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Abstract—This paper aims to improve the energy management
efficiency of home microgrids while preserving privacy. The
proposed microgrid model includes energy storage systems, PV
panels, loads, and the connection to the main grid. A federated
multi-objective deep reinforcement learning architecture with
Pareto fronts is proposed for total carbon emission and electricity
bills optimization. The privacy of data is protected by federated
learning, by which the original data will not be uploaded to
the server. Numerical results show that compared with the
traditional single Deep-Q network, using the proposed method
the accumulated carbon emission decreased by 3% and the
electricity bills decreased by 21%.

Index Terms—Microgrids, Privacy, Deep learning, Multi-
objective

I. INTRODUCTION

A. Background

1) Home microgrids: Due to the concern of fossil fuel
depletion, integrating renewable and distributed energy sources
in power grids is needed. The concept of microgrid is a
promising integration solution due to its potentials of im-
proving the grid operation efficiency, realizing low carbon
emission, enabling high renewable energy penetration, and
protecting the privacy of consumers (or prosumers) [1]. The
home microgrid is a kind of small-scale microgrid for families,
in which the privacy issues become more prominent. How to
improve the operation efficiency of home microgrids, realizing
low carbon, low cost and high renewable energy penetration
while protecting the privacy of residents is a challenge.

2) Deep Q-network and federated learning: In a real en-
vironment, the carbon emissions and electricity price change
over time. For example, carbon emissions are higher during
peak demand hours, and lower in the middle of the night. So
it is complicated to acquire the best electricity purchase op-
portunities. Machine learning methods like Deep Q-Network
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(DQN) [2] can capture the best energy purchase opportunities
through learning from experience, helping reduce the total
carbon emission and electricity costs of home microgrids.
In DQN, the optimal operating parameters in the next time
step could be estimated, by using a prediction algorithm. In
home microgrid system, most data (e.g. photovoltaic, carbon
emission, electricity price data) are time-series data. When
predicting them, Long-Short Term Memory (LSTM) algorithm
often performs better than other machine learning algorithms
[3]. Traditionally, DQN and LSTM are centralized due to the
easier deployment structure and the limitation of the com-
puting resource. However, there are some limitations in this
centralized learning framework such as data island, privacy,
and the challenge of storage as well as data congestion.
These challenges can be addressed by federated learning [4],
which is a distributed machine learning technology that allows
participants to build distributed models without sharing data.

B. Literature review

1) Deep Q-network: In a traditional reinforcement learning
method such as Q-learning, according to the explore experi-
ence, Q values were set for state-action pairs, forming a Q
table. In a DQN [2], a Deep Neural Network (DNN) was used
to fit the Q table. This is because in traditional Q-learning,
when the dimension increases, the Q table occupies a large
amount of storage space and making it difficult to train.

2) Federated learning: McMahan et al. proposed FedAvg,
which is the first paper of federated learning [4]. In FedAvg,
instead of uploading the original data, the neural network
weights were uploaded from clients to the server after local
training, the data of each client can be used by the server on
the premise of protecting privacy.

3) Microgrids optimization with deep reinforcement learn-
ing: Deep reinforcement learning has been applied to different
aspects of microgrids scheduling, mainly including:



• Uncertainties: In [5], Ji et al. used the proximal policy
optimization algorithm to minimize the total costs consid-
ering the uncertainty of renewable energy generation, load
demand, and electricity costs. In [6], Li et al. determined
the spinning reserve while minimizing the total costs with
reinforcement learning, which has a better performance
than the traditional solver CPLEX.

• Stability: In [7], Li et al. proposed ‘safe reinforcement
learning’, where ‘safe’ refers to the consideration of
power flow constraints. In [8], Guo et al. proposed a
real-time dynamic optimal energy management based on
a deep reinforcement learning algorithm, maintaining the
safety and stability of microgrids.

• Demand response: In [9], Nakabi et al. tested 7 differ-
ent deep reinforcement learning optimization algorithms
considering the demand response of loads.

C. Motivation and paper structure

There still exists some research questions to be answered,
particularly: 1) In a real environment, the carbon emissions in
power grids and electricity prices change over time, how to
acquire the best electricity purchase opportunity to optimize
overall carbon emissions and electricity bills together? 2) The
information from different microgrids should be utilized while
the privacy of the prosumers needs to be protected, how
to concatenate different strategies from multiple microgrids
without sharing personal data? 3) In microgrids, there may
exist many objectives to be optimized. How each microgrid
should choose the coefficients/weights of different objectives?
To answer these questions, we have to achieve the following
objectives:

• Development of a smart energy scheduling algorithm.
• Development of a privacy-preserving distributed algo-

rithm for collaborations between smart homes.
• Development of a multi-objective optimization algorithm.
In this paper, a multi-objective method for the distributed

deep-Q network is proposed, including a DQN-based method
to reduce the carbon emission and electricity bills of the
home microgrids, a federated learning algorithm to make the
DQN algorithm more efficient while considering privacy, and
a Pareto front for the multi-objective DQN.

