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Abstract 
Background 

With the development of Artificial Intelligence (AI) techniques, smart health monitoring, 

particularly neonatal cardiorespiratory monitoring with wearable devices is becoming more 

popular. To this end, it is crucial to investigate the trend of AI and wearable sensors being 

developed in this domain. 

 

Methods 

We perform a systematic review of papers published in IEEE Xplore, Scopus, and PubMed 

from the year 2000 onwards, to understand the use of AI techniques for neonatal 

cardiorespiratory monitoring with wearable technologies. We reviewed the advances in AI 

development for this application and potential future directions. To review the advances in AI 

for this application, we assimilated machine learning algorithms developed for neonatal 

cardiorespiratory monitoring, designed a taxonomy, and categorised the methods based on 

their learning capabilities and performance. 

 

Results 

For the AI approach, 63% of studies utilised traditional machine learning techniques and 35% 

of papers utilised deep learning techniques, including 6% that applied transfer learning on 

pre-trained models. 

 

Conclusion 

A detailed review of AI methods for neonatal cardiorespiratory wearable sensors is presented 

along with their advantages and disadvantages. Hierarchical models are presented and 

suggestions for future developments are highlighted to translate these AI technologies into 

patient benefit.  
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1. Introduction 

The United Nations created the 3.2.2. Sustainable Development Goal to reduce neonatal 

mortality to 1.2% of live births by 2030 (1). Virtually all (99%) of neonatal deaths occur in 

the developing world, in low and middle-income countries (2, 3). These deaths are associated 

with conditions and diseases due to lack of skilled care in the critical early stages of life (4). 

According to the World Health Organization, effective care could reduce deaths by 75% (3). 

A key factor to essential care is monitoring and assessment for signs of serious health 

problems, in particular for sick, low birth weight and preterm babies in the hospital and home 

environments. The major causes of mortality relate to cardiorespiratory conditions such as 

pneumonia, underdeveloped lungs due to preterm birth and birth asphyxia (2-5). Hence, 

cardiorespiratory monitoring is essential, as it enables detection, monitoring and prognosis of 

diseases, allowing timely and specific care to be provided (3, 4).  

 

Wearable technology enables continuous cardiorespiratory monitoring in both hospital and 

home environments. When used in conjunction with AI, it offers the possibility of early 

detection of diseases, reducing the workload for clinicians, and providing the best possible 

outcomes for newborns. This review investigates the usage of AI and wearable technology 

for neonatal cardiorespiratory monitoring. Wearable technologies were reviewed in detail in 

part 1 of our review article. We now focus on AI techniques for neonatal cardiorespiratory 

monitoring in part 2.  

 

For the purposes of this study, AI refers to machine learning techniques used to detect or 

predict a cardiorespiratory condition or process signals to obtain cardiorespiratory 

information. These techniques have ranged from traditional machine learning-based 

classifiers to deep learning models. AI-driven wearable technologies have shown promise in 

continuous health monitoring for paediatric clinical practice (6). These applications have 

included disease diagnosis, individualised treatment guidance, and prognostic evaluation (7). 

For example, Goulooze et al. (8) discussed how AI methods such as linear models, tree-based 

models, and deep learning-based models can be applied to datasets achieved from wearable 

sensors using analytes (e.g., sweat) in infants. Furthermore, Hunter et al. proposed the 

application of supervised AI methods such as Support Vector Machine (SVM) and eXtreme 

Gradient Boosting (XGBoost) algorithms on the waveforms achieved from pulse oximeters 

for the clinical judgement of capillary refill time in children (9).  

 

Although the use of AI for neonatal monitoring has great potential, it has not been widely 

studied. It is crucial to identify the feasibility and potential of AI methods on the datasets 

extracted from wearable technologies in neonatal cardiorespiratory monitoring. This review 

offers a detailed study of wearable technologies and how they could be driven by AI methods 

for neonatal cardiorespiratory monitoring. This review will help inform the future direction of 

the best AI techniques to accompany the most promising wearable technologies in this 

domain. 

