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Next generation neural
population models

Stephen Coombes*

School of Mathematical Sciences, University of Nottingham, University Park, Nottingham,

United Kingdom

Low-dimensional neural mass models are often invoked to model the coarse-

grained activity of large populations of neurons and synapses and have been

used to help understand the coordination of large scale brain rhythms. However,

they are phenomenological in nature and, although motivated by neurobiological

considerations, the absence of a direct link to an underlying biophysical reality

is a weakness that means they may not be best suited to capturing some of the

rich behaviors seen in real neuronal tissue. In this perspective article I discuss a

simple spiking neuron network model that has recently been shown to admit to

an exact mean-field description for synaptic interactions. This has many of the

features of a neural mass model coupled to an additional dynamical equation

that describes the evolution of population synchrony. This next generation neural

mass model is ideally suited to understanding the patterns of brain activity that

are ubiquitously seen in neuroimaging recordings. Here I review the mean-field

equations, the way in which population synchrony, firing rate, and average voltage

are intertwined, together with their application in large scale brain modeling. As

well as natural extensions of this new approach to modeling the dynamics of

neuronal populations I discuss some of the open mathematical challenges in

developing a statistical neurodynamics that can generalize the one discussed here.

KEYWORDS

theta neuron, Kuramoto order parameter, Ott-Antonsen ansatz, neural mass, neuronal

synchrony, mean field reduction

1. Introduction

Neural mass and field models generate brain rhythms using the notion of population
firing rates, and in some sense can be thought of as sitting above more detailed networks
of interacting conductance-based spiking neuron models. The latter are hard to analyze
in the raw, given that they are both high-dimensional and nonlinear, and are typically
studied with tools from computational neuroscience, as exemplified by the work of the
Human Brain Project [1]. In contrast neural mass and field models are muchmore amenable
to mathematical analysis, as reviewed in Coombes et al. [2] and Cook et al. [3], and
although these low-dimensional models are typically not derived from any underlying
microscopic spiking dynamics they can be motivated by a number of phenomenological
arguments for the evolution of coarse-grained neuronal variables. Nonetheless, they are
only expected to provide appropriate levels of description for many thousands of near
identical interconnected neurons with a preference to operate coherently. As such, they
are not ideally suited to studying phenomenon that are known to be associated with
changes of synchrony, such as the post stimulus response ubiquitously seen in human
neuroimaging studies, see e.g., Mullinger et al. [4]. However, a new type of neural
mass model has recently been developed that is able to capture the phenomenon of
event-related synchronization/desynchronization (ERS/ERD) that is believed to underlie
the changes in power seen in brain spectrograms, or more specifically for that seen in
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magneto-encephalography (MEG) data showing post-movement
beta rebound [5]. Importantly, this new mean-field model is an
exact description of a globally coupled network of heterogeneous
θ-neuron models in the thermodynamic limit. The θ-neuron,
or Ermentrout–Kopell canonical model, is the normal form for
the saddle-node on a limit cycle bifurcation, and for constant
stimulation can generate low firing rates typical of those seen in
real cortical neurons [6]. Interestingly, the resulting mean-field
model has a population firing rate that depends on the degree
of population synchrony, and has a richer dynamical repertoire
than standard neural mass models. Moreover, it can incorporate
realistic models of synaptic currents (both chemical and electrical)
and the mass model is easily incorporated into network studies
(both discrete and continuous). In this perspective article I review
some of the main features of this new neural population model,
its application to neuroimaging studies, extensions of the model
to incorporate further biologically important components, and
some mathematical challenges for developing similar mean-field
reductions for other spiking models.

2. The model

The θ-neuron describes a single neuron using a phase θ ∈

[0, 2π) such that a spike is generated whenever θ passes through
π from below. For a stimulus I it evolves according to the ordinary
differential equation

θ̇ = 1− cos θ + (1+ cos θ)I. (1)

The θ-neuron is formally equivalent to a quadratic integrate-
and-fire (QIF) model for voltage dynamics [7] under the
transformation v = tan(θ/2), and here we note that this can also be
written as a Möbius transformation v = iM(eiθ ;−1, 1, 1, 1), where

M(z; a, b, c, d) =
az + b

cz + d
, a, b, c, d ∈ C, ad − bc 6= 0. (2)

A network of θ-neurons can be described with the introduction
of an index n = 1, . . . ,N and the replacement I → µn + In,
where In describes the synaptic input current to neuron n and µn

is a constant drive. For a globally coupled network, the current
arising from a chemical synapse can be written in the form In =

g(t)(vsyn − vn) for some global conductance g, synaptic reversal
potential vsyn, and local voltage vn. In the voltage representation
this leads to the network equations

v̇n = µn + v2n + g(vsyn − vn), n = 1, . . . ,N, (3)