The remainder of the paper is as follows: Section II explains
the system composition, with the development of algorithms
presented in Section III. Section IV explains the simulation
setup, with the conclusions and future work in Section V.

II. SYSTEM MODEL

This section introduces the system composition, including
photovoltaic (PV), battery, load and scheduling models.

A. System composition

The proposed system consists of 4 home microgrids. Each
home microgrid consists of 2 sub-systems, i.e., the supply
sub-system and the load sub-system. The supply sub-system
consists of a PV panel, batteries, and the power grid. The load
sub-system contains home loads.

B. Photovoltaic model

PV energy generation can be modeled by [9]:

Epv(n) = A× SR(n)× ηpv × tn (1)

where n refers to the n-th time interval, tn is the length of
the time interval. A is the effective contact area (m2), ηpv
is the solar-electric energy conversion efficiency. SR(n) is
the averaged solar irradiance (W/m2). Epv(n) is the energy
generated from PV (Wh). The constraints are as follows:

A>0, η>0, tn>0, SR(n) ≥ 0 (2)

C. Rules for energy supply and batteries

The battery model can be given by [9].

EB(n) = EB(n− 1)× (1− ηs) + (Ech(n)−
Edis(n)

ηc
)ηb (3)

SoC(n) = EB(n)/(CB × VRa) (4)

where EB(n) is the battery energy (Wh), ηs is the charging
efficiency, Ech(n) is the charging energy (Wh), ηc is the
inverter efficiency. ηb is the battery efficiency. Edis(n) is the
discharging energy for the load (Wh). CB is the maximum
battery capacity (Wh) and VRa is the battery voltage (V ). The
constraints are as follows:

Ech(n) = Epv(n) + Ebought(n) (5)

SoC(n) ≥ 0, Edis(n) ≥ 0, Ech(n) ≥ 0 (6)

SoC(n) ≤ SoClim, Edis(n) ≤ Emaxd, Ech(n) ≤ Emax (7)

where Ebought(n) is the amount of energy bought from the
main power grid to charge the battery. SoClim, Emax and Emaxd
are the limitations of the battery, maximum energy charging
and discharging in a time interval, respectively.

D. Load model

A widely used normal distribution is adopted for describing
load fluctuations [10]. Its probability density function is:

fl(EL(n)) =
1√
2πσL

e
1
2 (

(EL(n)−µL
σL

)2 (8)

where EL(n) is the load active power, µL and σL are the mean
and standard deviation of the active power.

E. Scheduling model

The objective of scheduling function is to minimize the total
carbon emission and electricity costs with biases λ(i), that is
to minimize R(i) as below:

minR(i) =

n∑
t=1

r(i, n) (9)

where

r(i, n) = λ(i)Rcost(i, n) + (1− λ(i))Rcarbon(i, n) (10)

Rcost(i, n) = Reward(Fcost(i, n)) (11)

Rcarbon(i, n) = Reward(Fcarbon(i, n)) (12)



λ(i) ∈ [0, 1],∀i ∈ N (13)

where i represents the i th client, λ(i) is the bias towards
carbon emission and electricity costs, belonging to [0, 1].
Fcost(i, n) and Fcarbon(i, n) are the electricity cost and carbon
emission of the ith client. Reward(·) is a function to generate
the rewards Rcost(i, n) and Rcarbon(i, n) according to Fcost(i, n)
and Fcarbon(i, n) and historic data in the database, items with
lower electricity cost and carbon emission can get higher
rewards, and vise versa. The Fcost(i, n) and Fcarbon(i, n) are
shown as follows:

Fcost(i, n) = (EMG(i, n))Pr(n) (14)

Fcarbon(i, n) = (EMG(i, n))Ca(n) (15)

where

EMG(i, n) = Ebought(i, n) + e(i, n)EL(i, n) (16)

e(i, n) = {1, 0},∀i ∈ N,∀n ∈ N (17)

Pr(n), Ca(n), Ebought(i, n), EL(i, n) ≥ 0,∀n ∈ N+ (18)