 

The search methodology used in this study is presented in Section 2. We describe the various 

AI technologies used with wearable sensors for neonatal cardiorespiratory monitoring 

(Section 3). Under this section, we present the evolution of AI technologies, followed by a 

novel taxonomy design and analysis of each technique. The proposed taxonomy helps the 

understanding of the types of AI technologies (e.g., traditional machine learning and deep 

learning) being employed in the literature. It helps identify an appropriate AI technique that 

could be useful according to the clinical requirements. For example, the traditional machine 
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learning methods are, in most cases, interpretable and explainable, and require less data for 

training. For this reason, these methods have been preferred by clinicians. For example, the 

traditional machine learning methods are, in most cases, interpretable and explainable, and 

require less data for training. For these reasons, these methods have been preferred by 

clinicians as discussed in the literature. Furthermore, the documentation of the evolution and 

progress of AI technologies, and analysis of the benefits and drawbacks of each technique, 

enables us to select the best AI technique based on the needs of the health practitioners. 

Lastly, we recommend the most popular wearable sensors and AI methods to be used in the 

future, based on their advantages and disadvantages, evolution, and taxonomy (Sections 4 

and 5). 
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2. Systematic Review Methodology 

A systematic search was proposed for wearable technology and AI for neonatal 

cardiorespiratory monitoring. In part 1 of our review article, we found 117 articles related to 

wearable technology for neonatal cardiorespiratory monitoring. Of these 117 articles, 14 were 

included as they were related to artificial intelligence.  

 

An additional search in google scholar was also performed with the below query string on 05 

January 2022: 

1. Restrict to neonatal population 

a. Search terms: “Neonatal”, “Pediatric” and “Paediatric” 

2. Restrict to wearable technology 

a. Search terms: “Wearables” 

3. AI 

a. Search terms: “Artificial Intelligence”, “Machine Learning” and “Deep Learning” 

4. Restrict to cardiorespiratory monitoring 

a. Search terms: “Cardiac”, “Heart”, “Respiratory”, “Lung”, “Breathing” 

 
This resulted in a total of 1,680 articles. Those articles that were unrelated (i.e., not neonatal, 

AI, nor cardiorespiratory monitoring focused) and missing full-text and/or minimal 

information provided were removed. Two authors (CS and EG) independently searched for 

any additional articles. Six further papers were obtained using a snowballing technique. In 

total 56 articles were obtained to review in this paper. The detailed PRISMA flow diagram is 

presented in Figure 1. Based on the literature review in the neonatal cardiorespiratory 

monitoring-related articles, we designed a new taxonomy to provide more insights into AI 

techniques under the study domain. Similarly, we plotted the stacked plot to show the 

popularity of AI methods in this study.  
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3. AI Techniques 

For neonatal health monitoring, AI techniques have been used on data obtained from both 

wearable and non-wearable devices (10, 11). To implement the AI techniques in general, 

there are four major steps:  i) data extraction, ii) pre-processing, iii) training and iv) testing 

steps (12). For example, the continuous data obtained from wearable technologies such as 

textile electrodes (e.g., ECG), or non-wearable devices such as digital stethoscopes (e.g., 

heart and lung sound) are pre-processed to remove artefacts and noises, which are used for 

training the AI models. Furthermore, the pre-processing task depends on the nature of 

extracted data. As an example, ECG signals are notch filtered at 50 Hz (13) and band-pass 

filtered. Audio signals are also band-pass filtered (14). The AI techniques identified for this 

application are classified into three broad groups: supervised learning (6), unsupervised 

learning (15), and reinforcement learning (RL) (16). Here, our focus is on AI techniques for 

cardiorespiratory monitoring with wearable technology. Thus, in the next subsection, we 

focus on the evolution, taxonomy and comparative study of AI techniques being used for 

cardiorespiratory monitoring on wearable data. Then in the following subsections, we present 

AI techniques that have been used for neonatal cardiorespiratory monitoring and are suitable 

for data collected from wearable sensors.  

3.1. Evolution of AI 

In this section, the evolution of AI techniques is presented using six different perspectives.  

