and the operator M4
2 . As is well known, M4

2 leads to a linear dispersion relation
ω = csk for π, with speed of sound 1/c2

s = 1−M4
2 /(ḢM2

P). In the limit of small
cs one has large non-Gaussianities of the equilateral and orthogonal form of order
1/c2

s [17, 26, 27] (see [28, 29] for recent constraints on these non-Gaussianities from
BOSS data). Another case that falls under the same umbrella is the “de Sitter limit”
Ḣ → 0, cs → 0 such that −ḢM2

P(1− c2
s)/c2

s = 2M4
2 stays fixed, and the free theory

is dominated by the operators M4
2 and M̄3

1 . This leads again to a linear dispersion
relation with a speed of sound cs of order H/M � 1 for M2 ∼ M1 ∼ M � H, and
non-Gaussianities of order (M/H)2. As far as the results of this work are concerned,
this case can be grouped with the one with tadpole andM4

2 dominating the quadratic
action since for both ω ∝ k.

• Then, we will consider the de Sitter limit in which the free theory is determined
by M4

2 , and terms quadratic in the extrinsic curvature. This leads to a quadratic
dispersion relation ω ∝ k2 and non-Gaussianities that scale as 1/P 2/5

ζ . This case
corresponds to the Ghost Inflation [21] limit of the EFTI.

Let us again emphasize that the crucial difference between these regimes of the EFTI is the
dispersion relation of π. As we will see in sections 3 and 5, this will have very important
implications for the existence of parity violation in the scalar trispectrum.

With regards to interactions, in this paper quartic self-interactions of the Goldstone
will be important, as will cubic interactions that involve two Goldstone modes and one other

3We are working in the limit of exact scale invariance which means that any time dependence in the
action comes from the background metric rather than time-dependent couplings. We will, however, allow
for time-dependent couplings when we come to discuss the breaking of scale invariance in section 4.
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field that will contribute to exchange diagrams. Such interactions can arise as the leading
ones from some covariant operator in the EFTI, or as sub-leading terms required by the non-
linearly realised symmetries. For example, quartic self-interactions can arise from operators
with four building blocks, each which start at linear order in π, or from operators with
two or three building blocks which can start at quadratic or cubic order in perturbations.
Interestingly, in the decoupling limit this former choice cannot yield quadratic or cubic
terms if the covariant operator is parity-odd as there are no such operators for scalars.
This means that the quartic interactions are in some sense the leading ones, in this case.
This does not mean that they are degenerate with the four building block operators, rather
we expect that they can be distinguished by how they realise the leading order parts of the
non-linear symmetries. Quartic vertices coming from four building block operators will be
“invariants” in the context of non-linear realisations, whereas those coming lower building
block operators will be “Wess-Zumino” terms. As far as we are aware no classification of
such Wess-Zumino terms has been performed and it is certainly an interesting avenue for
future work, but given that in this work we aim to provide some examples of parity-violation
in the trispectrum we will concentrate on the former possibility.

2.2 The wavefunction, the density matrix and cosmological correlators

To compute cosmological correlators we will use both the wavefunction and the in-in for-
malism. Here we review the former and discuss the latter in section 3.3. The wavefunction4

can be defined formally in terms of a bulk path integral with specified boundary conditions

Ψ[φ, η0] = 〈φ| |Ψη0〉 =
∫ φ(η0)=φ

Ω at η→−∞
DΦ eiS[φ] , (2.6)

where |Ψη0〉 is the quantum state of the system at some late conformal time η0 → 0, Ω
represents the initial condition at η → −∞, 〈φ| a basis of (non-normalizable) field eigen-
states with eigenvalue φ(k) and S is some action functional of the fields that determines the
theory under consideration. We will parameterize Ψ in terms of wavefunction coefficients
ψn, which contain all the dynamical information about bulk evolution and which can be
written in the following way5

Ψ[η0, φ] = exp
[
−

+∞∑
n=2

1
n!

∫
k1...kn

ψn({k}, {k})(2π)3δ
(3)
D

( n∑
a=1

ka
)
φ(k1) · · ·φ(kn)

]
. (2.7)

Here {k} collectively denotes the energies6 ka = |ka| of the n external fields, {k} collectively
denotes their spatial momenta, and φ(k) collectively represents all fields in the theory with

4As common in the phenomenological literature, here we are assuming the system is in a pure state.
Given that we work with effective field theories with a limited validity in energy scale and that we study
an expanding universe, one expects some (small) corrections from entanglement with high-energy modes,
see e.g. [30]. It would be nice to have a systematic study of these corrections.

5The non-perturbative wavefunction can contain terms for which log Ψ is not an analytical functional of
φ at φ = 0. We omit this possibility in our parameterization because no such terms appear in perturbation
theory.

6We refer to the magnitude of a spatial momentum vector as “energy” despite the absence of time
translation symmetry in cosmology.
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indices suppressed. Notice that this parameterization does not require any saddle-point
approximation of the bulk path integral that defines Ψ. In fact, the wavefunction coefficient
can be found non-perturbatively from

ψn({k}, {k})(2π)3δ
(3)
D

( n∑
a=1

ka
)

= −δ
n log Ψ[η0, φ]
δφk1 · · · δφkn

∣∣∣∣
φ=0

= −(i)n 〈0η0 |Πk1 · · ·Πkn |Ψη0〉
〈0η0 |Ψη0〉

,

(2.8)

where in the second line we provided a matrix element definition (see e.g. [31]) with |0η0〉
the eigenstate where all fields vanish at time η0 and Π the momentum conjugate of φ.
Upon renormalization, ψn can be computed to any desired order in perturbation theory
including any number of loops. In this work we focus on the natural observables of the
Poincaré patch of de Sitter and of inflationary cosmology, namely correlation functions of
the equal-time product of fields at the future conformal boundary η0 → 0. Notice that
the correlators of both massive fields and of derivatives of massless fields decay with some
positive power of η. In the inflationary context, this corresponds to a suppression of these
correlators by some positive powers of e−N with N ' O(50) the number of e-foldings of
inflation. Hence we focus on computing only correlators of the product of massless fields,
namely 〈 n∏

a

φ(ka)
〉
c

= (2π)3δ
(3)
D

( n∑
a=1

ka
)
Bn({k}) , (2.9)

Bn({k}) =
∫
DφΨ[φ]Ψ[φ]∗ ∏n

a φ(ka)∫
DφΨ[φ]Ψ[φ]∗ , (2.10)

where “c” stands for connected, i.e. with a single overall momentum-conserving delta func-
tion, and Dφ denotes a Euclidean three-dimensional path integral (in contrast with the
3 + 1 Lorentzian path integral in (2.6)). All the dynamical information that we need is
now contained in |Ψ[φ]|2, which we recognize to be the diagonal of the density matrix ρ

ρ̂ = |Ψ〉 〈Ψ| ⇒ ρφφ̃ = 〈φ| ρ̂ |φ̃〉 , (2.11)

|Ψ[φ]|2 = Ψ[φ]Ψ[φ]∗ = 〈φ|Ψ〉 〈Ψ|φ〉 = ρφφ . (2.12)

Analogously to what we did for the wavefunction, we can parameterize ρφφ as

ρφφ = |Ψ|2 = exp
[
−

+∞∑
n=2

1
n!

∫
k1...kn

ρn({k}, {k})(2π)3δ
(3)
D

( n∑
a=1

ka
)
φ(k1) · · ·φ(kn)

]
,

(2.13)
where the density matrix coefficients are related to the wavefunction coefficients by

ρn({k}, {k}) = ψn({k}, {k}) + ψ∗n({k}, {−k}) . (2.14)

In perturbation theory, correlators can be computed in terms of the ρn’s. For example, at
tree level we have

B2 ≡ P = 1
ρ2
, Bcontact

n = − ρn∏n
a=1 ρ2(ka)

, B4 = − 1∏4
a=1 ρ2(ka)

[
ρ4 −

ρ3ρ3
ρ2

]
, (2.15)
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where P is the power spectrum. For the four-point function due to exchange processes,
we refer to the contribution ρ3ρ3 as the “factorised contribution”. While these expressions
assume a single scalar field, it is straightforward to generalize them to any number of fields
of any spin. In section 6 we will present an explicit formula for B4 due the exchange of
spinning fields.

2.3 Normalization of the parity-odd trispectrum

Before proceeding, it is sensible to fix a normalisation for the trispectrum BPO
4 . Given that

this object must be parity odd and invariant under any permutation of the four external
momenta ka, it can always be written as

BPO
4 ({k}) = (k1 × k2 · k3) F123 + 3 perms. = (k1 × k2 · k3) [F123 − F234 + F134 − F124] ,

(2.16)
where Fabc is an alternating function of three momenta

Fabc = F (ka,kb,kc) = sign(σ)F (kσ(a),kσ(b),kσ(c)) , (2.17)

for any permutation σ with permutation-parity sign(σ) = ±1, and we have used momentum
conservation to write the parity-odd part of the correlator as (k1 × k2) · k3, without loss
of generality.

To discuss the phenomenology of a given non-Gaussianity it is always useful to have a
reference point in kinematic space where to specify the overall size of the signal. A highly
symmetric choice of such a reference kinematic point is convenient for explicit calculations.
For the bispectrum, the reference point is often taken to be the equilateral configuration
where k1 = k2 = k3. For the trispectrum we could also look for a very symmetric config-
uration. Let us first discuss how to visualize a given trispectrum configuration. We can
draw a tetrahedron with four of the edges taken to be the ka. Momentum conservation,∑4
a=1 ka = 0, is then manifest if the ka are connected to each other cyclically. The two

remaining two edges of the irregular tetrahedron are then two of the Maldelstam-like vari-
ables, depending on the order in which ka are chosen. In figure 1 we choose the ordering
so that these edges are s and u. We could then choose all ka to be equal, and specify the
values of the diagonals s and u (eq. (1.14) relating the value of t to them). One such option
is a regular tetrahedron, corresponding to the values

k1 = k2 = k3 = k4 = s = u = t√
2

(tetrahedron) . (2.18)

However, parity-odd trispectra vanish in this configuration, so we instead look for a less
symmetric one. We could not find a particularly convenient or simple choice of irregular
tetrahedron that displays chirality [32], so we settled for (see (1.12) for the definitions of
s, t and u)

k1 = k2
2 = k3

3 = k4√
14−

√
3

= s√
5 + 2

√
3

= t√
7

= u√
16− 3

√
3
, (2.19)
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Figure 1. Tetrahedron configuration (2.20) for the normalization condition and definition of
τPO

NL (2.22).

which guarantees that even a parity-odd trispectrum that depends on the ka and only one
of s, t or u does not vanish. We can choose the wavenumbers in this configuration to take
the values

k̄1 = k̄(1, 0, 0) , k̄2 = k̄(
√

3, 1, 0) , (2.20)

k̄3 = k̄

(
−3

2 ,
3
2 ,

3√
2

)
, k̄4 = −k1 − k2 − k3 . (2.21)

Here k̄ is an arbitrary reference momentum, whose value is largely irrelevant if we assume
scale invariance. As discussed above, we visualize this configuration by taking a tetrahedron
whose edges are the four ka. Choosing one end of k1 as the origin we find figure 1. Our
definition for the overall normalization of the parity-odd trispectrum is then the following:
given a trispectrum model, we isolate its imaginary part, and define

τPO
NL (k̄) ≡ ImBζ

4(k̄1, k̄2, k̄3, k̄4)
[Pζ(k̄1)Pζ(k̄2)Pζ(k̄3)Pζ(k̄4)] 3

4
. (2.22)

3 No-go theorems

In this section we will present various properties of wavefunction coefficients that together
enable us to derive no-go theorems that forbid parity violation in the scalar trispectrum
(and other n-point functions). We will first show that having exact de Sitter symmetries
forbids parity violation in the four-point function. Then we assume the Bunch-Davies
vacuum and unitarity in the form of the Cosmological Optical Theorem (COT) [13], and
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Figure 2. The flux capacitor in the figure summarises the three main relations that we use to
prove a series of no-go theorems for parity odd correlators.

exact scale invariance to show that parity violation is also absent in the scalar trispectrum
in a theory where all fields have massless/conformally-coupled mode functions and with
boost-breaking interactions. We will work with the wavefunction in section 3.2, and directly
with in-in correlators in section 3.3.

Many of our no-go results had already been derived by Liu, Tong, Wang and Xianyu
in [1]. New results that we present here, and that were not explicitly discussed there,
include: the connection to unitarity via the cosmological optical theorem; the no-go result
from full conformal invariance at the boundary (section 3.1); a discussion of the non-
vanishing contribution to parity-odd correlators from IR-divergent interactions (see (4.3));
and the extension to fields of any spin and conformally-coupled mode functions.