Here e = 1 if the main power grid is used to power the loads
and e = 0 if the batteries are used. EMG(i, n) is the total
energy bought from main power grid during time interval
n. Pr(n) and Ca(n) are the electricity price and carbon
emission data during time interval n. The optimization in (9)
turned to choose the best opportunity (when Pr(n) and Ca(n)
are relatively lower) to purchase electricity (EMG(i, n)), thus
minimizing Fcost(i, n) and Fcarbon(i, n). For this optimization,
the constraints of power flow are as follows:

Pnet(i, t) = Pcharge(i, t)− Pdis(i, t) (19)

Pnet(i, t) + PL(i, t) = Ppv(i, t) + PMG(i, t) (20)

that means the power supply meets the power demand. Where
the symbol P means power, t refers to current time. Pnet(i, t)
is the net power of batteries.

III. PROPOSED ALGORITHM

We use LSTM for time series data forecasting, which can be
easily implemented with [3] [4]. DQN is used for scheduling,
that is to acquire the best electricity purchase opportunity, and
federated learning works with these two algorithms to form a
distributed privacy-protection machine learning environment.

A. Markov decision process

We propose that reinforcement learning gets a policy, math-
ematically, the policy is a mapping as follows:

π(x) : State → Action (21)

where π(x) is the policy, that is a mapping between state
and action space. Given any state to π(x), the optimal action
can be obtained by the mapping of π(x) in real-time. While
traditional solvers like the generic algorithm or bayesian
optimization only get a solution at a time, whenever the
state is changed, re-optimizations are needed. In a distributed
optimization problem like (9), the policy can be reused by

transferring to different nodes with similar tasks, so reinforce-
ment learning is chosen and (9) is transferred and described
as a Markov decision process, the elements are described as
follows:

• Environment: A home microgrid system with loads, PV
panels and energy storage system (batteries).

• State: The state space x(i, n) can be described as:

x(i, n) = [SoC(i, n), Ca(n), P r(n), Epv(i, n), EMG(i, n)]
(22)

• Action: The action space can be described as:

a(i, n) = [e(i, n), Ebought(i, n)] (23)

where Ebought(i, n) decides whether to buy electricity into
the battery or not, and if so how much electricity to buy.
Also, the e(i, n) decides to use batteries or electricity
from the grid to power the home microgrids.

• Reward: Calculate the ranking of carbon emission and
electricity cost according to historic data. If it is in the
high position of low carbon emission and low electric-
ity cost, the more electricity purchased, the higher the
reward, and vice versa.

The proposed Markov decision process can be solved by
the federated learning-based distributed algorithm in Section
III-C.

B. Pareto fronts

In a multi-objective optimization, the Pareto front is the
set of all non-dominated solutions. Consider a system with
function f : X → RM , where X is a set of feasible decisions
in the metric space RM . and Y is the feasible set of criterion
vectors in RM , such that Y = y = f(x),∀x ∈ X . If a point
y′′ strictly dominates another point y′, written as y′′ ≻ y′. The
Pareto frontier is thus written as:

P (Y ) = {y′ ∈ Y : {y′′ ∈ Y : y′′ ≻ y′, y′′ ̸= y′} = ∅} (24)

C. Federated learning-based distributed algorithm

The pseudocode of the proposed algorithm is described
in Algorithm 1, where lines 1-8 are the initialization, the
proposed network will randomly select a client as the server.
Line 10 is the initialization of the environment and states for
the deep-Q network. Line 12 is the epsilon-greedy algorithm.
Line 13-14 is a step move for the deep-Q network, the action
is decided by the online neuro network. Line 15 is to store the
experience for future training. Line 16 is to calculate the total
carbon emission and electricity bills. Line 18-19 judge whether
this online network is a non-dominated solution according to
carbon emissions and electricity bills. If so, store the results.
21-23 is to update the online network with the target network
regularly (every Trgap rounds). 24-28 train the target network
with the stored memory regularly (every Trrenew rounds), with
line 26 using Bellman’s equation to estimate the possible
best Q-value y(i, j) and line 27 perform gradient descent.
The server performs line 33-40 to perform federated learning
regularly (every Trupload rounds), including aggregation and



generating overall Pareto fronts, and otherwise, the clients
perform line 30-32 to upload the weights of deep neuro
network and Pareto fronts to the server.