3.1.1. Wearable Cardiorespiratory Monitoring for Infants 

The initial AI work using wearable cardiorespiratory monitoring was conducted in 2012, 

which employed the SVM algorithm with radial basis function on pulse oximetry data 

acquired from neonates (6). The SVM, which is a popular traditional machine learning 

algorithm, classifies data based on the hyperplanes, which can be linear, polynomial, and 

radial basis functions. Patron et al. (17) and Mongan et al. (18) employed the SVM algorithm 

and artificial neural network (ANN) respectively, on data collected from radio-frequency 

identification (RFID) tags in a wearable belt. The ANN is a deep learning-based algorithm, 

which contains different intermediate layers for the semantic information, and requires one-

dimensional feature vector representation to train the model during classification. 

Furthermore, Vu et al. (13) employed different combinations of popular traditional machine 

learning algorithms such as Decision tree, SVM, k-nearest neighbours (K-NN), and deep 

learning-based algorithm (ANN) as a 2-stage classifier on ECG data.  First, they selected the 

combination of the classifiers giving the optimal performance. Second, they used the optimal 

classifier to perform the final classification procedure. The decision tree algorithm is based 

on the rules, which splits data into roots and nodes during classification. 

 

De Greef et al. (19) employed the traditional machine learning algorithm, called random 

forest (RF) algorithm, to classify the vital signs data obtained from the clothing wearable 

sensors for newborn heart diseases detection. At the same time, Munz and Wolf (20) realised 

the importance of deep learning-based approach and proposed to use the ANN algorithm for 

the classification of infant breathing patterns on data obtained from the breathing sensor. 

Furthermore, Acharya et al. (10) utilised three multiple classifiers (naive bayes (NB), logistic 

regression (LR), and decision trees) for neonatal respiratory monitoring on data obtained 

from the abdomen and shoulder. In the meantime, considering the efficacy of LR for the 

https://www.zotero.org/google-docs/?JnY4Sp
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classification, Raknim et al. (21) employed multiple LR models for neonatal sepsis 

monitoring on the data achieved from the wearable ballistocardiography sensor. 

 

Using traditional machine learning algorithms, Urdal et al. (22) implemented the Vu classifier 

for newborn resuscitation detection on ECG data. They also used accelerometer data to 

observe the heart rate during different activities. These activities included chest 

compressions, back stimulation, tactile stimulation, drying thoroughly, moving the baby and 

uncategorised movements. Furthermore, Ostojic et al. (23) proposed to use four traditional 

machine learning algorithms (decision tree, K-NN, NB, and SVM) on pulse oximetry data for 

reducing the false alarm rate. Here, the NB algorithm considers the prior and posterior 

probabilities to predict the class labels in the data. Similarly, Shamsir et al. (24) proposed 

deep learning-based methods (convolutional neural network (CNN) and long short-term 

memory (LSTM)) for the classification of neonatal breathing and blood oxygen level data 

obtained from thermal sensors to detect respiratory failure. The LSTM model captures the 

sequential information of data during classification. Xu et al. (25) employed both deep 

learning-based (ANN) and traditional machine learning-based methods (LR) on the vital 

signs data extracted from two patches stuck on the neonate’s body. LR is based on the 

statistical model that employs the logistic function to learn the data. Following the efficacy of 

traditional machine learning methods, Hansen et al. (26) employed the hidden Markov Model 

(HMM) coupling with the higher-order features obtained from the Minkowski and 

Mahalanobis distances on multi-tag RFID measurements from abdominal belts for neonatal 

respiratory monitoring.  

 

More recently, Vahabi et al. (27) proposed to use deep learning-based (ResNet-50) and 

traditional machine learning-based methods (SVM) on wearable electrical impedance 

tomography (EIT) data for neonatal sleep apnoea detection. Here, the ResNet-50, a 50-layer 

deep learning model, extracts the semantic information of the input image using the residual 

connection (the output of a layer is a convolution of its input plus input) and batch 

normalization. 

3.1.2. Electrical-Based Cardiorespiratory Monitoring 

Four studies reported using electrical-based sensors for cardiorespiratory monitoring. 

Khodadad et al. (28) devised a breath detector classifier, which is based on traditional 

machine learning-based method, on the EIT data for lung function. This classifier relies on 

zero-crossing, which utilises the optimised threshold parameters above and below the zero 

value of the data for the classification. Gomez et al. (29) used several traditional machine 

learning algorithms such as RF, LR, and K-NN to detect the heart rate variability (HRV) for 

neonatal sepsis on ECG data. The RF algorithm is an ensemble learning algorithm that 

creates multiple decision trees during training and ensembles the output from multiple trees. 