3.1 Conformally invariant parity-odd correlators

The isometry group SO(4, 2) of de Sitter spacetime coincides with the Euclidean conformal
group in 3 spatial dimensions, identified with the spacelike future conformal boundary.
These isometries must be broken in all cosmological models because de Sitter is maximally
symmetric and as such cannot have any non-trivial history. However, it can happen that in
some models the breaking is appropriately small and can be neglected in the first approxi-
mation. This is for example the case for slow-roll inflation with a canonical kinetic term or
for more general inflationary models where some sector of the theory does not couple signif-
icantly to the boost-breaking inflaton background (e.g. the graviton sector in P (X,φ) mod-
els). Then one can use (approximate) conformal symmetry to derive general results that
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do not rely necessarily on perturbation theory. For example, in [33] it was shown that there
are only three de Sitter invariant cubic wavefunction coefficients for massless gravitons, and
only two of these give a non-vanishing graviton bispectrum [19]. This was generalized to
mixed bispectra in [34] and to scalar bispectra in [35]. These results resonate with the ex-
pectation that conformal symmetry fixes three-point functions [36]. Conversely, we expect
an infinite class of conformally invariant four-point functions, loosely corresponding to arbi-
trary functions of the conformal cross ratios. Hence, to make progress one needs to rely on
perturbation theory to organize the infinitely many solutions of conformal Ward identities,
as pioneered in [15] and later studied in [16, 37]. Here, we recount non-perturbative argu-
ments that parity-odd conformal-invariant scalar four-point functions must vanish. For the
first argument,7 recall that conformal transformations can bring any four points xa to the
same plane (conventionally one sets three points on a line and the last point determines
the plane, x1 = 0, x3 = 1, x4 = ∞ and x2 arbitrary). A non-vanishing parity-odd scalar
correlator requires contracting the three indices of the Levi-Civita symbol εijk with three
linearly independent vectors. However, since all points are on one plane only two of them
can correspond to independent vectors and hence the parity-odd contribution must vanish.
A second argument relies on embedding space.8 For a three-dimensional correlator we go
to five-dimensional embedding space. There the Levi-Civita symbol has five indices but we
have only four independent points to contract them with, and once again the parity-odd
contribution must vanish.

A non-vanishing parity-odd trispectrum of scalars must therefore arise from the break-
ing of de Sitter symmetries, and this motivates us to study more general situations in which
de Sitter boosts are broken and time derivatives are unrelated to space derivatives. This is
our focus for the rest of this paper. To develop a more general set of no-go theorems, in the
following three subsections we derive some useful properties of wavefunction coefficients
that hold under some mild assumptions.

3.2 Derivation using the boostless cosmological bootstrap

In this section we derive a series of no-go results for the parity-odd scalar trispectrum
using techniques from the boostless cosmological bootstrap. Later, in section 3.3, we
will generalize these results using explicit expressions of the in-in formalism. The main
idea of the derivation, summarized in figure 2, is to use a parity transformation and the
cosmological optical theorem to show that the combination of wavefunction coefficients
appearing in the correlator (namely the diagonal density matrix) vanishes under certain
assumptions. In the following we first discuss the three ingredients of the derivation in
turn and then combine them together.

Parity transformations. Here we derive some general results involving parity, a.k.a.
point inversion, namely the simultaneous flipping of the sign of all spatial coordinates and
Fourier momenta. In a generic parity-violating theory, quantities do not transform in a
simple way under parity, but they can always be decomposed into a parity-even (PE) and

7This argument was explained to us by M. Mirbabayi.
8This argument was explained to us by S. Jain.
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a parity-odd (PO) component as we touched on in the introduction:

ψPE
n ({k}, {k}) ≡ 1

2 [ψn({k}, {k}) + ψn({k}, {−k})] , (3.1)

ψPO
n ({k}, {k}) ≡ 1

2 [ψn({k}, {k})− ψn({k}, {−k})] , (3.2)

and similarly for correlators Bn. As we explained in section 2, correlators are related to
wavefunction coefficients via the density matrix coefficients ρn for which we have

ρPO
n ({k}, {k}) = 1

2 [ρn({k}, {k})− ρn({k}, {−k})]

= 1
2 [ψn({k}, {k}) + ψ∗n({k}, {−k})− ψn({k}, {−k})− ψ∗n({k}, {k})] ,

(3.3)

and so ρPO
n must purely imaginary if we are to find a non-vanishing parity-odd correlator.

Similarly, one can easily see that ρPE
n must be real:

ρPO
n ∈ i× R , ρPE

n ∈ R . (3.4)

Our no-go theorems will be based on asking when ψn, and therefore ρPO
n , can be imaginary.

Furthermore, as observed in the introduction, the power spectrum and bispectrum of
scalars cannot violate parity because we don’t have three independent spatial momenta to
contract the three indices of εijk. This argument is non-perturbative. A similar argument
also tells us that “off-shell” cubic vertices cannot break parity, irrespective of what the
vertex is connected to in a perturbative diagram. This already tells us that the tree-level
contribution to a four-point function from the exchange of a scalar of any mass cannot
break parity.

Hermitian analyticity: a heritage from the Bunch-Davies vacuum. Here we
derive a second important result that will enable us to relate wavefunction coefficients to
their complex conjugate, which will prove useful when we come to analyse the properties
of ρn. As emphasised in ref. [13], the bulk-to-boundary propagators Kk(η) and bulk-
to-bulk propagators Gp(η1, η2) appearing in the perturbative calculation of wavefunction
coefficients enjoy the simple property9

K−k(η)∗ = Kk(η) , G−p(η1, η2)∗ = Gp(η1, η2) . (3.5)

Here we are using k to denote an external energy, and p to denote an internal one. This
Hermitian analyticity is easy to see by eye in the standard de Sitter massless mode func-
tions, but actually holds very generally, namely for fields of any mass, any spin and in
any FLRW spacetime, as long as one chooses the Bunch-Davies vacuum, which physically
corresponds to the Minkowski vacuum at short distances [13, 38]. Furthermore, interac-
tion vertices with real coupling constants are also Hermitian analytic. In particular, ∂x

9The prescription is that all real values of energies such as k and −k should be approached from the
lower-half complex plane, so for complex energies this property becomes K−k∗(η)∗ = Kk(η).
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Fourier transforms to ik, which satisfies the analog of (3.5). Time derivatives preserve the
Hermitian analyticity relations in (3.5) because they are linear and real operations on the
propagators. In a less precise but more evocative way, we can say that perturbative unitary
evolution preserves the analytic structure of the initial state.10

The Hermitian analytic properties above were used in a series of papers to derive
several infinite sets of identities that go under the collective name of the Cosmological
Optical Theorem [13] (see also [39, 40]), e.g. cosmological cutting rules at loop level [31]
and single-cut rules at tree-level [38]. For contact diagrams at tree-level one finds

ψn({k}, {k}) + ψ∗n(−{k},−{k}) = 0 . (3.6)

An s-channel four-point exchange diagram due to two cubic vertices satisfies

ψ4({k}, s, {k}) + ψ∗4(−{k}, s,−{k}) =
Ps[ψ3,L(k1, k2, s, {k}) + ψ∗3,L(−k1,−k2, s,−{k})]

[ψ3,R(k3, k4, s, {k}) + ψ∗3,R(−k3,−k4, s,−{k})],
(3.7)

where here we have denoted the internal energy as s, and collectively denoted external
energies and spatial momenta as {k} and {k}, respectively. Ps is the power spectrum of
the exchanged field. There are generalisations of this COT for exchange diagrams that
apply to higher-point wavefunction coefficients, and we refer the reader to [13, 38] for
further details. The t and u channel expressions are simple generalisations of (3.7). We
note that in all of these expressions, any tensor structures that depend on spatial momenta
and polarisations factorise since spatial momenta always come with a factor of i while
polarisation vectors, and higher-spin generalisations, satisfy ehi (k) = [ehi (−k)]∗. It follows
that these COT expressions constrain only the part of the wavefunction coefficients that
arise due to time evolution, as expected.

In summary, Hermitian analyticity, in the form of the COT, provides us with a way
to relate ψn to ψ∗n, or equivalently Ψ and Ψ∗. More intuitively, this gives us a relationship
between the bra and the ket, which are both needed to compute correlators. The price
to pay for removing the complex conjugate of ψn from ρn is that we have to analytically
continue energies to unphysical negative values. As we will now discuss, we can go back to
physical positive energies using momentum scaling as long as scale invariance is an exact
symmetry of the boundary/late-time correlators.

Scaling symmetry. For our no-go results we will assume exact scale invariance. This is
an interesting limit because scale invariance is an approximate symmetry of the observed
primordial power spectrum of curvature perturbations with violations at the percent level.
Deviations from scale invariance are discussed in section 4.

10Here, we are equating unitary time evolution to the reality of coupling constants in the Hamiltonian. In
principle, one can have imaginary couplings in a Hermitian Hamiltonian in the presence of non-Hermitian
operators. One trivial example are interactions like Hint ⊃ iλφn(Πφ − φΠ). However these can always
be re-written in terms of Hermitian operators and real couplings. It would be interesting to investigate
whether there are relevant cases where imaginary couplings cannot be removed.
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Since we want to model primordial perturbations, typically denoted by the (perturba-
tively) gauge invariant variable R or ζ, we are interested in massless scalars. For IR-finite
wavefunction coefficients this implies that wavefunction coefficients obey the following scal-
ing relation

ψn({λk}, {λk}) = λ3ψn({k}, {k}) , (3.8)

where the λ3 factor cancels the scaling of the Dirac delta function to ensure that the
wavefunction is invariant. Since each ψn comes with a single delta function in the wave-
function, this scaling holds for all n. This scaling relation holds when all external fields
have massless de Sitter mode functions, and implies that n-point correlators scale as
Bn({λk}, {λk}) = λ3−3nBn({k}, {k}) where the factor of λ−3n comes from the n power
spectra. All fields can be different and each can have any spin.11 If some of the external
mode functions are not the massless de Sitter ones, then the overall scaling changes to

ψn({λk}, {λk}) = λ3(1−n)+
∑

a
∆aψn({k}, {k}) , (3.9)

where ∆ = 3/2 + (9/4 −m2/H2)1/2, so that ∆ = 3 for m = 0 and ∆ = 2 for m2 = 2H2

(conformally-coupled). For a combination of fields with massless and conformally-coupled
mode functions, one finds that the scaling is an integer. This overall integer scaling will
allow us to eliminate negative energies and momenta in favour of positive ones. As we will
explain in section 4, these scaling symmetries are not exact when there are IR-divergences,
since we need to cut-off the time integrals at some scale η0, or when the coupling constants
in the action of perturbations have a non-trivial time-dependence.

We now have all the ingredients to derive our tree-level no-go theorems. We will
consider contact diagrams and exchange diagrams separately

Contact diagrams in the wavefunction. There are two types of contact diagrams
that can play a role in the scalar trispectrum: a quartic diagram that contributes to
BPO

4 via ρ4, and cubic contact diagrams that contribute to the factorised part via ρ3ρ3,
cf. eq. (2.15). The former must be a diagram with four external massless scalars, while
the latter must involve two massless scalars and one other field which is the “exchanged”
field. We will derive a no-go theorem for this factorised part when the exchanged field
has massless or conformally-coupled mode functions. Later, in section 6, we will present
explicit computations for the exchange of fields of generic mass.

First consider the quartic contact diagram where we combine the contact Cosmological
Optical Theorem (3.6) plus exact scale invariance (3.8) to conclude that ψ4 is purely real.
It then directly follows that ρ4 is also purely real and therefore there is no parity-odd
contribution to the scalar trispectrum since this requires an imaginary ρ4, as we explained
in section 3.2. This observation results in our first no-go theorem:

Scale invariant, IR-finite, parity-odd n-point correlators BPO
n from contact in-

teractions of massless scalars with a Bunch-Davies vacuum vanish.
11When de Sitter isometries are fully intact, the scaling dimension and the associated mode functions

are fixed by the mass and spin. However, this is not the case once boosts are broken spontaneously and
in the low-energy effective theory fields of any spin can have massless de Sitter mode functions, as nicely
discussed in [41].
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This result was first derived in [1]. Our presentation emphasises the role of unitarity
and the assumption of IR-finiteness, among other things. Notice that this result actually
holds for all n-point contact diagrams since the contact COT and integer scaling symmetry
apply generally. It also holds for gravitons, and was used in [3] to derive the set of highly
constrained parity-odd graviton bispectra.

Now consider the cubic wavefunction coefficients that can contribute to the factorised
part of an exchange trispectrum via the ρ3ρ3 contribution in (2.15).12 If we only have
scalars, all parity-odd cubic interactions must vanish “off-shell” by momentum conserva-
tion. We are left with interactions with spinning fields, which we are assuming here have
either massless or conformally-coupled mode functions. We need one of the cubic vertices
to be parity-odd and the other to be parity-even which means that one of the ρ3 needs to be
imaginary while the other needs to be real. However, if we combine the contact COT (3.6)
with the fact that the cubic wavefunction coefficients have a fixed, integer scaling with the
external momenta, it is simple to see that regardless of parity, the ρ3 are always real or
always imaginary. We therefore arrive at another no-go theorem:

The factorised contribution to the exchange trispectrum cannot be parity-odd
under the assumptions that the constituent cubic wavefunction coefficients are
IR-finite and involve fields with massless or conformally-coupled mode functions
with Bunch-Davies vacuum conditions.