Algorithm 1: Proposed federated multi-objective deep
Q-learning algorithm with Pareto fronts

1 Load data from datasets
2 Initialize the state: Client i1 - i3 or Server
3 Initialize home microgrid loads with (8)
4 Initialize replay memory D to capacity N
5 Initialize pareto memory P to capacity V
6 Initialize target network Q with random weights θ
7 Initialize online network Q∗ with random weights θ∗

8 Initialize Tugap, Turenew and Tuupload
9 for episode = 1,M do

10 Initialise sequence s(i, 1) = {x(i, 1)} with datasets and
preprocessed sequenced ϕ(i, 1) = ϕ (s(i, 1))

11 for n = 1, N do
12 With probability ϵ select a random action a(i, n)

otherwise try all actions a and select
a(i, n) = maxa Q

∗ (ϕ (s(n)) , a; θ∗(i, n))
13 Execute action a(i, n) and observe reward r(i, n)

from (9) then get x(i, n+ 1)
14 Set s(i, n+ 1) = s(i, n), a(i, n), x(i, n+ 1) and

preprocess ϕ(i, n+ 1) = ϕ (s(i, n+ 1))
15 Store (ϕ(i, n), a(i, n), r(i, n), ϕ(i, n+ 1)) in D
16 Calculate accumulated carbon emission CEtotal(i)

and electircity cost ECtotal(i) with Fcost(i, n) and
Fcarbon(i, n)

17 end for
18 if (CEtotal(i) and ECtotal(i) non-dominated) then
19 Store and update Pareto fronts with θ in P
20 end if
21 if (!episode%Trgap) then
22 Q∗ = Q
23 end if
24 if (!episode%Trrenew) then
25 Sample random minibatch of transitions

(ϕ(i, j), a(i, j), r(i, j), ϕ(i, j + 1)) from D
26 Set y(i, j) = r(i, j) + γmaxa′ Q (ϕj+1, a

′; θ)
27 Perform a gradient descent step on

(y(i, j)−Q (ϕ(i, j), a(i, j); θ(i)))2 for Q.
28 end if
29 if (!episode%Trupload) then
30 if (State==Client) then
31 Upload θ and P to Server
32 end if
33 if (State==Server) then
34 Collect weights θ(i, n+ 1) from Clients
35 Calculate the data volumn v(i) of Client i
36 Calculate the total data volumn v

37 θ(n+ 1)←
∑I

i=1
v(i)
v

θ(i, n+ 1)
38 Generate Pareto fronts with P
39 Return global model θ(n+ 1)
40 end if
41 end if
42 end for
43 Output: The Q∗ of Pareto fronts

IV. SIMULATIONS

A. Simulation environment
The proposed LSTM, DQN and federated learning were

developed in MATLAB, using a PC with CPU Intel Core i7

TABLE I
SIMULATION PARAMETERS

Parameters Values
Default time interval half an hour

PV panel area 1m2

Conversion efficiency 20%
Capacity of the battery 4 ∗ 50Ah

Rated voltage 12V
Conversion or storage loss 0%

Maximum energy bought every half an hour each battery 5Ah
Conversion or storage loss 0%

DNN input Nodes 7
DNN output Nodes 1
DNN hidden Nodes 30× 30

6600u and 16GB memory capacity. The simulation parameters
are shown in Table I.

B. Datasets and predictions

The PV datasets (2005-2021) [11], [12] of Durham were
used, with LSTM and federated learning, the prediction RMSE
=11.70, R =0.943. The electricity price datasets (2015-2020)
and carbon emission datasets (2017-2020, with predicted data)
were used [13], [14]. The real electricity price data in the next
half an hour was used instead of the predicted data. For load
profile, the typical UK household electricity demand curve
with 15% variation is used [15].

C. Scheduling tests

In this part, 200 half-an-hours (100 hours) were chosen to
evaluate the performance of the trained DQN. There are three
subgraphs in Fig. 1. As shown in the Y axis labels, the first
and second subgraphs are the carbon emission coefficient and
the electricity price every half an hour. The third subgraph is
the decision made by the DQN, that is, when and how much
electricity to buy. It is observed that the DQN only bought
energy when the carbon emission or electricity price was low,
such as in 0-5, around 20, 40-55, 90-100, around 140 and
190-200, these time slots are in accordance with the time slots
having lower carbon emission and electricity costs. Therefore,
the energy efficiency is improved by the DQN.

It can be found that the proposed DQN can seize the oppor-
tunity to buy electricity when carbon emissions or electricity
prices are lower than other times.