The K-NN algorithm classifies the ECG data based on similarity matching. Their results 

show that the proposed model can assist physicians in remote monitoring. Also, Mahmud et 

al. (30) employed the XGBoost algorithm, a traditional machine learning algorithm, on ECG 

data of neonates. The XGBoost algorithm is a decision tree-based ensemble algorithm, using 

gradient boosting. More recently, Macfarlane et al. (31) recommended the deep learning-

based method (CNN model) for the ECG interpretation during monitoring of both neonates 

and adults as ANN was not found to be superior. The CNN algorithm employs the visual 

input and extracts the semantic information after the several levels of convolution operation 

across the input image.  



8 

3.1.3. Optical-Based Cardiorespiratory Monitoring 

Three studies report optical-based sensors for data extraction during cardiorespiratory 

monitoring. Villarroel et al. (32) employed the deep learning-based models (VGG-16 and 

ResNet-50) to monitor the vital signs on video and pulse oximeter data collected from 

preterm infants.  The original VGG-16 model comprises 16 deep layers to extract the 

semantic information of the input image (e.g., video frame) during its analysis. Hunter et al. 

(9) employed the traditional machine learning based methods (SVM and XGBoost 

algorithms) on pulse oximeter data for the clinical judgement of capillary refill time in 

children aged 1 to 12. The XGBoost algorithm is a decision tree-based ensemble algorithm, 

using gradient boosting. Recently, Huang et al. (33) employed both video and PPG data 

obtained from pulse oximeter data to train the deep learning-based model (LSTM model) for 

neonatal heart rate monitoring.  

3.1.4. Mechanical-Based Cardiorespiratory Monitoring 

The first AI work for cardiorespiratory monitoring using mechanical-based sensors for 

newborns was carried out in 2001. The researchers implemented the deep learning-based 

method (ANN algorithm) on data captured from a digital stethoscope attached to the infant 

(12). After 14 years, there was a gradual increase in mechanical-based sensors for neonatal 

cardiorespiratory monitoring. Amiri et al. (34) proposed the use of an RF algorithm, a 

traditional machine learning-based method, for heart murmur detection on phonocardiogram 

(PCG) data achieved from a digital stethoscope that was connected to a mobile phone. Bokov 

et al. (35) employed the SVM algorithm for wheeze detection on the audio data recorded 

using smartphones in the paediatric population. In 2016, Sola et al. (36) proposed to use 

traditional machine learning-based algorithms (Gaussian mixture model (GMM) and HMM) 

on the Mel-frequency filter bank from audio signals obtained from the digital stethoscope to 

detect childhood pneumonia. The GMM helps learn the unsupervised pattern of data, whereas 

the HMM helps find the sequential pattern of data.  
 

In 2018, three groups reported cardiorespiratory monitoring using mechanical-based sensors. 

Shelevytsky et al. (37) proposed to use the traditional machine learning-based method (SVM) 

for the classification of PCG data during the heart condition classification of the newborn. 

Bardou et al. (15) employed different algorithms such as K-NN, SVM, GMM, and CNN 

algorithms on the audio data extracted by digital stethoscopes from the heart of different age 

groups, including newborns and adults. To train the traditional machine learning-based 

algorithms (K-NN, SVM, and GMM), the handcrafted features for audio data were used, 

whereas, for the deep learning-based method (CNN), the spectrogram that is the visual 

representation of audio data was used. In their work, handcrafted features include the Mel 

frequency cepstral coefficients and texture features. Ramanathan et al. (38) underscored the 

application of the deep learning-based method (ANN) being used in a digital stethoscope 

used for extracting audio signals from the human body, including children and newborns.  

 

In 2020, Grooby et al. (39) applied SVM, Decision trees, K-NN, and dynamic classifier for 

the classification during the quality assessment of chest sounds obtained from a digital 

stethoscope. Here, the dynamic classifier is based on the ensemble approach, which selects 

the optimal base classifiers or their combination to improve the performance. Their result 

shows that the dynamic classifier outperforms the individual classifiers.  