Exchange diagrams in the wavefunction. Exchange contributions to the quartic
wavefunction coefficient are slightly more complicated to analyse compared to their contact
counterparts since the COT for exchange diagrams (3.7) does not have a vanishing left-hand
side, rather it relates the discontinuity of a quartic wavefunction coefficient to the product
of discontinuities of cubic ones. Nevertheless, we can still derive a no-go theorem that
states that these diagrams always vanish under the assumptions we have made throughout
this discussion.

The cubic wavefunction coefficients that appear on the right-hand side of eq. (3.7) must
satisfy the contact COT. Since we are assuming that they correspond to fields with massless
or conformally-coupled mode functions, and that they are IR-finite, they have a fixed
integer scaling with momentum which ensures that they are either purely real or purely
imaginary, regardless of how they transformation under parity. It follows that the product
of their discontinuities, and the left-hand side of (3.7), is always real. This by itself does
not automatically imply that ψ4 is real since an imaginary contribution could in principle
cancel on the left-hand side of the COT, but let us now argue that this cannot be the case.
We first recall that quartic wavefunction coefficients have a restricted set of singularities,
see e.g. [42]: the wavefunction can be singular as the total-energy goes to zero which is
a property of almost all cosmological wavefunctions regardless of the diagram they come

12Here we allow for spinning fields on external lines and therefore the wavefunction coefficients will depend
on polarisation vectors. In this case we do not simply pick up a ± when we flip the sign of all momenta
since polarisation vectors do not have such a property. In this case, we simply need to first strip off all
polarisation vectors and access the reality of what is left over. This is the correct thing to do since in ρn
the polarisation vectors factorise so it is the reality of the remainder that is important.
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from,13 but an s-channel exchange diagram can also yield “partial-energy” singularities
where the partial-energies are a sum of energies that enter a sub-diagram. In this case
the partial-energies are EL = k1 + k2 + s and ER = k3 + k4 + s. If the constituent
cubic wavefunctions are IR-finite, then the corresponding quartic wavefunction coefficient
is rational so only poles can occur as we approach one of these singular kinematic points.
Now as explained in [14], the exchange COT (3.7) fixes all residues of partial-energy poles
since the second term on the left-hand side does not have partial-energy poles so there is no
way they could be cancelled. Given that the left-hand side of the COT is fixed to be real,
all of these partial-energy poles are then also real. The remaining structure of the quartic
wavefunction coefficient, namely, total-energy poles and regular terms, can be fixed by the
Manifestly Local Test (MLT). The MLT states that wavefunction coefficients of massless
scalars (and gravitons) satisfy the following simple relation [14]

∂

∂kc
ψ4
∣∣∣
kc=0

= 0 ∀ c = 1, 2, 3, 4 , (3.10)

where we hold all other energies fixed. The MLT holds when interactions are manifestly
local, i.e. they do not contain inverse Laplacians. This is certainly the case for the self-
interactions of π in the decoupling limit of the EFTI. Since this is a real constraint on
the energy dependence of the quartic wavefunction coefficient, all remaining parts of ψ4
will also be real. A real ψ4 leads to a real ρ4 which cannot contribute to the parity-odd
trispectrum. We therefore arrive at another no-go theorem:

Exchange contributions to the quartic wavefunction coefficient of massless scalars
with Bunch-Davies vacuum conditions cannot contribute to the parity-odd trispec-
trum if the exchanged field has massless or conformally-coupled mode functions,
Bunch-Davies vacuum conditions and if the constituent cubic wavefunction co-
efficients are IR-finite.

In the following subsection we derive these no-go theorems using the in-in formalism
and provide some generalisations that follow from the same assumptions we have made
here. In the rest of the paper, we will discuss how non-vanishing parity-odd trispectra can
arise if one or more of these assumptions are violated.

3.3 Derivation using the in-in formalism

In this section we extend the no-go theorems for the parity-odd trispectrum to more general
n-point correlators by directly using the in-in perturbative expressions for tree-level corre-
lators, without any reference to the wavefunction or the COT. First, we briefly review the
Feynman rules to compute in-in diagrams and then show that by performing an appropri-
ate Wick rotation of all time integrals, tree-level parity odd correlators manifestly vanish.
Similar results were first derived in [1] using this formalism. The parity-odd trispectrum
from loop corrections will be discussed in a separate paper.

13Interestingly, on the leading total-energy pole we recover the flat-space scattering amplitude for the
same process [13, 33, 43].
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Feynman rules. The Feynman rules for the correlators are nicely spelled out in [44] (see
also [45]):

• Draw a diagram and indicate all possible vertices with an r if the corresponding
interactions Hint is to the right of the operator, as in 〈O(k)Hint〉, or with an l if the
Hamiltonian is to the left of the operator, as in 〈HintO(k)〉.

• Every vertex gets a vertex factor that depends on the theory. Every spatial derivative
is ∂x → (−ik) because it would be a +ip in the Fourier-space Hamiltonian, which
then gets integrated over δ(3)(k+p). We will find it convenient to use the amplitude
convention14 to get the crucial factors of i right: no i overall and if the coupling in
the Hamiltonian is Hint ∼ +λ then put a −iλ on a right vertex a +iλ on a left vertex.

• Now there are four possible bulk-to-bulk (B2B) propagators:

Grr(η1, η2, p) = fp(η1)f∗p (η2)θ(η1 − η2) + f∗p (η1)fp(η2)θ(η2 − η1) , (3.11)
Glr(η1, η2, p) = fp(η1)f∗p (η2) = G∗rl(η1, η2, p) , (3.12)
Gll(η1, η2, p) = G∗rr(η1, η2, p) , (3.13)

where f are the positive-frequency mode functions, for example

fk(η) = η
H√
2k
e−ikη (conformally coupled) , (3.14)

fk(η) = H√
2k3

(1 + ikη)e−ikη (massless, dS) . (3.15)

• There are two bulk-to-boundary (B2b) propagators, Gr from Hint’s to the right of O
and Gl from Hint’s to the left of O:

Gr(η, p) = fp(η0)f∗p (η) , Gl(η, p) = f∗p (η0)fp(η) . (3.16)

Finally we discuss a useful property that relates diagrams related by switching all right and
left vertices, r ↔ l. Let D be a Feynman diagram with V vertices and σa with a = 1, . . . , 2V
all possible ordered lists of how to label the V vertices right or left. Let σ̄a represent the
ordered list σa where all vertices have been flipped r ↔ l. Then

D[σ] = D[σ̄]∗(−)ni , (3.17)

where ni is the total number of spatial derivatives in all the vertices. From this we deduce

Bn =
∑
a

D[σa] = 1
2
∑
a

[D[σa] +D[σ̄a]]

= 1
2
∑
a

[
D[σa] +D[¯̄σa]∗(−)ni

]
(3.18)

= 1
2
∑
a

[D[σa] +D[σa]∗(−)ni ] .

14The alternative convention, used e.g. in [13, 31, 38], is to put an overall i1−L, no i’s on the vertices and
an extra i on the propagators.
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This is particularly useful when we discuss parity-even and parity-odd contributions:

BPE = 2 ReDiagram(color order nr ≥ nl) , (3.19)
BPO = 2i ImDiagram(color order nr ≥ nl) . (3.20)

Notice that, as anticipated in eq. (1.5), we find that parity-odd correlators in Fourier space
are purely imaginary, as they should be.

Massless de Sitter mode functions. We are now in the position to prove the follow-
ing no-go theorem: any tree-level parity-odd n-point correlation functions involving only
massless de Sitter mode functions, (3.15), vanishes if all time integrals are IR-convergent
(in Fourier space). Here is the derivation. Consider a generic manifestly-local interaction
Hamiltonian

Hint =
∫

p1,...
δ

(3)
D

(∑
a

pa

)
n∏
b

[
(−ipbη)n

(b)
i (η∂η)n

(b)
η φb(pb)

]
, (3.21)

where n(b)
i and n(b)

η count the number of spatial and time derivatives in the vertex and φb’s
are fields of any spin with a massless de Sitter mode function. The crucial point to notice
is that in Hint every i comes with an η and viceversa (notice that η∂η = (iη)∂iη). In other
words, Hint is a real function of the variable iη. Since the detailed values of n(b)

i and n(b)
η

will be irrelevant, it is convenient to simplify our notation and rewrite this as

Hint =
∫

p1,...
δ

(3)
D

(∑
a

pa

)
F (ikη)

n∏
b

φb(pb) , (3.22)

where now F (ikη) is a vertex factor that collects all spatial derivatives and φb are fields
of any spin with massless de Sitter mode functions or time derivatives thereof. The con-
tribution to any tree-level parity-odd correlator with V interactions takes the following
form

Bn = 2i Im
[
V∏
A=1

∫ 0

−∞

±idηA
(HηA)4FA(ikηA)

] [
n∏
a=1

GX(ikaηB)
] [

I∏
m=1

GXX(ηC , ηD, pm)
]
,

(3.23)
where X in each propagator can be r or l. Each of the I bulk-to-bulk propagators contains
the two possible time orderings of the vertices it connects. If Irr and Ill are the numbers of
Grr and Gll propagators, this gives at most 2Irr+Ill terms, each corresponding to a different
ordering of the right times ηrA and the left times ηlB. Notice that for certain choices of right
and left labelling of the vertices, there might right or left times that are not ordered with
respect to each other. This is not an issue because any diagram where, say, two right
vertices are not ordered with respect to each other can always be written as the sum of
two diagrams that are each ordered. In this way, up to a relabelling of time integration
variables, any one of the many possible left and right time orderings takes the form

Bn = ±2i Im
∫ 0

−∞(1−iε)
idηr1

∫ 0

ηr1

idηr2· · ·
∫ 0

ηrVr−1

idηrVr

×
∫ 0

−∞(1+iε)
idηl1

∫ 0

ηl1

idηl2· · ·
∫ 0

ηlVl−1

idηlVlP (iηA, k,k) ,
(3.24)
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where P is a real-analytic function of iηA and the momenta (a polynomial times an expo-
nential). To show that the argument of Im is real, we change all but two of the integration
variables to ηr,lA = ηr,l1 η̃

r,l
A for A = 2, 3, . . . , Vr,l and we rename ηr,l1 = ηr,l. This gives

Bn = ±2i Im
∫ 0

−∞(1−iε)
idηr

∫ 0

1
iηrdη̃r2· · ·

∫ 0

η̃rVr−1

iηrdη̃rVr

×
∫ 0

−∞(1+iε)
idηl

∫ 0

1
iηldη̃l2· · ·

∫ 0

η̃lVr−1

iηldη̃lVlP (iηr,l, η̃r,lA , k,k) .
(3.25)

Let’s discuss the converge of these integrals. No divergences can come from η̃r,lA = 1.
Convergence at ηr,l = −∞ is guaranteed by the iε prescription. Convergence at ηr,l = 0
depends on the interaction. For ni + 2nη ≥ 4 there are no η → 0 divergences. We
assume here that this is the case and discuss later what happens in the presence of an
η → 0 IR divergence. Since the integrands of the dηr,l integrals are analytic in the upper-
and lower-half complex plane, respectively, we can rotate the integration contour.15 For
IR-convergent interactions both integrals converge at η → 0 by assumptions, so we only
have the three contributions depicted on the left-hand side of figure 3. The arc at infinity
(contribution D) vanishes and so our integral on the negative real line equates the integral
on the positive or negative imaginary axis for right and left times, respectively. Hence, for
the right vertices we can rotate by 90◦ clockwise for ηr from −∞ < ηr < 0 to 0 < λr < +∞
so that ηr = iλr. For the left contour we can rotate 90◦ counterclockwise to ηl = iλl with
0 < λl < −∞. Since only the combination iηr,l appeared in the integrands, the result of
these rotations is manifestly real and so the parity-odd Bn vanishes.

This proves that tree-level, parity-odd correlators involving fields of any spin with
massless de Sitter mode functions vanish. A few comments are in order:

• This no-go result applies also to quadratic mixing of fields that are treated in per-
turbation theory since the above argument applies also when the valency n of the
interaction in (3.21) is n = 2.

• Comparing to wavefunction calculations Minkowski space, we notice that scale in-
variance in de Sitter made things simpler for us. In Minkowski every additional space
or time derivative brings in an extra factor of i so we have to keep track of them.
Whether a parity-odd or parity-even contribution vanishes or not depends on how
many derivatives we have. In contrast, in dS scale invariance forces derivatives to
come in the form ikη or ikη and so every i comes with an η. We will see in sec-
tion 5 that even in de Sitter the situation is slightly more complicated when we have
non-linear dispersion relations.

• The above proof also generalizes to spinning fields if by “parity odd” we mean “with
an odd number of derivatives”. Indeed the above derivation applies unchanged if the
fields φb have indices, as e.g. a vector Ai or a graviton γij . What changes for fields

15This rotation is the same that relates dS calculations to Euclidean AdS calculation, as first pointed out
for the wavefunction in [24] and recently elaborated in [46, 47].
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Figure 3. Integration contours in complex ηr plane. A similar contour in the lower-half complex
plane applies to the left vertices.

with spin is that in general they allow for different IR-divergent derivatives, with
ni + 2nη < 4, as we will discuss shortly.