Where the voltage is reset to vr → −∞ whenever vth → ∞.
Here,µn is a random variable drawn from a Lorentzian distribution
with center µ0 and width at half maximum 1. For a treatment of
the model with a Gaussian and q-Gaussian distribution of drives,
see Klinshov et al. [8] and Pyragas and Pyragas [9], respectivley.
We will work in the thermodynamic limit (N → ∞), and choose a
model of conductance change that is driven by delta–Dirac spikes
in the form:

Qg = kR, R(t) = lim
N→∞

1

N

N
∑

n=1

∑

m∈Z

δ(t − Tm
n ), (4)

Where k is a strength of coupling, R is the population firing rate,
and Tm

n denotes the mth time that neuron n spikes. Here Q is
a linear differential operator whose Green’s function is chosen to
capture the post-synaptic response to the arrival of a spike. A
common choice is the α-function η(t) = α2te−αtH(t), where H

is a Heaviside step function. The Q for this choice is the second
order operator Q = (1+ α−1d/dt)2. For a schematic of the spiking
network described below, see Figure 1.

To date two independent approaches have been developed for
obtaining mean-field equations for the spiking network model
described above (with N → ∞), both finding exact solutions to
the continuity equation describing the distribution of states. The
first approach, due to Luke et al. [10], considers the θ-neuron
representation and makes use of the Ott–Antonsen (OA) ansatz
[11]. Here a Fourier series representation for the distribution of
phases with all Fourier coefficients restricted to be powers of a
function a(µ, t) ∈ C is shown to be an exact solution provided
that a(µ, t) satisfies a certain differential equation. Moreover, the
average of a(µ, t) over the distribution of drives, denoted 〈a(µ, t)〉µ,
has a physical interpretation as the Kuramoto order parameter
for synchrony Z(t) = limN→∞ N−1 ∑N

n=1 e
iθn(t). Recent work

of Cestnik and Pikovsky generalizes this approach to describe
relaxation to the stable OA manifold in an exact manner [12].
The second approach due to Montbrió et al. [13], considers
the QIF representation and shows that a Lorentzian choice for
the distribution of voltages, with center y(µ, t) and width at
half maximum x(µ, t), is also a solution provided that the pair
(x, y) obey a set of coupled differential equations. Moreover,
after averaging over the distribution of drives, this pair can
also be related to physical variables. Introducing the average
voltage V(t) = limN→∞ N−1 ∑N

n=1 vn(t) then (R(t),V(t)) =

(π−1〈x(µ, t)〉µ, 〈y(µ, t)〉µ). Thus, in both approaches an evolution
equation for physically meaningful macroscopic variables is
generated. Introducing the complex numberW(t) = πR(t)+ iV(t)
then this evolution equation from the approach of Montbrió et al.
can be written succinctly as the complex Ricatti equation

Ẇ = 1 − gW + i
[

µ0 + gvsyn −W2] . (5)

It is noteworthy that the distribution of phases arising from
the OA approach can be written as a Lorentzian distribution in
eiθ . Thus, exploiting a result of McCullagh [14] that if the random
variable X has a Lorentzian distribution with complex parameter
ζ , then the random variable Y = M(X; a, b, c, d) has a Lorentzian
distribution with parameter M(ζ ; a, b, c, d), and remembering that
the phase and voltage representations are related by a Möbius
transformation, it can be shown that Z(t) and W(t) are related by
the conformal map Z = M−1(W∗;−1, 1, 1, 1), or more specifically:

Z(t) =
1−W∗(t)

1+W∗(t)
. (6)

Thus, the dynamical equation for Z(t) can either be obtained
directly following the approach of Luke et al. or by applying
(Equations 6–5). Either way, this gives the complex Ricatti equation
for the evolution of synchrony as

Ż = −i
(Z − 1)2

2
+

(Z + 1)2

2
[−1+ iµ0+ ivsyng]−

(Z2 − 1)

2
g. (7)
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FIGURE 1

A schematic of the spiking network described by Equation (3) in the voltage representation. A patch of cortical tissue is modeled as a globally

coupled network of heterogeneous quadratic integrate-and-fire neurons. Each neuron has a background drive drawn from a Lorentzian distribution

L(µ). Interactions are mediated by chemical synapses that generate post synaptic conductance changes in response to the arrival of a spike (action

potential) with a temporal shape described by η(t). A typical raster plot of firing times (red dots) for a (finite size) network shows a pattern with a clear

degree of synchrony.