 

By 2021, there are an increasing number of studies using AI reported in the literature for 

cardiorespiratory monitoring. Gomez-Quintana et al. (40) employed the XGBoost algorithm, 

https://www.zotero.org/google-docs/?BXzvhi
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for the classification of neonatal PCG signals that were obtained from a digital stethoscope. 

Apart from traditional machine learning-based methods in the same year, Jani et al. (41) 

suggested using a deep learning-based method (ANN) on the PCG data obtained from the 

digital stethoscope for heart murmur detection from neonatal to adult health monitoring. 

Similarly, Oliveira et al. (42) highlighted the application of heart murmur detection using 

ANN and logistic regression, from a paediatric and neonatal population on PCG data. Grooby 

et al. (43, 44) proposed to use deep learning-based algorithms (e.g., YAMNet), and 

traditional machine learning-based algorithms (e.g., non-negative matrix co-factorisation 

(NMCF), SVM, decision trees, K-NN, and LR) for neonatal chest sound separation, which 

contains both noisy and mixed samples as well as heart/lung quality assessment problems on 

digital stethoscope data. Last but not the least, Gomez-Quintana et al. (14) employed the 

XGBoost algorithm for the classification of neonatal PCG signals. In their work, the 

XGBoost algorithm is responsible for detecting patent ductus arteriosus in neonates.  

3.1.5. Multi Sensor-Based Cardiorespiratory Monitoring 

Research using multi sensor-based cardiorespiratory monitoring began in 2013. The purpose 

of their AI method is to predict mortality of infants. Furthermore, Rinta-Koski et al. (45) used 

Gaussian process classifier on standard clinical features, which includes heart rate and blood 

pressure, to predict mortality. Gaussian process classifier is based on Laplace approximation, 

which focuses on the posterior probabilities of the variables. Following the similar trend of 

using traditional machine learning-based algorithms, Pais et al. (46) employed the LDA 

algorithm for the classification of ECG and pulse oximetry data to determine the heart rate 

variability. The LDA algorithm expresses the data as the linear combination of features that 

discriminate between two or more classes. Here, the LDA algorithm is responsible for 

detecting the apnoea in neonates. 

 

Similarly, Jalali et al. (47) also proposed to use the SVM classifier for the classification of 

periventricular leukomalacia after cardiac surgery. Their method utilises vital signs of 

neonates, including heart rate data achieved from pulse oximetry. In their method, SVM is 

used to predict periventricular leukomalacia based on vital signs data. Moreover, Joshi et al. 

(48) proposed to use the XGBoost algorithm trained on heart rate, breathing rate and pulse 

oximetry data obtained from neonates to predict critical cardiorespiratory conditions. Hassan 

et al. (49) employed the ANN to detect sleep apnoea on temperature and pulse oximeter data 

from neonates. Similarly, Pini (50) utilised the random forest and K-NN algorithms for the 

maternal, foetal, and neonatal profiling of the physiological signals with the qualitative data 

such as maternal lifestyle factors.  

 

Recently in 2021, Zuzarte et al. (51) employed GMM and LR methods for the classification 

of cardiorespiratory and movement features achieved from the pulse oximeter and ECG 

electrodes. The GMM and LR methods are used to detect neonatal apnoeic events. Their 

results suggest that the use of such technologies helps reduce morbidity and mortality. 

Cabrera-Quiros et al. (52) utilised LR, NB, and nearest mean classifiers for the detection of 

late onset sepsis on continuous high resolution ECG and chest impedance data in neonates. 

The nearest mean classifier, also called rocchio classifier, classifies the data to the nearest 

mean of the training data belonging to the class.  
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3.1.6. Review Papers 

Here, we discuss review papers providing information related to neonatal, paediatric, and/or 

adult health monitoring, including cardiorespiratory, using AI techniques on either wearable 

or non-wearable-based data.   

 

In 2019, Chisi et al. (53) suggested using AI techniques for overall health monitoring on 

clinical data obtained from wearable sensors such as ECG and pulse oximeter data in the 

paediatric population. Tandon et al. (54) also highlighted the efficacy of machine learning 

algorithms for the detection of paediatric cardiovascular disease on continuous physiological 

data (CPD) obtained from wearable biosensors.  