Conformally-coupled de Sitter mode functions. The above discussion can be
straightforwardly generalized to include also any number of fields of any spin and con-
formally-coupled de Sitter mode functions, as in eq. (3.14). The only difference now is
that in these mode functions one power of η appears without a factor of i. Internal lines
come with a bulk-to-bulk propagator that has two mode functions and so any number of
conformally-coupled GXX ’s will not change our conclusion above. Conversely, we need to
keep track of external conformally-coupled lines. These observations allow us to conclude
that: a tree-level parity-odd correlator of an even number of fields with conformally-coupled
mode functions and any number of fields with massless mode functions vanishes, again for
any spin and under the assumptions of scale invariance and a Bunch-Davies vacuum. Con-
versely, in the presence of an odd number of conformally-coupled external fields we expect
a non-vanishing parity-odd contribution but a vanishing parity-even contribution. This
extends the observation of [13] to all parity-even tree diagrams with an odd number of
conformally-coupled external fields.

4 Yes-go 1: breaking scale invariance

In this section we will show that breaking exact scale invariance allows us to realise parity-
odd trispectra. We will consider two types of symmetry breaking which both invalidate
the assumption that the wavefunction coefficients have a fixed scaling with momenta: (i)
explicit η0 dependence via IR-divergences, and (ii) explicit breaking of scale invariance at
the level of the action due to time-dependent couplings.
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IR-divergences. At tree-level, the analytic properties of wavefunction coefficients with
Bunch-Davies initial conditions are very constrained, irrespective of de Sitter boost in-
variance [48]. Assuming scale invariance, contact diagram contributions to the quartic
wavefunction coefficient of massless scalars can yield rational terms in the external kine-
matics, IR-divergences in the form of poles as η0 → 0, and finally IR-divergent logarithms
of the form log(−kT η0) where kT = k1 + k2 + k3 + k4 is the total-energy. The latter two
possibilities break the fixed integer momentum scaling of the wavefunction coefficient. Such
logs are particularly interesting in the context of parity violation since the Cosmological
Optical Theorem (COT) demands that they always appear in the combination [13]

log(−kT η0) + iπ

2 , (4.1)

so their contribution to the wavefunction is always complex. As we have discussed a number
of times, parity-odd trispectra come from the imaginary part of the wavefunction so having
IR-divergences in the form of logs can yield parity-odd signals. It is always the iπ that
contributes to the correlator. This is familiar from in-in computations of parity violation
in the gravitational sector [2, 49], and plays a crucial role in deriving the small number of
parity-odd shapes of graviton bispectra [3].

Now such logs can only be multiplied by tensor structures or a polynomial in the
external energies [48]. If we assume that what multiplies the log scales as ∼ k3, combined
with the fact that we require a factor of εijkki1k

j
2k
k
3 to break parity, the coefficient of the

log can only be a constant. We then immediately conclude from Bose symmetry that such
a contribution to the wavefunction, and therefore the trispectrum, can only arise if all
four scalars are different since there is no way to cancel the anti-symmetry we get from
εijkk

i
1k
j
2k
k
3 . We note that this case is not captured by our no-go theorem of section 3 since

the log invalidates the scaling in (3.9) (the wavefunction coefficient does not simply pick
up an overall minus sign as we send {k} → −{k} and {k} → −{k}).

To be more explicit, let’s consider the only parity-odd quartic interaction with ni +
2nη < 4, namely

Hint = λφ1∂iφ2∂jφ3∂kφ4εijk . (4.2)

If any two of the four fields are identical, φa = φb, then this vanishes by integration
by parts. So this example requires at least four distinct scalars, in agreement with our
boundary argument above. The result can be computed directly, and gives

B4 = 2iλ(k2 × k3 · k4) Im
∫ η0

−∞

−idη
(Hη)4 (−iHη)3

[ 4∏
a

G+(ka)
]

= −iλH
7π

8e3
4

(k2 × k3 · k4) .
(4.3)

Notice the absence of total energy poles, as discussed in [3]. This result can also be derived
from the complex plane. First, note that when we rotate η to iλ as in figure 3, we need
to consider an additional contour corresponding to a small arch around η = 0, which picks
up the contribution from the pole at η0 = 0. This contribution is in general complex and
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leads to a non-vanishing BPO
4 . Indeed, the arc can be computed and gives

Im
∫ η0

−∞

dη
η
eikT η

∏
a

(1− ikaη) = Im
∫ π/2

π

|η0|eiθdθ
|η0|eiθ

eikT η [1 +O(|η0|)] = π

2 . (4.4)

This nicely picks up the iπ/2 that accompanies the log in the wavefunction computation.

Time-dependent couplings. When scale invariance is broken the coupling constants
of the effective action for perturbations can depend explicitly on time. A generic time
dependence leads to a non-vanishing contribution to parity-odd n-point correlators of fields
of any spin and mass. Here we concentrate on the scalar trispectrum (see e.g. [19, 50] for a
related discussion of the graviton bispectrum). For concreteness we will consider only one
of the leading parity-odd quartic interactions in the effective theory of single-clock inflation
since it is enough to illustrate what is going on. We take

M(t+ π)(g00 + 1)eµνρσnµδKνλ(nα∇αδKλ
ρ)∇σδK →

λ(η)
a9 π′εijk∂i∂lπ∂l∂jπ

′∂k∂
2π + . . . ,

(4.5)
where the . . . denote terms that are higher orders in π as required by symmetry. To
present explicit expressions for BPO

4 , we will consider two time dependencies arising from
expanding the coupling constant. First, let’s assume the time evolution is well captured
by a term linear in η, as in

λ(η) = λ∗ + λ′∗(η − η∗) +O
(
(η − η∗)2) . (4.6)

The trispectrum is then

BPO
4 = 2i Im

∫ −iλ(η)dη
(ηH)4 (−Hη)9(−i)7F (k)G′r(k1)Gr(k2)G′r(k3)Gr(k4) + 23 perms.

= iλ′∗5040F (k)H13k
2
1k

2
3
[
90k2k4 + 9kT (k2 + k4) + k2

T

]
(k1k2k3k4)3k11

T

+ 23 perms. ,

(4.7)

where the vertex F is given by

F (k) ≡ (k2 × k3 · k4)(k2 · k3)k2
4 . (4.8)

As expected, BPO
4 in (4.7) is not scale invariant since BPO ∼ k−10 as opposed to the

expected k−9.
As a second example, we will assume that the time dependence of the coupling constant

during the period in which modes cross the Hubble radius is well captured by a linear term
in t ∼ log(−η),

λ(η) = λ∗ + λ∗,N log
(
η

η∗

)
+O(log2) . (4.9)

The integral in (4.7) can now be computed with this logarithmic time dependence in terms
of exponential integrals in Mathematica, but there is a more direct analytical way to get
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the result. Notice that the integrand is convergent at η → 0 even in the presence of the
log. We can therefore rotate it as in the left-hand side of figure 3. Then we have

log(η)→ log(iλ) = log λ+ i
π

2 . (4.10)

Since we only pick up the imaginary part, it is only the iπ/2 term that contributes. There-
fore we simply have to compute the integral in (4.7) with λ = λ∗ constant and multiply it
by iπ/2. The result is

BPO
4 = iλ∗,N630πF (k)H13k

2
1k

2
3
[
72k2k4 + 8kT (k2 + k4) + k2

T

]
(k1k2k3k4)3k10

T

+ 23 perms. (4.11)

A few comments are in order. First, notice that this BPO
4 has the correct scaling dictated

by scale invariance, BPO
4 ∼ k−9. This is to be expected from power counting at the level

of the integral. We are therefore in a situation in which scale invariance is broken in the
wavefunction by the logarithmic time dependence of a coupling constant, but the breaking
is not visible to leading order in the correlator. Second, note that this BPO

4 has total energy
poles at kT → 0. This is in contrast to contributions arising in the scale invariant theory,
such as for example (4.3) and the parity-odd graviton bispectra computed in [3, 49].

We conclude by pointing out that these two simple examples are by no means an
exhaustive list, and many other time dependencies could be considered, depending on the
model under consideration. The main takeaway is that a non-vanishing BPO

4 is generally
produced by any deviation from scale invariance.

5 Yes-go 2: non-Bunch-Davies vacuum

In section 3 we showed that contact diagram contributions to the parity-odd quartic wave-
function coefficient cannot contribute to the trispectrum when the dispersion relation is
linear i.e. ω2 ∝ k2. We have also shown that our results are robust against adding small cor-
rections to this dispersion relation. In this section we will look for a way out by considering
the non-linear dispersion relation ω2 ∝ k4 which occurs in Ghost Inflation (GI) [21] which
is an inflationary generalisation of the Ghost Condensate [20] (see also [51]). Our results of
the previous section do not apply to GI since the non-linear dispersion relation translates
into a bulk-to-boundary propagator for the Goldstone mode that is not Hermitian analytic,
as was pointed out in [38]. In section 3 we heavily relied on Hermitian analyticity of the
bulk-to-boundary propagator as a way of deducing when the time integral can contain an
imaginary part. In this section we will show that a large parity-odd trispectrum can indeed
arise from contact diagrams in GI (in a similar way, we expect that the models studied
in [52], for which the dispersion relation is ω2 = k2n for n > 1, will also give a non-zero
parity-violating trispectrum).

Before proceeding, let us emphasize that in this section we discuss GI only as an exam-
ple of non-Bunch-Davies vacuum conditions, and of how deviating from a linear dispersion
relation allows for parity violation in the scalar trispectrum. We do not advocate it either
as an explanation of the results of refs. [10, 11], or as a theory of the primordial universe.
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Indeed, the validity of the Ghost Condensate, and of GI as an inflationary model, has
been put into question in light of problems associated with black hole thermodynamics [53]
and violation of the de Sitter entropy bound [54] (but see also [55–57] for a discussion of
scenarios where these bounds are not violated in practice). Our result that GI can indeed
yield a non-vanishing parity-odd trispectrum may motivate further model building for such
non-standard dispersion relations that may overcome some of these issues.

Now, let us first recall that the quadratic action for the Goldstone mode in GI comes
from the unitary-gauge action

S =
∫

d4x
√
−g

[Λ4

4 (g00 + 1)2 − Λ2
1

2 δKµνδK
µν − Λ2

2
2 δK2

]
. (5.1)

Comparing with eq. (2.1), here we have defined M4
2 = Λ4

2/2, and we assume that these
operators dominate over the minimal kinetic termM2

PḢg
00 in the limit Ḣ → 0, cs → 0 with

−ḢM2
P(1− c2

s)/c2
s = Λ4 kept fixed [17]. At quadratic order, and converting to conformal

time, the free theory for the Goldstone mode is therefore16

Sππ =
∫

d3xdη a4(η)
[Λ4

2
π′2

a2(η) −
Λ̃2

2
(∂2π)2

a4(η)

]
, (5.2)

where we have defined Λ̃2 ≡ Λ2
1 + Λ2

2, and the number of scale factors is fixed by scale
invariance. Now the bulk-to-boundary wavefunction propagator is [21]17

K(k, η) = −
e
iπ
4 π(−η) 3

2 (c̃k) 3
2H

(1)
3
4

(−c̃2k2η2)

2 3
4 Γ(3

4)
, (5.3)

where c̃2 = HΛ̃/(2Λ2), and we drop the subscript π on the bulk-to-boundary propagator
in this section since there is no possibility of confusion. In this expression H

(1)
3/4(z) is the

Hankel function of the first kind and order 3/4, and we have used

lim
η0→0−

(−η0)3/2H
(1)
3
4

(−c̃2k2η2
0) = −i

23/4Γ(3
4)

π(−c̃2k2)3/4 , (5.4)

to eliminate all η0 dependence from this propagator. One can check directly [38] that this
propagator is not Hermitian analytic i.e. K(k, η) 6= K∗(−k∗, η), and therefore the COT as
we wrote it in section 3 does not hold. We can now compute the power spectrum and to
do so we will follow the wavefunction approach since it allows us to illustrate how we deal
with time integrals in GI. The quadratic wavefunction coefficient takes the form

ψ2 = −2i
∫ 0

−∞(1−iε)
dη a4(η)

[Λ4

2
K ′(k, η)2

a2(η) − Λ̃2

2
k4K(η, k)2

a4(η)

]
, (5.5)

where the overall factor of 2 comes from the fact that the two “vertices” are symmetric
and as always we include an overall factor of (−i). We can form a contour that goes

16Recall that π has dimensions of length since it arises from the combination (t+ π).
17Expanding η2 = η2

0 − 2t/(a2
0H), for t � H−1, we see that the bulk-to-bulk propagator goes as

exp(iω(kphys)t), where ω(k) = Λ̃k2
phys/Λ2 and kphys = k/a0.
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from −∞(1 − iε) to −∞(1 − i), and from −∞(1 − i) to 0. Given that the contribution
on the quarter-circle vanishes exponentially fast,18 and that there are no poles inside the
integration contour and we do not cross branch cuts, we have

ψ2 = −2i
∫ 0

−∞(1−i)
dη a4(η)

[Λ4

2
K ′(k, η)2

a2(η) − Λ̃2

2
k4K(η, k)2

a4(η)

]
. (5.6)

The advantage of this contour will become manifest when we come to compute the quartic
wavefunction coefficient and therefore the trispectrum. If we integrate by parts and use
the equation of motion, we can reduce the quartic wavefunction coefficient to

ψ2 = −2i
[
a2(η)

2 Λ4K(k, η)K ′(k, η)
]0

−∞(1−i)
= e

iπ
4 k3πΛΛ̃2

(2HΛ̃) 1
2 Γ(3

4)2
, (5.7)

from which we can extract the power spectrum which is given by

Pπ(k) =
(HΛ̃) 1

2 Γ(3
4)2

k3πΛΛ̃2
. (5.8)

Before writing down quartic self-interactions for the Goldstone and computing trispectra,
let us first briefly recall how to derive the scaling dimensions in GI, referring the reader
to [17, 20, 21] for more details. Given that the free theory does not lead to a linear dispersion
relation, counting the scaling dimension of various operators is slightly more involved. We
will derive these scalings at energy scales where we can ignore the background curvature.
Under a rescaling of energy (time) E → sE (t → s−1t), the dispersion relation ω2 ∝ k4

implies that k → s1/2k (x → s−1/2x). We then see that the quadratic action remains
invariant if the scaling dimension of π is π → s1/4π. We will use these scalings as guidance
for finding the leading order operators in the EFT expansion.