D. Case studies

Three scenarios are considered in this part. The first one is a
single DQN without sharing data, this scenario has the highest
privacy. The second scenario is shown in Fig. 2 (Algorithm
1), the DQN with federated learning. Instead of sharing data,
the weights and biases of the deep Q-Network are shared, and
privacy is protected because there is no need to upload private
data. As shown in Fig. 3, the third scenario is a distributed
model with shared memory data in an authorized third-party
database. This means the clients share their memory database
with the server, the server train a global model, then updates
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Fig. 1. DQN is used to acquire the best electricity purchase opportunities.

the global model for each client. The clients generate expe-
rience based on local data and provide that to the server for
future training. The privacy of these scenarios is not as good
as the first two, however, only the trusted server has private
data, so privacy is protected if there is no data leakage from
the trusted server.

Fig. 2. Federated learning in the scenario 2.

Fig. 3. Centralized learning in the scenario 3.

Scenario1: The Pareto fronts of a single DQN are shown
in Fig. 4. Each node was the average carbon emission or
electricity costs in 100 hours of 400 rounds of training

iterations, the total training iteration is 400 × 75 = 30000.
Iterations 0-800 are the observation period and shouldn’t be
compared. Compared with the 800-1200 iterations (average
carbon emission was 7514 gCO2, average electricity bill was
0.98 Euro), in the Pareto fronts solutions (with stars, the
average carbon emission was 6910 gCO2, average electricity
bill was 0.86 Euro), the carbon emission decreased by 8%,
the electricity bill decreased by 12.2%.
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Fig. 4. Pareto fronts for single DQN

Scenario2: With the help of federated learning, the privacy
of homes can be protected by uploading client weights. 10
Pareto fronts of a federated DQN are shown in Fig. 5, in which
the leftmost front is invalid because the carbon emission is too
high. Compared with a single DQN in Scenario 1 (the average
carbon emission was 6910 gCO2, average electricity bill
was 0.86 Euro), the performance of Pareto fronts increased
significantly (the average carbon emission was 6700 gCO2,
average electricity bill was 0.68 Euro). The carbon emission
decreased by 3%, the electricity bill decreased by 21%.

For different Pareto fronts, the carbon emission and elec-
tricity bill of the right most valid Pareto front is 6960 gCO2

and 0.6 Euro, for left most Pareto front, that is 6468 gCO2

and 0.74 Euro. For different DQN models of Pareto fronts,
The amplitude of carbon emission varies about 7%, and for the
electricity bill, that is 18.9%. The client can choose their bias
towards carbon emission and electricity bills by using different
DQN models with different Pareto fronts, which were stored
during the training steps according to Algorithm 1.

Scenario3: The Pareto fronts of a centralized DQN are
shown in Fig. 6, like scenario 2, the left-most front is invalid.
The performance of the electricity bill optimization is the
best among the three scenarios (the average carbon emission
was 6675 gCO2, average electricity bill was 0.64 Euro).
Compared with a single DQN in scenario 1, the carbon
emission decreased by 3.4%, the electricity bill decreased
by 25.6%. Compared with scenario 2, they have a similar
optimization effect with better performance in electricity bills.
The simulations show that the optimization degree of the



electricity bill exceeded carbon emission, a potential reason
is that the real price data was used instead of predicted data.

From scenarios 2 and 3, it can be found that federated learn-
ing can achieve similar performance to centralized learning,
the Pareto fronts provide biases towards electricity costs or
carbon emission optimization.

0.5 0.6 0.7 0.8 0.9 1 1.1

electricity cost(Euro) in 100 hours

6400

6600

6800

7000

7200

7400

7600

7800

8000

8200

8400

ca
rb

o
n
 e

m
is

si
o
n
(g

C
O

2
) 

in
 1

0
0
 h

o
u
rs

Pareto fronts for federated DQN

(Each point is an average of 400 rounds of training)

pareto fronts

client1

client2

client3

client4

Fig. 5. Pareto fronts for federated DQN.
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V. CONCLUSION AND FUTURE WORK

This paper introduces the multi-objective federated schedul-
ing algorithm to optimize carbon emissions in the home
microgrid system. Simulations show that with the single DQN,
the carbon emission decreased by 8%, and the electricity
bill decreased by 12.2%. The proposed federated method can
capture lower carbon emissions or electricity prices than the
single DQN, the carbon emission decreased further by 3%, and
the electricity bill further decreased by 21%. The proposed al-
gorithm achieved similar performance as the centralized Deep-
Q network which however has privacy information leakage

concerns. On the premise of protecting privacy, the clients
can choose their bias toward carbon emission and electricity
bills by using different DQN models in the Pareto fronts.

In the future, other control algorithms like Deep Deter-
ministic Policy Gradient [16] and Asynchronous Advantage
Actor-Critic [17] will be investigated in the future to compare
performance with this work.
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