 

Ranjit and Kissoon (16) discussed different applications of AI technique, particularly 

reinforcement learning for early detection of sepsis and septic shock in the paediatric 

population on different data such as respiratory rate, heart rate and SpO2. During the same 

year, Chong et al. (55) highlighted the use of decision trees and RF for the health monitoring 

of heart rate, breathing rate, and oxygen saturation in the paediatric population. Goulooze et 

al. (8) explained algorithms such as RF and decision trees for the paediatric and neonatal 

health monitoring such as neonatal sepsis detection on the early results of laboratory tests and 

nursing observations. Johnson et al. (56) underscored the importance of machine learning 

algorithms for health monitoring, including neonatal population on clinical features such as 

heart rate, breathing rate and oxygen level. They highlighted these data could be extracted 

using mobile devices and body-worn wearable sensors. Memon et al. (57) underscored the 

application of machine learning algorithms on the data extracted from the RFID-based 

abdominal band sensors capturing the breathing rate of neonates. Hasan et al. (58) also 

discussed the machine learning algorithms for neonatal health monitoring using vital signs 

data (e.g., heart rate, oxygen level, etc.) achieved from the wearable sensors.  

 

Sobhan et al. (59) elaborated the popular AI techniques (e.g., LR and SVM) for the heart and 

respiration functions on the health data (e.g., ECG and SCG) collected using wearable or 

non-wearable sensors for both adult and non-adult population. Lin et al. (60) discussed using 

deep learning methods for the classification of heart sound signals on wearable data, 

including ECG and PCG for both neonatal and adult health monitoring.  Furthermore, Lyu et 

al. (61) also underscored the use of deep learning-based algorithms (e.g., ANN, CNN and 

LSTM) on the wearable data (e.g., ECG and blood pressure,) for both neonatal and adult 

health monitoring in 2021. 

 

The overall evolution of AI techniques ranging from 2001 to 2021 is summarised using a 

stacked bar plot, which is presented in Figure 2 and a timeline in Figure 3. From Figure 2, 

we observed that the SVM algorithms are the most popular (12 publications), whereas the 

ANN (10 publications) is the second most used algorithms in the literature. This data shows 

that the traditional machine learning-based algorithm (e.g., SVM) is still dominant for 

neonatal cardiorespiratory monitoring despite the great promise of the deep learning-based 

algorithm (ANN) in this domain. 

3.2. Taxonomy of AI Techniques used with Wearable Technology for 

Neonatal Cardiorespiratory Monitoring Purpose 

Based on the research works using several AI methods for cardiorespiratory monitoring in the 

literature, we categorise them into three broad categories: traditional machine learning-based 
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(e.g., SVM (39), Decision trees (13), etc.), deep learning-based (e.g., CNN (24), LSTM (24),  

etc.) and reward/punishment-based AI methods (e.g., RL method (16)). Deep learning-based 

methods (24) extract the higher-order information from the input data to improve the 

performance. The higher-order information is achieved by using different operations such as 

convolution and activation; however, traditional machine learning-based AI techniques do 

not produce such types of information during their learning process. The reward/punishment-

based AI techniques (e.g., RL algorithm) learn the data based on rewards and punishment 

strategy as discussed in the previous Section 3.1. Under the traditional AI techniques, there 

are several algorithms, for example, SVM, RF, Logistic regression, etc. The deep learning-

based AI techniques are further divided into two groups: pre-trained and non-pre-trained AI 

techniques.  Pre-trained AI techniques (e.g., ResNet-50, VGG-16, etc.) have been already 

pre-trained with large datasets (e.g., image datasets), which help produce features based on 

them, whereas non-pre-trained AI techniques (e.g., LSTM) need to be trained from scratch. 

The taxonomy is presented in Figure 4. 

3.3. Comparison of AI Techniques used with Wearable Technology for 

Neonatal Cardiorespiratory Monitoring 

The AI technologies used for neonatal cardiorespiratory monitoring have their own 

peculiarities and importance in terms of applicability and viability. For example, most of the 

traditional AI techniques are more appropriate for a limited number of samples that are 

prevalent in biomedical research. Also, they have a higher level of interpretability, which 

helps establish trust and acceptability among clinicians and healthcare professionals. Table 1 

and 2 summarises the comparison of different AI techniques used in cardiorespiratory 

monitoring alongside their advantanges and disadvantages. We compare the AI methods 

based on several factors such as model complexity, performance, and interpretability.  
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4. Discussion 

Here, we discuss the overall AI techniques and sensor technologies being adopted in neonatal 

cardiorespiratory monitoring. Specifically, the evolving trends of AI techniques and sensor 

technologies being studied.  