As we discussed in section 2, there are two distinct ways that a quartic self-interaction
can arise: (i) from EFTI operators that contain four building blocks and therefore start
at quartic order in perturbations and (ii) from EFTI operators that contain fewer than
four building blocks and can therefore start at quadratic/cubic order in perturbations.
For definiteness we will work with EFTI operators that start at quartic order since these
are simpler to construct and already enable us to illustrate that parity odd trispectra can
indeed arise in GI. Studying other operators is certainly an interesting avenue for future
work, and perhaps requires a better understanding of the non-linearly realised symmetries.
From eqs. (2.3), (2.4), (2.5) we see that we can construct self-interactions from π̇, ∂i∂jπ, and
their derivatives. This also follows from the fact that in flat space, a superfluid non-linearly
realises broken boosts as δπ = bix

i+O(π) (see e.g. [58–61]). The operators with the lowest
scaling dimension are those with the fewest time derivatives. The leading operators with
zero, one and two time derivatives are

eµνρσnµδKαβδK
α
ν∇βδKγρδK

γ
σ ⊃ a−9εijk∂m∂nπ∂n∂iπ∂m∂l∂jπ∂l∂kπ , (5.9)

(g00 + 1)eµνρσnµδKνλ(D2δKλ
ρ)∇σδK ⊃ a−9π̇εijk∂i∂lπ∂l∂j∂

2π∂k∂
2π , (5.10)

(g00 + 1)eµνρσnµδKνλ(nα∇αδKλ
ρ)∇σδK ⊃ a−7π̇εijk∂i∂lπ∂l∂j π̇∂k∂

2π , (5.11)

18Recall that H(1)
ν (z) ∼

√
2
πz
ei(−

πν
2 +z−π

4 ) for large z.
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where D2 is the covariant Laplacian on the hypersurfaces of constant time and eµνρσ is the
volume form eµνρσ = √−g εµνρσ, with ε0ijk = εijk and ε0123 = 1. We now notice that we
can isolate eq. (5.10) as the leading source of parity violation. Indeed, the other operators
do not preserve the t→ −t, π → −π symmetry of the action of the free theory eq. (5.2).19

We will therefore initially concentrate on eq. (5.10) from which we will learn a lot about
when we can get a non-zero signal. We will come back to the others at the end of this
section. Converting to conformal time we have

Sππππ = 1
Λ2

PO

∫
d3xdη a−6(η)π′εijk∂i∂lπ∂l∂j∂2π∂k∂

2π , (5.12)

and the quartic wavefunction coefficient takes the form

ψ4 = H6

Λ2
PO
εijkk

i
2k
j
3k
k
4k

l
2k
l
3k

2
3k

2
4

∫ 0

−∞(1−i)
dη η6K ′(k1, η)K(k2, η)K(k3, η)K(k4, η)

+ 23 perms.

= π4H6c̃8

4Γ(3
4)4Λ2

PO
εijkk

i
2k
j
3k
k
4k

l
2k
l
3k

7
2
1 k

3
2
2 k

7
2
3 k

7
2
4

×
∫ 0

−∞(1−i)
dη η13H

(1)
− 1

4
(−c̃2k2

1η
2)H(1)

3
4

(−c̃2k2
2η

2)H(1)
3
4

(−c̃2k2
3η

2)H(1)
3
4

(−c̃2k2
4η

2)

+ 23 perms. ,

(5.13)

where the overall factor of (−i) in the Feynman rules is cancelled by the factor of (+i) that
we get from converting the nine spatial derivatives to momentum space. Here we have used

K ′(k, η) = −
2e iπ4 π(−η) 5

2 (c̃k) 7
2H

(1)
− 1

4
(−c̃2k2η2)

2 3
4 Γ(3

4)
. (5.14)

As a consistency check we notice that the overall powers of k and η can be expressed as
(kη)14k3 so we have the correct scaling required by scale invariance. We can also check that
this wavefunction coefficient won’t vanish when we sum over permutations: from the time
integral we only need to worry about permutations in labels (2, 3, 4) then given the overall
dependence on the energies, we only need to worry about permutations in (3, 4) since only
these energies appear with the same power. The integrand is symmetric in these labels, the
energy dependence is also symmetric. We can then write kl2kl3 = 1

2(kl2kl3−kl2kl4−kl2kl1−k2
2),

by momentum conservation, to show that the anti-symmetric structure from the epsilon
tensor is cancelled by part of this final term. We will therefore get something non-zero

19One can relate this symmetry to a t → −t symmetry in unitary gauge. The transformation rules
in unitary gauge follow from g00 = gµν∂µt∂νt, nµ = −∂µt/

√
−g00, Dµ = (δνµ + nνnµ)∇ν and Kµν =

∇µnν +nµn
ρ∇ρnν . This is useful since it allows one to predict the transformation rules of a given operator

at all orders in π. However, it is important to keep in mind that once the background of these geometric
objects is covariantly subtracted to ensure tadpole cancellation, their transformation properties are spoiled.
This will give rise to operators that break the t → −t, π → −π symmetry. These will generically be
suppressed in the limit of large non-Gaussianities. That is, the breaking of the symmetry is small in this
limit.
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when we sum over permutations, as expected. Now it is useful to explicitly extract the
dependence on c̃2. We do this by performing a change of variables ki → ki/c̃ in the integral
over k1,k2,k3,k4 in the wavefunction. After some algebra, and using π(k/c̃) = c̃3π(k),20

we obtain

ψ4 = 32H6iπ4

Λ2
POc̃

6Γ(3
4)4 (k2 · k3 × k4)(k2 · k3)k

7
2
1 k

3
2
2 k

7
2
3 k

7
2
4 T (k1, k2, k3, k4) + 23 perms. , (5.15)

where

T (k1, k2, k3, k4) =
∫ +∞

0
dλλ13H

(1)
− 1

4
(2ik2

1λ
2)H(1)

3
4

(2ik2
2λ

2)H(1)
3
4

(2ik2
3λ

2)H(1)
3
4

(2ik2
4λ

2) .
(5.16)

Here we notice the usefulness of the contour discussed at the beginning of this section.
Not only is T real with this choice, thereby ensuring that the wavefunction coefficient is
imaginary, the mode functions are also exponentially convergent for λ→ +∞. The reality
of the integral follows from the integral representation of the Hankel function:

H(1)
ν (z) = e

−iπν
2

iπ

∫ +∞

−∞
dt eiz cosh t−νt , valid for 0 < arg z < π , (5.17)

and for us we have arg z = π
2 . The ν-dependent factors simplify to e iπ8 e− 9iπ

8 = −1 leaving
us with a real T . We remind the reader that having a non-vanishing trispectrum requires
ψ4 to contain an imaginary part which is indeed the case here thanks to the overall factor
of i that comes from dη η13 → (i − 1)14 dλλ13. Note that we are able to use this Wick
rotation to assess the reality of this time integral since it is IR-finite. This ensures that we
don’t need to introduce an IR cut-off at η0.

In preparation for possible future constraints on the operator in eq. (5.12), we write
down the expression for the trispectrum of the comoving curvature perturbation ζ = −Hπ.
Using eq. (5.8), and the definition of c̃2 = HΛ̃/(2Λ2), we find

Bζ
4 = 512iπ3Λ5(HΛ̃)3/2

Λ2
POΛ̃6Γ(3

4)2
(∆2

ζ)3(k2 ·k3×k4)(k2 ·k3)k
1
2
1 k
− 3

2
2 k

1
2
3 k

1
2
4 T (k1, k2, k3, k4)+23 perms. ,

(5.18)
where we defined

∆2
ζ ≡ k3Pζ(k) . (5.19)

It is useful to check that this result conforms to our expectations. To this end, we notice
that the size of the trispectrum can be estimated by comparing the quartic Lagrangian to
the quadratic one at horizon crossing, and using the substitutions ∂η ∼ H, k2 ∼ HΛ2/Λ̃
and π = ζ/H. Then we have

Bζ
4

P 2
ζ

∼ L4
L2

∣∣∣∣
crossing

∼
(
H

3
2 Λ5

Λ2
POΛ̃ 9

2

)
ζ2 , (5.20)

20This follows from scale invariance of the wavefunction coefficients ψn.
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which indeed agrees with eq. (5.8) and (5.18). We can also compute τPO
NL , which is given by

∼ Bζ
4/P

3
ζ , in terms of the observed power spectrum of ζ, ∆2

ζ ≈ 4× 10−8. Using eq. (2.22)
(the explicit choice of reference scale k̄ is irrelevant due to scale invariance) we find

τPO
NL ≈ −

4× 10−7

Λ2
PO

(Λ28

Λ̃18

) 1
5
. (5.21)

This can be made large for small ΛPO, with the caveat that a too small ΛPO could lead
to τPO

NL ×∆2
ζ becoming close to 1 which would jeopardize perturbativity. Given the fact

that we propose GI only as an example of how (non-perturbative) deviations from the
Bunch-Davies vacuum provide a counterexample to the results of section 3, we leave a
more detailed investigation of naturalness constraints to future work. It would also be
interesting to carry out the analysis of [10] using the template of eq. (5.18), in order to
confirm whether current observational bounds from BOSS on τPO

NL are actually competitive
with simple bounds coming from the requirement of perturbativity.

We have learned quite a lot from this calculation. Consider the operator in eq. (5.9)
which only differs from eq. (5.10) by having one less time derivative. Adding time deriva-
tives cannot alter the reality of the wavefunction coefficient because they come in the com-
bination η∂η by scale invariance. The final operator that we wrote, eq. (5.11), however, has
a different number of spatial derivatives compared to the other two: its had seven while the
others have nine. While the time derivatives do not alter the reality of the wavefunction
coefficient, spatial derivatives can. Indeed, by removing two spatial derivatives we lose two
powers of η in the integrand so when we rotate we pick up a factor of i. This means that if
an operator with nine spatial derivatives yields an imaginary wavefunction and therefore a
non-zero correlator, an operator with seven spatial derivatives will yield a real wavefunc-
tion and therefore a vanishing correlator. We conclude that eqs. (5.9) and (5.10) yield a
non-zero signal, while eq. (5.11) yields a vanishing signal.

More generally, BPO
4 6= 0 in GI only if we have 5 + 4n spatial derivatives, regardless of

the number of time derivatives.21 It is easy to convince oneself that in the case with five
spatial derivatives, the necessary number of time derivatives required to find a non-zero
operator ensures that the scaling dimension is never less than 3 i.e. it is never less than
the scaling dimension of the operator in eq. (5.9). This is true for quartic interactions that
come from four building block operators, and also those with fewer building blocks. With
this in mind, let us also write down the trispectrum for curvature perturbations that comes
from eq. (5.9). For a quartic action in conformal time given by

Sππππ = 1
MPO

∫
d3xdη a−5(η)εijk∂m∂nπ∂n∂iπ∂m∂l∂jπ∂l∂kπ , (5.22)

where we have introduced the scale MPO to distinguish this trispectrum from that coming

21One should be able to derive this result using the boostless bootstrap derivation in section 3.2, but
using a modified COT that applies to Ghost Inflation. Such COT for Ghost Inflation was briefly discussed
in [38].
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from eq. (5.10), we find

ψ4 = − 8π4H5

Γ(3
4)4MPOc̃6 εijkk

i
2k
j
3k
k
4k

m
1 k

m
3 k

n
1 k

n
2 k

l
3k
l
4k

3
2
1 k

3
2
2 k

3
2
3 k

3
2
4 T (k1, k2, k3, k4) + 23 perms. ,

(5.23)

where now we have

T (k1, k2, k3, k4) =
∫ +∞

0
dλλ11H

(1)
3
4

(2ik2
1λ

2)H(1)
3
4

(2ik2
2λ

2)H(1)
3
4

(2ik2
3λ

2)H(1)
3
4

(2ik2
4λ

2) .
(5.24)

One can check, using the integral representation of eq. (5.17), that T is purely imaginary,
leading to an imaginary ψ4. The final expression for the trispectrum of the comoving
curvature perturbation is

Bζ
4 = 128iπ3Λ5(HΛ̃)1/2

MPOΛ̃5Γ(3
4)2

(∆2
ζ)3 (k2 · k3 × k4)(k1 · k3)(k1 · k2)(k3 · k4)

k
3
2
1 k

3
2
2 k

3
2
3 k

3
2
4

Im T (k1, k2, k3, k4)

+ 23 perms. (5.25)

We can now estimate the size of the non-Gaussianities from this operator. We take
the ratio between Bζ

4 from the MPO operator and the one from the Λ2
PO operator in the

τNL
PO configuration of eq. (2.20), finding

4 Λ2
PO

HMPO
≈ 3× 103 Λ2

PO

MPOΛ 2
5 Λ̃ 3

5
, (5.26)

where we have used eq. (5.8) to express the Hubble rate in terms of ∆2
ζ ≈ 4× 10−8. We em-

phasize that we do this comparison only to have a vague idea of the size of the trispectrum
from the operator (5.9): a proper analysis following [10, 11] is needed in order to assess the
importance of the difference in the shapes. Nevertheless, it is important to stress that in
terms of operators with four building blocks we expect that eq. (5.25) is the leading signal,
and we will investigate other operators with the same scaling dimension in the future.