A method for analyzing periodic solutions to complex Ricatti
equations of the form given by Equations (5), (7) (in the self-
consistent case that g(t) is periodic) has recently been proposed in
Omel’chenko [15], exploiting the fact that every periodic solution
corresponds to a fixed point of a Möbius transformation. For a
numerical bifurcation analysis of Equation (7), see Coombes and
Byrne [16] where the basic mechanism for generating oscillations
at the single population level is shown to be a Hopf bifurcation
(though note that oscillations can also emerge out of the blue along
a branch of isolas in models with two interacting populations). The
mean-field model can also exhibit canards and bursting solutions
under slow periodic forcing [17], as well as chaos for moderately
fast periodic forcing [18].

In contrast to more traditional phenomenological neural mass
models, as exemplified by that of Wilson and Cowan [19], the
population firing rate is a derived quantity that takes the form
R(t) = π−1ReW(t) = π−1Re

(

(1− Z∗)/(1+ Z∗)
)

. Thus, the
firing rate is determined by the degree of spike synchrony within
a population (measured by the Kuramoto order parameter), rather
than just keeping track of the fraction of active neurons in a
given interval of time (as in the original heuristic derivation of
the Wilson–Cowan equations). In cases where spike synchrony
is not important, then the Wilson-Cowan equations would still
be expected do a good job of qualitatively describing network
dynamics. The main difference between the heuristic Wilson–
Cowan model and next generation neural mass model is that the
latter explicitly includes a dynamic component for describing spike
synchrony within a population. Moreover, the next generation
neural mass equations are closed in slightly different way in that

R only depends indirectly on g through the dynamical evolution of
W or Z [20]. Thus, we may select from one of the two equivalent
perspectives depending on context. For example, when modeling
MEG studies that highlight ERS/ERD it is convenient to use the Z
representation for the Kuramoto order parameter. In contrast, for
studies involving voltage sensitive dyes it is more natural to use the
W representation and extract the average voltage from V = ImW.
For a detailed derivation of the mean-field equations described
above, see Coombes and Wedgwood [21, Chapter 8].

3. Extensions and applications

With the inclusion of an external time-dependent input, the
mean-field equations described above have previously been shown
to generate behavior consistent with neuroimaging experiments
exhibiting so-called beta rebound [5]. Modulations in the beta
power of human brain rhythms are known to occur during and
after movement. A sharp decrease in neural oscillatory power is
observed during movement followed by an increase above baseline
on movement cessation. Both are captured in the response of the
mean field model to simple square wave forcing, as illustrated in
Figure 2.

The extension of the mean-field equations to describe
interacting excitatory and inhibitory sub-populations, with both
reciprocal and self connections, is straightforward [16, 22–26], as is
the further extension to whole brain models utilizing (connectivity
and delay) data from the Human Connectome Project [27], and
the corresponding limit of spatially continuous neural fields [28,
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FIGURE 2

Response of the next generation neural mass model to an external drive A(t). This is modeled under the replacement µ0 → µ0 + A where

(1+ α−1
� d/dt)2A = �0H(t)H(τ − t) (namely, a smoothed rectangular pulse). Note that the 0.4s pulse is not applied until time t = 3s after transients have

dropped o�. Right: Power spectrogram and time series of the synaptic current demonstrating the rebound of the system, i.e., an increase in

amplitude (and hence power) after the drive is switched o�. The white contour line in the spectrogram is the level set with value 0.5, highlighting that

the power in the beta band ≃ 15 Hz drops o� significantly during the drive and comes back stronger at the termination of the drive. Left: The

corresponding trajectory of the Kuramoto order parameter Z. As the system relaxes back to its original oscillatory behavior the trajectory loops close

to the border |Z| = 1. It is this enhanced synchrony that causes the rebound. Lines in blue indicate pre-stimulus activity, lines in red are for the

response during stimulation, and lines in green are post-stimulus. The parameters are µ0 = 21.5, 1 = 0.5, vsyn = −10 mV, k = 3.2, α−1 = 33 ms,

α−1
� = 10 ms, τ = 400 ms, and �0 = 30. Figure adapted from Byrne et al. [5].

29]. Moreover, for certain forms of noise in the microscopic
equations the mean-field reduction can also be generalized [30–36].
A variation on the Lorentzian ansatz (in the voltage representation)
combined with a moment closure approach has also been shown
to be useful for approximating networks of Izhikevich neurons
[37, 38], namely QIF neurons with a form of adaptation [39].