 

For data collected from wearable sensors, AI has been used mainly for apnoea detection, 

along with sepsis and general critical health detection. However, as presented in Section 

3.1.1. and Supplementary Table 1, there have been few studies that evaluate the use of 

wearable sensor collected data. Whilst many of the existing AI techniques presented for 

neonatal cardiorespiratory monitoring in this paper should be suitable, further research and 

clinical validation would be required. This is especially important as wearable sensor data is 

typically more prone to noise such as motion artefact and typically provides weaker 

physiological signals. Therefore, it would be expected these AI techniques would either not 

work off-the-shelf or provide lower accuracy than reported. In future, the use of AI to 

improve the signal quality of wearable sensor collected data would be of interest to resolve 

this limitation. Furthermore, wearable sensors typically offer the opportunity of multiple 

physiological signals and vitals which has yet to be fully utilised in AI techniques. 

 

From Figures 2, 3, and 4 we saw that more AI techniques, including both traditional 

machine learning and deep learning-based, have been used for neonatal cardiorespiratory 

monitoring.  Also, we noted that the SVM algorithm is the most popular AI technique to date, 

particularly prior to 2019. After 2019, there are several emerging AI techniques, including K-

NN, ANN, SVM, RF, LR, and XGBoost. Furthermore, the number of traditional machine 

learning-based methods outnumber the number of deep learning-based and 

reward/punishment-based methods (Figure 2). In addition, some of the classifiers such as 

Gaussian process classifiers that published before 2019 are less popular in recent years, 

whereas methods such as XGBoost and LR are on the rise along with the deep learning-based 

methods such as LSTM and ResNet-50.  

 

The taxonomy diagram in Figure 4 illustrates that AI techniques for cardiorespiratory 

monitoring on wearable data are moving towards more traditional machine learning-based 

methods. As an example, the SVM classifier, one of the most popular algorithms, is being 

used mostly for classification problems. The reasons for their popularity could be explained 

twofold. First, traditional machine learning models (59) are easy to implement and have 

fewer hyperparameters, thereby reducing the time for the optimal model deployment. Second, 

health practitioners/clinicians prefer interpretable and explainable AI models. The traditional 

AI methods are mostly interpretable and explainable and could work on limited data.  

 

We observe that both deep learning-based methods and traditional machine learning-based 

methods have both advantages and disadvantages in their application (Table 1). For instance, 

SVM may work for higher dimensional data, but it fails to produce the expected result using 

big data. However, deep learning-based methods (32) such as ResNet-50 and VGG-16, might 

be more useful with big data, but less so limited data.  

 

Furthermore, we compared AI methods in terms of explainability and performance (Table 2). 

From Table 2, we observed that the highest-performing algorithms are ANN and K-NN, 
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which provide the highest specificity of 100% and 99.46%, respectively. Regarding 

explainability and interpretability features, the ANN algorithm is difficult to explain and 

interpret, whereas K-NN is interpretable and explainable.  

 

Whilst AI offers great promise in the home and hospital environment, further studies are 

required in two areas. Firstly, the impact of the AI algorithms needs to be investigated to 

demonstrate the benefit of these algorithms to improve health (reduction in mortality and 

morbidity) and financial (reduction in clinician workload and health interventions) outcomes. 

Secondly, studies determining the acceptability and key concerns of these AI algorithms from 

clinicians in the hospital environment and parents in the home environment are required.  

These two areas are important in order to see the translation of these AI techniques from 

research into clinical practice.  
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5. Conclusions 

We reviewed several AI techniques for neonatal cardiorespiratory monitoring on wearable data 

and designed a heirachical taxonomy and AI timeline based on them. We found the rising 

popularity of traditional AI methods (e.g., SVM, XGBoost) compared to deep learning-based 

methods (e.g., ANN, CNN). Our study also found that the application of AI methods in this 

domain is still in its infancy. As more sensor technology develops and produces more data, we 

need to identify the best AI methods in this domain.   
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