6 Yes-go 3: exchanging massive spinning fields

In this section we consider a different setup in which large parity violation can be obtained
in the scalar trispectrum at tree level due to the exchange of a massive spinning field, which
we denote by σ, with masses in the range 0 < mσ/H < 3/2. We go back to assuming a
linear dispersion relation for the Goldstone mode, and consider cubic couplings within the
EFTI following the set-up of [41]. We will first introduce this formalism. We will then
show that the exchange diagram in the wavefunction calculation is purely real so it does
not contribute to ρ4 and therefore does not contribute to the parity-odd trispectrum. We
show this by two complementary methods: using weight-shifting operators, and using a
Wick rotation of the nested time integrals (see appendix A). Conversely, we show that the
factorized contribution BPO

4 ∼ ρ3ρ3 yields a non-zero signal.
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Spinning fields in the EFTI. To treat spinning fields in the Effective Field Theory of
Inflation (EFTI) we follow the nice formalism of [41] and exemplify the discussion in the case
of a spin-1 field. Within this set-up one can avoid constraints on the mass of spinning fields
in the form of the Higuchi bound22 [62] by allowing for sizeable couplings between spinning
fields and the inflaton background. This is a natural set-up for us in this work as we are
not assuming exact or approximate invariance under de Sitter boosts. We will be working
with spin-1 where the mass range we choose does not actually violate the Higuchi bound,
however this is primarily for illustrative purposes and our results are easily generalised
to higher-spins where the allowed range of masses here is large than those allowed by the
Higuchi bound. During inflation fields are classified according to their transformation under
the unbroken group of rotations, but to couple them to four-dimensional fields within the
EFTI, we introduce a fictitious four-vector that when coupled to gravity and the foliation
ensures that the resulting EFT has the correct linear and non-linear symmetries. For
spin-1, the object that transforms as a vector under all diffeomorphisms is [41]

Σµ(Σi, π) =
(
−Σi∂iπ

1 + π̇
,Σi

)
. (6.1)

It is convenient to make all scale factors manifest by contracting spatial indices with δij
as opposed to gij . To do so we introduce σi = aΣi such that the free theory for the spin-1
field is [41]

S2 = 1
2

∫
d3xdη a2(η)

[
(σ′i)2 − c2

1(∂iσj)2 − (c2
0 − c2

1)(∂iσi)2 − a(η)2m2
σ(σi)2

]
, (6.2)

where c0,1 are the speeds of sound of the longitudinal and transverse components of σi and
mσ is an arbitrary mass.23 From now on all spatial indices are raised and lowered with δij .
Crucially, in this set-up the kinetic term of the longitudinal mode is not related to the mass
parameter which is why the Higuchi bound can be avoided. We note that the symmetries
of EFTI dictate that this free action must also come with interactions of the form πσσ

since ΣΣ ⊃ σσ + πσσ. Such interactions cannot contribute to the scalar trispectrum at
tree level so they are not of interest for us in this work. Converting to Fourier space, we
write σi(k, η) = ∑

h σ
(h)
k (η)εhi (k) where we normalise the polarisation vector according to

εhi (k)εh′i (−k) = δhh′ (in this way eq. (6.2) is already the canonically-normalized quadratic
action). We can easily see from the free theory that the mode functions will be equivalent
to those of a massive scalar field in de Sitter. Assuming Bunch-Davies initial conditions,
we have

σ
(h)
k = H

√
π

2 eiπ(ν+1/2)/2(−η)3/2H(1)
ν (−chkη) , with ν ≡

√
9
4 −

m2
σ

H2 . (6.3)

22In the limit where we have full de Sitter symmetries, the Higuchi bound sets a lower bound on the
mass of spinning fields by demanding that their longitudinal mode is not a ghost thereby ensuring the fields
adhere to unitary representations of the de Sitter group.

23Note that our mσ differs from that in [41] because we wrote the action in terms of conformal time.
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Therefore the bulk-to-boundary propagator for this spin-1 field is24

K(h)
σ =

(
η

η0

)3/2 H
(2)
ν (−chkη)

H
(2)
ν (−chkη0)

, (6.4)

and the power spectrum is

P (h)
σ (k) = πH2

4 (−η0)3H(1)
ν (−chkη0)H(2)

ν (−chkη0) , (6.5)

which has the correct mass dimension for a canonically-normalized field. This propagator
simplifies for two special choices of the mass: for the massless case m2

σ = 0 (ν = 3/2) and
the conformally-coupled case m2

σ = 2H2 (ν = 1/2) we have

m2
σ = 0 ⇒ Kσ = (1− ichkη)eichkη , (6.6)

m2
σ = 2H2 ⇒ Kσ = η

η0
eichkη . (6.7)

In these limiting cases our results from section 3 show that no parity violation can occur
due to the exchange of such a massive field so in the remainder of this section we will
concentrate on more general light masses where 0 < mσ/H < 3/2.

Let’s now turn our attention to interactions of the form ππσ that can contribute to
the scalar trispectrum via particle exchange. To realise a parity-odd trispectrum, we need
one of the two vertices to have an odd number of spatial momenta, and the other to have
an even number. To construct these actions we couple Σµ to the building blocks of the
EFTI (see e.g. eqs. (2.3), (2.4), (2.5) for those with the lowest number of derivatives).
Denoting schematically by O these building blocks, there are two ways we can construct
ππσ interactions: (i) operators of the form OΣ induce quadratic mixing terms where π
mixes with the longitudinal mode of σ, then the non-linearly realized symmetries also
demands the presence of ππσ couplings; (ii) operators of the form OOΣ start at cubic
order in fluctuations so the lowest order terms are just ππσ. For the purpose of this paper,
where we are aiming to provide some yes-go examples for parity violation in the scalar
trispectrum, we will work with the simplest set-up where there is no quadratic mixing.
This ensures that there are no other Feynman diagrams to consider beyond the single-
exchange diagram shown in figure 4, where we show only the s-channel for simplicity.
Furthermore, we take σi to be transverse since the longitudinal mode cannot contribute
to parity-odd exchange. This means that we can take ∇µΣµ = 0 and consequently there
is no loss of generality in taking the Goldstone π to appear only via ∂i∂jπ, π̈ and ∂iπ̇ at
leading order in derivatives, since we can only use δKµν and ∇µg00. In terms of symmetries,
these are operators that are invariant under the leading part of the non-linearly realised
symmetries. At zeroth order in fields, σi does not transform which resonates with the fact
that it can be thought of as a matter field in the CCWZ construct of effective actions [41].
Indeed, only Goldstones transform at this order and only π is a Goldstone. The leading

24Recall that the bulk-to-boundary propagator is fixed by [σ(h)
k ]∗ which is why it depends on the Hankel

function of the second kind.
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k1

⇡

k2

⇡

k3

⇡

k4

⇡

s = |k1 + k2|

�

5

Figure 4. s-channel exchange diagram for the exchange of a massive spinning field.

cubic action in conformal time is then given by

Sππσ =
∫

d3xdη
[
λ1∂iπ

′∂i∂jπσ
j + λ2π

′′∂iπ
′σi + λ3a

−1εijk∂i∂lπ∂j∂lπ
′σk

+ λ4a
−1εijk∂iπ

′′∂jπ
′σk
]
.

(6.8)

In the presence of only the first and the second operators, the action would be invariant
under parity if σi transformed as a vector. Conversely, the third and fourth interactions
are compatible with parity only if σi is a pseudo-vector, Pσi(k)P = +σi(k). Hence, any
process that involves both λ1 or λ2 and λ3 or λ4 leads to parity violation. For definiteness we
will concentrate on the O(λ1λ3) contribution to the trispectrum but many of the following
results hold more generally. This action comes from the following unitary-gauge operators:

λ1 → (∇µδg00)δKµ
νΣν , (6.9)

λ2 → Σµ(nν∇νδg00)∇µδg00 , (6.10)
λ3 → eµνρσnµδKνλ(nα∇αδKλ

ρ)Σσ , (6.11)
λ4 → eµνρσnµ∇ν(nα∇αδg00)(∇ρδg00)Σσ . (6.12)

Let us stress that within this set-up where we look for parity violation due to particle
exchange, it is not possible to have a large parity-odd signal in combination with a small
parity-even one. Indeed, parity-even signals can come from both O(λ2

1) and O(λ2
3) contri-

butions to the wavefunction and if the parity-odd signal is made large by having large λ1
or λ3, one of these parity-even signals will also be large. We therefore expect a detection
of a parity-odd trispectrum due to particle exchange to be accompanied by a detection of
a parity-even trispectrum, unless there is some kinematical configuration where the parity-
even shape is small rather than the overall coupling. We will also discuss the constraints
on the couplings coming from the requirements of perturbativity in a moment.

Exchange contribution to the quartic wavefunction. Let us first consider the ex-
change diagram wavefunction contribution ψ4 to the trispectrum BPO

4 , before moving onto
the factorised contribution. Within the range of masses that we are interested in, we are
restricting to cases where ν is real cf. eq. (6.3), and throughout the remainder of this section
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we will fix the speed of the exchanged field to unity, c1 = 1, while keeping the speed of the
Goldstone mode, cs, general. The s-channel exchange diagram at O(λ1λ3) is given by

ψ4,s =
∑
h=±1

(−i)×
[
−iλ1k

i
1k
i
2k
j
2ε
h
j (s)

]
×
[
−λ3Hεijkk

i
3k
l
3k
j
4k
l
4ε
h
k(−s)

]
×
∫

dηdη′ η′K ′π(k1, η)Kπ(k2, η)Gσ(η, η′, s)Kπ(k3, η
′)K ′π(k4, η

′) + 7 perms.

= λ1λ3H

4 (s2 − k2
1 − k2

2)(s2 − k2
3 − k2

4)εijkki3k
j
4k
m
2
∑
h=±1

εhm(s)εhk(−s)

×
∫

dηdη′ η′K ′π(k1, η)Kπ(k2, η)Gσ(η, η′, s)Kπ(k3, η
′)K ′π(k4, η

′) + 7 perms. ,

(6.13)

where we have used momentum conservation at each vertex. Once we sum over the re-
maining two channels, we get the correct number of 4! permutations. We also sum over
the helicities of the exchanged field, and we restrict to the transverse components since the
longitudinal mode cannot give rise to a non-zero parity-odd wavefunction. Using known
polarisation sums, see e.g. [16, 37, 63], we can eliminate all reference to the internal field.
Using ∑h=±1 ε

h
i (s)εhj (−s) = Πij(s) = δij − sisj/s2,25 we then have

ψ4,s = λ1λ3H

4 (s2 − k2
1 − k2

2)(s2 − k2
3 − k2

4)εijkki3k
j
4k
k
2IE(k1, k2, k3, k4, s) + 7 perms. ,

(6.14)

where we have defined

IE(k1, k2, k3, k4, s) =
∫

dηdη′ η′K ′π(k1, η)Kπ(k2, η)Gσ(η, η′, s)Kπ(k3, η
′)K ′π(k4, η

′) .
(6.15)

We note that the second term in the polarisation sum does not contribute since εijkki3k
j
4s
k =

0 by momentum conservation. It is useful to write the bulk-bulk propagator of the massive
field explicitly in terms of the Hankel functions. We have

Gσ(η, η′, s) = iπH2

4
[
θ(η − η′)(η′η)3/2H(2)

ν (−sη′)[H(2)
ν (−sη) +H(1)

ν (−sη)] + (η ↔ η′)
]
,

(6.16)
where we have used

Pσ(s)
[(−η0)3/2H

(2)
ν (−sη0)]2

= πH2

4
H

(1)
ν (−sη0)

H
(2)
ν (−sη0)

→ −πH
2

4 , (6.17)

ImK(s, η) = − i2
(−η)3/2

(−η0)3/2H
(2)
ν (−sη0)

[H(2)
ν (−sη) +H(1)

ν (−sη)] , (6.18)

and have assumed real ν which is the case for our masses of interest.
As we have explained a number of times, whether ψ4,s contributes to the trispectrum

or not depends on the properties of IE : it must contain an imaginary part, such that ψ4,s