The mean-field reduction remains viable with the inclusion of
electrical synapses. These are electrically conductive links between
two adjacent nerve cells at a so-called gap junction (modeled as
a passive ohmic resistance). The synaptic delay for a chemical
synapse is typically in the range 1 − 100 ms, while the synaptic
delay for an electrical synapse may be only about 0.2 ms. Little is
known about the functional aspects of gap junctions, but they are
thought to be involved in the synchronization of neurons, see e.g.,
Bennet and Zukin [40]. For their inclusion in the next generation
framework, see Laing [41], Pietras et al. [42], Montbrió and Pazó
[43], Byrne et al. [44], and Clusella et al. [45]. Recent work has
shown that they can have a strong effect on network excitability and
that gap junction coupling strength can play a key role in generating
empirically-observed patterns of large scale spatio-temporal brain
activity [46].

In recent years there has been a growing use of the next
generation population modeling framework in a variety of
different neuroscience contexts, including abnormal beta rebound
in schizophrenia [47], beta bursts seen in single trial data
[48], the generation of gamma oscillations [49] and theta-
nested gamma oscillations [50], syllable segregation in speech

comprehension [51], the generation of functional connectivity in
whole brain networks [48, 52], seizure propagation [53], cross-
frequnecy coupling [54] and communication through coherence
[55], working memory (with the inclusion of short-term synaptic
plasticity) [56], non-invasive transcranial brain stimulation [57],
and neurodegeneration [58].

4. Discussion

The mean-field reduction discussed here leads to low
dimensional equations that are in the spirit of previous neural
mass and field equations, albeit with a direct link to an underlying
microscopic spiking dynamics [59]. They have proven to have very
rich dynamics, at the node [13, 16, 60], network [46, 48, 52],
and continuum level [28, 29, 41, 44]. Nonetheless, their pattern
forming properties remain relatively unexplored, providing an
open challenge to the applied mathematics community. However,
it is worth bearing in mind the caveats of heterogeneity, global
coupling, and the thermodynamic limit in the reduction. For
identical neurons one could instead turn to the Watanabe–
Strogatz ansatz (instead of OA) as considered by Laing [61].
Moving away from global coupling is difficult without some
form of approximation, and here the techniques developed by
Thibeault et al. [62] might be useful for modular networks,
and those of Restrepo and Ott for assortative networks [63] as
considered in Chandra et al. [64] and Laing and Bläsche [65].
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Moving away from the thermodynamic limit, to address finite
size effects, may be possible with a perturbative approach (around
the asynchronous state), such as the Bogolyubov–Born–Green–
Kirkwood–Yvon hierarchy with an appropriate moment-closure
approximation [66], or a path-integral formalism to determine
the evolution of system covariances [67]. Interestingly, it has
recently been shown that finite size effects can be captured with
the inclusion of stochastic forcing by shot noise into the mean-field
equations [68].

In essence the mean-field reduction discussed here is well
suited to describing systems which dynamically evolve between an
incoherent state and a partially synchronized state, which is often
the case in phase oscillator networks with interactions that are
prescribed by sinusoidal functions (and the large global network
generates a unimodal distribution of phases). In systems with
higher harmonics in their interactions, it is possible for cluster
states to emerge, and the OA ansatz breaks down (as it cannot
describe distributions with more than one peak). Thus, there is
an interest in either generalizing the OA approach or developing
an alternative. As a generalization it might be worth considering
whether there are other models like the QIF that can be described
by a multi-peak circular distribution [69] of network phases ρ(θ)
(after integrating over the distribution of drives) of the form

ρ(θ) ∝
M
∏

m=1

1− |Zm|
2

∣

∣eiθ − Zm
∣

∣

2 , (8)

Where Zm(t) = limN→∞ N−1 ∑N
n=1 e

imθn(t) are the Kuramoto–
Daido order parameters. This choice effectively recovers the OA
ansatz when M = 1. However, this would again only cover a
special case of a particular choice of idealized single neuron model.
Xiao et al. [70] have recently developed a data-informed mean-field
approach that couples to the average network voltage (and note that
the next generation approach also has a coupling to the average
voltage), and it may be that this is a more promising line of attack
for describing networks of biophysically realistic neurons.

Finally, it is important from a modeling perspective to realize
that the brain consists of more than just the cortex and that for
many sub-cortical structures intrinsic nonlinear ionic currents can
dominate the firing rate response. It remains an open challenge
to develop mean-field models that can incorporate such important
features, though for slow intrinsic currents some progress has been
possible, see e.g., Modhara et al. [71] for a mean-field model of the
thalamus (sensory gateway to the cortex). Similarly, it is important
to recognize that there is more to brain tissue than neurons, and

that for many clinical applications, some form of coupling to the
extracellular space is beneficial; a case in point being epilepsy, and
the important role that extracellular K+ has in the genesis and
propagation of seizure states [72].
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