25This projection tensor is transverse as it should be: siΠij(s) = sj − sjs2/s2 = 0, and has the correct nor-
malisation since δijΠij(s) = 2. The 2 comes from summing over the two helicities, using εhi (s)εh

′
i (−s) = δhh′ .
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is itself imaginary, for there to be a non-vanishing contribution. We will now study the
properties of this nested time integral. It turns out that IE can be related to a simpler
building block, namely the four-point function of a conformally-coupled field that interacts
with a massive scalar field σ through the trilinear vertex ϕ2σ. The Lagrangian of the ϕ-σ
theory is given by

S =
∫

d3xdη a4(η)
(
−1

2(∂µϕ)2 −H2ϕ2 − 1
2(∂µσ)2 − 1

2m
2
σσ

2 − gϕ2σ

)
, (6.19)

where ϕ is a conformally-coupled field and σ is a scalar field with the same mass as σi.
The four-point wavefunction coefficient of ϕ induced by the exchange of σ is given by

ψϕ4,s = −4ig2

η4
0

∫ dηdη′
η2η′2

ei(k1+k2)ηei(k3+k4)η′Gσ(s, η, η′) . (6.20)

This four-point coefficient is convergent in the η0 → 0 limit iff 0 ≤ ν < 1
2 . Let us define

F (u, v) = −η4
0s

4g2ψ4 which only depends on the dimensionless quantities u = s
k1+k2

and
v = s

k3+k4
. A similar quantity was bootstrapped in [64]. Here we follow the conventions

laid out in section 4.2 of [38], where F (u, v) was found to be

F (u, v) =



∞∑
m,n=0

cmnu
2m+1

(
u

v

)n
+ π

2 cos(πν)g(u, v) , |u| ≤ |v|

∞∑
m,n=0

cmnv
2m+1

(
v

u

)n
+ π

2 cos(πν)g(v, u) , |v| ≤ |u|
. (6.21)

Here, the cmn’s are a set of real numbers given by

cmn = (−1)n(n+ 1)(n+ 2) . . . (n+ 2m)
[(n+ 1

2)2 − ν2][(n+ 5
2)2 − ν2] . . . [(n+ 1

2 + 2m)2 − ν2]
, (6.22)

and
g(u, v) = κ(ν)Pν− 1

2

(1
u

)
−Qν− 1

2

(1
u

)
+Q−ν− 1

2

(1
u

)
, (6.23)

with Pν and Qν the associated Legendre functions of the first and second type, respectively,
and

κ(ν) = iπ + π

cos(πν)
σ(s, η0)
σ∗(s, η0) = π tan(πν) . (6.24)

Above, σ(s, η) is the positive-frequency mode function of the massive field, which is the
same as (6.3) with ch = 1. Putting everything together, we see that for physical configu-
rations, namely for 0 ≤ u ≤ 1, the entire ψϕ4,s is a real quantity. IE will inherit this reality
as it is related to ψ4 through a Hermitian weight-shifting operator.26 This operator can be
reconstructed from the knowledge of the type of interactions inserted at each vertex. The

26Weight-shifting operators are not always Hermitian, but for our interaction vertices the weight-shifting
procedure does not alter the reality of the time integral.
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result is given by

IE(k1,k2,k3,k4,s) =− k
2
1k

2
4

c3
s

(
∂3

∂(k1+k2)3−k2
∂4

∂(k1+k2)4

)(
∂4

∂(k3+k4)4−k2
∂4

∂(k1+k2)5

)

×F
(

s

cs(k1+k2) ,
s

cs(k3+k4)

)
.

(6.25)

In this relation, s is held fixed when the partial derivatives ∂
∂(k1+k2) and ∂

∂(k3+k4) operate.
The indicated weight-shifting operator in front of F (u, v) turns the external conformally-
coupled, massive states into massless ones, hence the name (see [16] for the systematic
study of such operators in de Sitter-isometric situations and [65, 66], when de Sitter boosts
are broken). It follows from the reality of this weight-shifting operator and that of the seed
function F (u, v) that IE has to be real. Two technical comments are in order: (i) The
expression for F (u, v) in (6.21) on the upper (lower) line contains a series expansion that
converges only for |u| < 1 (|v| < 1). However, for a subluminal cs < 1, both ratios u =

s
cs(k1+k2) and v = s

cs(k3+k4) can take values beyond the unit disk where the aforementioned
series expansion is not applicable.27 Nevertheless, the reality of IE across the region defined
by 0 < u < 1 and 0 < v < 1 carries over to the entire u, v > 0 region because F (u, v) is
analytic around u = 1 (for arbitrary v) and v = 1 (for arbitrary u).28 (ii) Our proof so far
only applies to 0 < ν < 1/2 for which the four-point ψ4,s is IR-convergent. Nevertheless,
for lighter states, namely 1

2 ≤ ν < 3
2 , IE is still convergent and analytic as a function of

ν > 0. Consequently, the reality of IE follows for an arbitrary positive ν from its reality
across 0 < ν < 1/2. In appendix A we present a complementary proof that the time
integral IE is purely real by performing Wick rotations on the two time variables.

Factorised contribution to the trispectrum. Having shown that there is no exchange
contribution to the trispectrum for our range of masses, we now move on to the factorised
contribution for which we need to compute the two cubic wavefunction coefficients. We
are considering the O(λ1λ3) trispectrum. The cubic wavefunction coefficient due to the λ1
vertex is given by (throughout we are suppressing the integration limits which are always
the same)

ψ3,1 = −λ1k
i
1k
i
2k
j
2εj(k3)

∫
dη K ′π(k1, η)Kπ(k2, η)Kσ(k3, η) + (1↔ 2)

= −λ1
2 (k2

3 − k2
1 − k2

2)ki2εi(k3)[I1(k1, k2, k3)− I1(k2, k1, k3)] ,
(6.26)

where the overall factor of (−i) in the Feynman rules combines with the factor of (−i)
we get from converting the three spatial derivatives to momentum space to give an overall
factor of (−1), and in the final line we have used momentum conservation and transversality

27This situation was studied in depth in [65], and an explicit expression for the four-point function was
found as a series expansion that converges outside the corresponding unit disk |u| < 1 (or |v| < 1).

28This is a direct consequence of having a Bunch-Davies initial condition which implies regularity at the
collinear limit (i.e. u = 1 or v = 1).
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of the spin-1 field to write ki1εi(k3) = −ki2εi(k3). We have also defined

I1(k1, k2, k3) =
∫

dη K ′π(k1, η)Kπ(k2, η)Kσ(k3, η) . (6.27)

Similarly, for the cubic wavefunction coefficient due to the λ3 vertex we have

ψ3,3 = iHλ3
2 (k2

3 − k2
1 − k2

2)εijkki1k
j
2εk(k3)[I3(k1, k2, k3)− I3(k2, k1, k3)] , (6.28)

where we have defined

I3(k1, k2, k3) =
∫

dη η Kπ(k1, η)K ′π(k2, η)Kσ(k3, η) . (6.29)

Note that there is an additional factor of η in I3 that distinguishes it from I1. Now it is
the combination ρ3 = ψ3({k}, {k}) + ψ∗3({k}, {−k}) that contributes to the trispectrum
and for these two wavefunction coefficients we have

ρ3,1 = −iλ1(k2
3 − k2

1 − k2
2)ki2εi(k3)Im [I1(k1, k2, k3)− I1(k2, k1, k3)] , (6.30)

ρ3,3 = −Hλ3(k2
3 − k2

1 − k2
2)εijkki1k

j
2εk(k3)Im [I3(k1, k2, k3)− I3(k2, k1, k3)] . (6.31)

As expected, we see that for the interaction vertex with an odd number of spatial momenta,
we have an imaginary ρ3, while the interaction with an even number of spatial momenta
yields a real ρ3.

Now, the s-channel contribution to this factorised part of the trispectrum takes the
form

Bπ
4,s =

4∏
a=1

Pπ(ka)
∑
h=±1

P hσ (s)ρ3,3(k1,k2, s)ρ1,3(k3,k4 − s) + [(1, 2)↔ (3, 4)] , (6.32)

where we only add one permutation since we have already explicitly summed over some
permutations in arriving at the above expressions for ρ3,1 and ρ3,3, and as always we don’t
include the spin zero “exchange” since this will always give a vanishing result. We use an
equal sign for this s-channel exchange since as we showed above, the quartic wavefunction
coefficient does not contribute to the correlator. Computing this product and summing
over the helicities of the exchanged field (recalling that only the δij in the polarisation sum
contributes) yields

Bπ
4,s =

( 4∏
a=1

Pπ(ka)
)
iHλ1λ3Pσ(s)(s2 − k2

1 − k2
2)(s2 − k2

3 − k2
4)εijkki3k

j
4k
k
2

× Im [I3(k1, k2, s)− I3(k2, k1, s)] Im [I1(k3, k4, s)− I1(k4, k3, s)] + [(1, 2)↔ (3, 4)].
(6.33)

Let us first convince ourselves that this contribution is indeed non-zero. By construction
it is invariant under (1 ↔ 2) and (3 ↔ 4). This is manifest for (3 ↔ 4) due to the
anti-symmetric nature of εijk, while it can be made manifest for (1 ↔ 2) by writing
εijkk

i
3k
k
4k

k
2 = εijkk

i
3k
k
4(kk2 − kk1)/2. The final sum over replacing (1, 2) ↔ (3, 4) cannot
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yield a vanishing result since I1(k1, k2, s) 6= I3(k1, k2, s). So generically we expect this
contribution to the trispectrum to be non-zero.

Let’s now study the time integrals in more detail. First consider the time integral for
the λ1interaction, and we remind the reader that throughout this discussion we take ν to
be real. We have

I1(k1, k2, s) = − 1
(−η0)3/2H

(2)
ν (−sη0)

∫
dη (−η)5/2 c2

sk
2
1(1− icsk2η)eicsk12ηH(2)

ν (−sη) ,

(6.34)
and therefore

I1(k1, k2, s)− I1(k2, k1, s) =

− c2
s

(−η0)3/2H
(2)
ν (−sη0)

∫
dη (−η)5/2 [k2

1(1− icsk2η)− k2
2(1− icsk1η)]eicsk12ηH(2)

ν (−sη) .

(6.35)

Here we have defined k12 = k1 + k2. A very similar integral,29 that we can use to compute
this one, was computed in appendix B of [15]. Indeed in that work it was shown that the
integral30

In(a, b) = H
√
π

2 e−
iπ
2 (ν+1/2)

∫ 0

−∞
dη (−η)n−1/2eiaηH(2)

ν (−bη) (6.36)

is given by

In(a, b) = (−1)n+1 H√
2b

(
i

2b

)n Γ (α) Γ (β)
Γ(1 + n) × 2F1

(
α, β; 1 + n; 1

2 −
a

2b

)
, (6.37)

where we have defined α = 1
2 + n− ν and β = 1

2 + n+ ν. We can therefore write

I1(k1,k2,s)−I1(k2,k1,s)=− 2c2
s

H
√
π

e
iπ
2 (ν+1/2)(k1−k2)

(−η0)3/2H
(2)
ν (−sη0)

[k12I3(csk12,s)+icsk1k2I4(csk12,s)],

(6.38)
which neatly gives us a closed-form expression. Similarly, for the λ3 interaction we have

I3(k3,k4,s)−I3(k4,k3,s)=− 2c2
s

H
√
π

e
iπ
2 (ν+1/2)(k3−k4)

(−η0)3/2H
(2)
ν (−sη0)

[k34I4(csk34,s)+icsk3k4I5(csk34,s)].

(6.39)
We can now write a more compact expression for eq. (6.33), the full s-channel trispectrum,
which is given by

Bπ
4,s = −

( 4∏
a=1

Pπ(ka)
)
c4
sHλ1λ3(s2 − k2

1 − k2
2)(s2 − k2

3 − k2
4)(k1 − k2)(k3 − k4)εijkki3k

j
4k
k
2

× [k12I3(csk12, s) + icsk1k2I4(csk12, s)][k34I4(csk34, s) + icsk3k4I5(csk34, s)]

× sin
(
π

2 (ν + 1/2)
)

cos
(
π

2 (ν + 1/2)
)

+ [(1, 2)↔ (3, 4)] , (6.40)

29It would be interesting to use the recently developed techniques in [67] to extract the cosmological
collider oscillations implied by this signal.

30We are actually working with the complex conjugate of the integral that was computed in [15] since
our integral contains H(2)

ν rather than H(1)
ν .
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where, as we have seen before, all η0 dependence has cancelled out to leave us with an
expression that is IR-finite. There are a few quick checks we can do on this result. We
notice that it is purely imaginary, as it should be, due to the I3 and iI4 terms, and we see
that for ν = 1/2 and ν = 3/2 this trispectrum vanishes thereby reproducing our results
in section 3. We also see that the result is non-zero for the intermediate range of masses
that we are interested in here. Finally, we see that the overall scaling with momenta is
k−9 as it should be for external massless scalars. Once we sum over the remaining two
permutations (the t and u channels), and we divide by H4 this gives us our final result for
the parity-odd trispectrum of the comoving curvature perturbation ζ due to the exchange
of a massive (but light) spin-1 field during inflation:

Bζ
4 = −

( 4∏
a=1

Pζ(ka)
)
c4
sλ1λ3
H3 (s2 − k2

1 − k2
2)(s2 − k2

3 − k2
4)(k1 − k2)(k3 − k4)εijkki3k

j
4k
k
2

× [k12I3(csk12, s) + icsk1k2I4(csk12, s)][k34I4(csk34, s) + icsk3k4I5(csk34, s)]

× sin
(
π

2 (ν + 1/2)
)

cos
(
π

2 (ν + 1/2)
)

+ [(1, 2)↔ (3, 4)] + t+ u . (6.41)

Let us now discuss the constraints on the couplings λ1, λ3 from the requirements of
perturbativity. For cs close to 1, i.e. in the case that the spinning field and the Goldstone
move with approximately the same speed, we can use the fact that In ∼ H (up to dimen-
sionful functions of ka which are fixed by scale invariance and an innocuous hypergeometric
function). From this we get that Bζ

4 ∼ λ1λ3∆8
ζ/H, which gives τPO

NL ∼ B
ζ
4/P

3
ζ of order31

τPO
NL ∼

∆2
ζλ1λ3

H
. (6.42)

Let us then estimate the unitarity cutoff of the theory. For cs close to 1 this is straight-
forward. Once we canonically normalize π we find that the λ1 interaction is a dimension
7 operator suppressed by Λ1 ∼ H4/3/(∆2

ζλ1)1/3, while the λ3 one is a dimension 8 opera-
tor suppressed by Λ3 ∼ H/(∆2

ζλ3)1/4. Requiring that at crossing we are below the cutoff,
H � Λ1,3 leads to

λ3∆2
ζ � 1 , λ1∆2

ζ � H . (6.43)

To relate this to the overall size τPO
NL , let’s focus on the regime Λ1 ∼ Λ3. Using this we can

re-write λ1 in terms of λ3 and obtain

τPO
NL ∼ λ3(∆2

ζλ3)
3
4 (assuming Λ1 ∼ Λ3) . (6.44)

From this we see that it is possible to choose λ3 in order for the theory to be weakly coupled
at horizon crossing and to have τPO

NL � 1.
Let us then see what happens if cs � 1 or cs � 1. In both cases we need to keep

track of the hypergeometric function in eq. (6.41). Let us consider first the limit cs � 1.
We are interested in 2F1(α, β; γ; z) at large negative z. In order to isolate the scaling with
cs we can focus for simplicity on the case ν = 3/2, disregarding the fact that the overall

31Notice that λ3 is dimensionless while λ1 has dimension of mass.
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Figure 5. τPO
NL for the curvature perturbation ζ from the exchange of a spin-1 field with mass mσ

and interactions λ1 and λ3 in eq. (6.8). Notice that the trispectrum vanishes for the conformally-
coupled mass mσ/H =

√
2, in agreement with our general no-go theorems.

trispectrum is zero in this case: the scaling with cs is unaffected by σ having a non-zero
mass. Hence, we have β − α = 3, and we can use the relation

2F1(α, β; γ; z) ∼ 2(1− z)−α
Γ(β)Γ(γ − α) , (6.45)

valid for |z − 1| > 1, | arg(1 − z)| < π and β − α ∈ N. From this we see that the square
brackets in the second line of eq. (6.41) yield a factor of H2/c5

s in the limit of large cs,
giving

τPO
NL ∼

∆2
ζλ1λ3

Hcs
. (6.46)

In the case of cs � 1, given the regularity of the hypergeometric function at z = 1/2, we
see that

τPO
NL ∼

∆2
ζc

4
sλ1λ3

H
. (6.47)

It is more difficult to estimate, in this case, the unitarity cutoff of the theory without doing
an explicit calculation. We leave this, and a more detailed discussion on how large τPO

NL
must be in order to explain the measurement of refs. [10, 11], to a future work: we only
notice that having a slow σi suppresses non-Gaussianities at fixed λ1 and λ3. In figure 5
we plot τPO

NL as defined by our normalization condition of eq. (2.22) at varying mass of the
exchanged spinning particle and cs.
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7 Summary and future directions

In this work we have studied signatures of parity violation from the inflationary primordial
universe. Until tensor modes are detected, our best hope is to study the statistics of
scalar fluctuations imprinted in primordial curvature perturbations. Parity violation cannot
appear in the power spectrum and bispectrum, even at the full non-perturbative level,
hence in this paper we have focused here on the scalar, parity-odd trispectrum BPO

4 . We
have re-derived and extended previous no-go results [1] that rule out parity violation at
tree-level in the presence of any number of scalars of any mass, or fields of any spin with
massless de Sitter mode functions. Crucially, these no-go results assume scale invariance
and a Bunch-Davies initial state. The raison d’être of these no-go theorems is to help us
identify the classes of models in which we can get a non-vanishing BPO

4 and to determine
the physical implications of a possible discovery of this signal. It is particularly timely to
pursue this goal, in light of the recent measurements of the parity-odd four-point function
of BOSS galaxies of refs. [10, 11]. While it is important to keep in mind that it is possible
that the signal detected (to different levels of significance) by these two groups could be
due to systematics instead of fundamental physics, it is equivalently important to stress
that this is the first example in a long time where it is data that drives the theory, as far
as the study of the inflationary universe is concerned.

To the end of identifying models where a non-vanishing parity-odd trispectrum can
be obtained, we have then relaxed these assumptions and derived explicitly the parity-
odd trispectra that one can generate in more general classes of models. In section 4, we
showed that general deviations from scale invariance, which show up in an explicit time
dependence of the coupling constants for perturbations, leads to a non-vanishing BPO

4 . We
stress that, for a time-dependence that is logarithmic in conformal time, the resulting BPO

4
is actually scale-invariant, see e.g. eq. (4.11). In this case, deviations from scale invariance
are present in the wavefunction, but drop out when we compute the trispectrum, which for
parity-odd interactions is the imaginary part of the wavefunction. In section 5 we discussed
a different scenario where a non-zero parity-odd trispectrum can arise: while maintaining
scale invariance, we deviate from the massless de Sitter mode functions and consider those
of Ghost Inflation (GI). In the infinite past, the GI mode functions do not reduce to the
standard e±ikt mode functions in Minkowski, and as such they avoid the no-go theorems we
derived in section 3. We concentrated on self-interactions for the Goldstone boson that are
“invariant” under the leading part of the non-linear boost symmetry (as opposed to Wess-
Zumino terms), and presented two examples that lead to a non-zero signal. The resulting
BPO

4 are given in (5.18) and (5.25), for two different parity-odd interactions. Despite the
fact that we concentrated on these operators that arise from four building block covariant
ones, we have shown that other operators cannot yield interactions with a lower scaling
dimension than that of eq. (5.9). Finally, we have considered the case in which massive
fields are present. For scalars of any mass the primordial parity-odd trispectrum vanishes
at tree-level, but in the presence of massive spinning fields it can be non-vanishing. As an
example, we have computed BPO

4 for the exchange of massive vector and the result is in
eq. (6.41) and plotted as function of mass for a specific configuration in figure 5.
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There are other ways to generate a non-vanishing BPO
4 , which we don’t discuss here.

One possibility is a process in which four external scalars exchange a spinning field whose
power spectrum is chiral, i.e. the power in one helicity is different from the power in the
other. Such a situation arises in models of axions coupled to a U(1) gauge sector in the
presence of an f(φ)(FF + FF̃ ) coupling, as discussed e.g. in [5], however sometimes with
the added feature of the breaking of statistical isotropy. Other examples of parity-odd
scalar trispectra were given in [1].

Our work could be extended in a number of directions:

• Loop corrections can contribute to BPO
4 already in single-clock inflation with massless

de Sitter mode functions. In the scale invariant limit this is an interesting setup where
loop effects can be larger than tree-level ones. We will discuss this in detail in an
upcoming paper.

• It would be interesting to assess what happens when we go beyond the decoupling
limit i.e. where we include the effects of dynamical gravity. This can yield new
exchange diagrams where curvature perturbations exchange the transverse, traceless
part of the graviton, but also new contact diagrams where now the self-interactions
can include inverse Laplacians which arise when we integrate out the non-dynamical
parts of the metric. Such gravitational effects are expected to be too small to aid
with an explanation of the signal potentially found in [10, 11], yet it is interesting to
understand if such corrections can avoid our no-go theorems.

• In section 6 where we considered the exchange of a massive spinning field, we choose
EFTI interactions between the Goldstone mode and the new massive field that did not
come with any quadratic mixing terms. However, it would be interesting to extend
our analysis to include such mixings that will introduce new exchange diagrams as
was considered in [68] for parity-even bispectra. Such quadratic mixing terms come
with a number of spatial derivatives that is dictated by the spin of the massive field.
This leads to distinctive signatures in the squeezed limit of cosmological correlators,
and potentially new shapes of parity-violating trispectra.

In summary, the no-go results and yes-go examples in our work contribute to establish the
parity-odd trispectrum as a particularly sensitive probe of new physics during inflation.
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A Wick rotation for ψ4 due to massive exchange

In this appendix we study the exchange time integral (6.15) and show that it is purely real.
In turn this tells us that the associated ψ4,s is real and therefore does not contribute to
the trispectrum.

We will actually work with a more general time integral of the form

IE(ka, s) =
∫

dηdη′ ηnL−4η′nR−4fL(k1, k2, η)fR(k3, k4, η
′)Gσ(η, η′, s) , (A.1)

arising from two vertices with nL and nR derivatives. Here the function fL (fR) depends on
Kπ(k1, η), Kπ(k2, η) (Kπ(k3, η), Kπ(k4, η)) and their time derivatives. Using the relation

dn
dηnKπ(k, η) = eicskη(icsk)n(1− n− icskη) (A.2)

we can, for example, write

fL(k1, k2, η) = (icsk1)n1(icsk2)n2 polyL(icsk1η, icsk2η)eicsk12η , (A.3)

where k12 = k1 + k2, polyL is some polynomial, and n1 + n2 ≤ nL. A similar expression
can be derived for fR, with a corresponding polyR that depends on η′. We will assume
that nL,R ≥ 4 such that there are no IR divergences at η → 0. We can confirm this by
focusing on the case of a massless exchange, ν = 3/2. In this case, we have that the bulk-
bulk propagator is IR-finite (see eq. (A.4) below), hence as long as we have a number of
derivatives equal to or higher than 4 on each vertex the integral is guaranteed to converge
at late times.

Now recall that for real ν, which we assume throughout this appendix, we can write
the bulk-bulk propagator as

Gσ(η, η′, s) = iπH2

2
[
θ(η − η′)(−η′)3/2(−η)3/2H(2)

ν (−sη′)Jν(−sη) + (η ↔ η′)
]
. (A.4)

Let’s concentrate on the case where η > η′ meaning that we pick up the first Heaviside
theta function in the bulk-bulk propagator. We integrate η′ from the far past (where we
Wick rotate) up to η, then integrate η from the far past to the late-time boundary. To
aid with assessing the reality of this integral, we Wick rotate to the path η(λ1) = iλ1,
η′(λ1, λ2) = η(λ1) + iλ2, with λ1, λ2 from +∞ to 0 (the path for the second contribution
in the bulk-bulk propagator is readily obtained by η ↔ η′). With this rotation we have
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exponential convergence at infinity and one does not have to worry about the inner limit
of integration depending on the outer integration variable. We now have

IE(ka, s) = (csk1)n1(csk2)n2(csk3)n3(csk4)n4in1+n2+n3+n4+nL+nR

×
∫ +∞

0

∫ +∞

0
dλ1dλ2 F (k1, k2, k3, k4, cs, λ1, λ2)

×H(2)
ν (−isλ12)Jν(−isλ1) + (η → η′) ,

(A.5)

where λ12 = λ1 + λ2 and F is a real function. Crucially, we then see that the reality of
IE(ka, s) is determined by the combination of Hankel and Bessel functions, and the number
of derivatives in each vertex. Using the following integral representations of the Hankel
and Bessel functions:

H(2)
ν (z) = −e

iπν
2

iπ

∫ +∞

−∞
dt e−iz cosh t−νt and

Jν(−iz) = 21−ν(−iz)ν
√
π Γ(ν + 1

2)

∫ 1

0
dt (1− t2)ν−

1
2 cosh(zt) ,

(A.6)

valid for −π < arg z < 0 and Re ν > −1
2 ,32 respectively, we see that the product

H
(2)
ν (−isλ12)Jν(−isλ1) is purely imaginary. Indeed, using fact that ν is real, we have

H
(2)
ν (−isλ12) = ie

iνπ
2 × (Real) and Jν(−isλ1) = e−

iνπ
2 × (Real). We therefore have

IE(ka, s) = in1+n2+n3+n4+nL+nR+1 × (Real) . (A.7)

Now to find a parity-odd ψ4, we need one vertex to have an even number of spatial momenta
and the other to have an odd number. Let’s take nL to contain an odd number and nR to
contain an even number. It follows that n1 + n2 + nL is odd while n3 + n4 + nR is even. It
then follows that IE(ka, s), and therefore ψ4, are purely real. This means that the parity
odd quartic wavefunction coefficient due to the exchange of a massive spinning field with
real ν does not contribute to the trispectrum. This proof complements the one we have in
section 6 using weight-shifting operators.
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