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Abstract: The resilient operation of power distribution networks requires efficient optimization
models to enable situational awareness. One of the pivotal tools to enhance resilience is a network
reconfiguration to ensure secure and reliable energy delivery while minimizing the number of dis-
connected loads in outage conditions. Power outages are caused by natural hazards, e.g., hurricanes,
or system malfunction, e.g., line failure due to aging. In this paper, we first propose a distribution-
network optimal power flow formulation (DOPF) and define a new resilience evaluation indicator,
the demand satisfaction rate (DSR). DSR is the rate of satisfied load demand in the reconfigured
network over the load demand satisfied in the DOPF. Then, we propose a novel model to efficiently
find the optimal network reconfiguration by deploying sectionalizing switches during line outages
that maximize resilience indicators. Moreover, we analyze a multiobjective scenario to maximize
the DSR and minimize the number of utilized sectionalizing switches, which provides an efficient
reconfiguration model preventing additional costs associated with closing unutilized sectionalizing
switches. We tested our model on a virtually generated 33-bus distribution network and a real 234-bus
power distribution network, demonstrating how using the sectionalizing switches can increase power
accessibility in outage conditions.

Keywords: resilience; optimal power flow; power distribution network; network reconfiguration

1. Introduction

Power systems can be considered to be the foundation of modern society, as they
are essential for resilient energy delivery to society. Specifically, the resilient operation
of power distribution networks against cyber–physical attacks and natural hazards plays
a crucial role in the modern electrified world [1–3]. The redundant interruption and
intrusion of power systems lead to power failures that can be caused due to extreme
weather events, resource aging, digitalization, diversification, and artificial perturbations,
resulting in unprecedented challenges. Frequent power outages indicate the ill-preparation
of the power system during extreme events. For instance, in 2012, the US experienced
Hurricane Sandy, which landed on the east coast of the United States and resulted in power
outages for millions of people. In 2018, the deadliest wildfire was recorded in California,
which burnt around 1,893,913 acres of land and damaged nearly 18,000 structures [4,5].
To avoid such losses and not wait passively, expecting such disasters to pass, a useful
strategy is to ensure resilience within a system, which can be defined as the continuation
of normal operation regardless of the occurrence of any unexpected events. Over the
past few decades, natural and artificial catastrophes have damaged power infrastructures.
In 2015, due to a major earthquake, a dozen hydropower plants were damaged in Nepal
and encountered a total loss of 150 MW power of electricity, which directly impacted their
national economy [6]. In addition, the 2004 tsunami that hit the coastal areas of Sri Lanka,
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Indonesia, India, and Thailand significantly damaged the national infrastructures and cost
thousands of lives [7]. These events demonstrate that we need to emphasize developing
effective mechanisms to leverage the resilience operations of power infrastructures, mitigate
economic loss, and reduce people’s suffering during a disaster.

To improve the resilience of a power system, we need to reconfigure power distribution
networks. Integrating multimodal sensors within each power grid could be effective in
sensing environments. If any accidents or unwanted events occur, the power-grid could
immediately pass the information to the server [8,9]. After receiving information from the
affected power grid or its neighbor, the server could isolate the affected region without
delay. The information exchange mechanism could also play a pivotal role during a natural
disaster, particularly in a distributed power system. The power-grid agents’ network
connectivity can help in formulating optimal power flow within distributed networks.
The authors in [10] proposed dynamic network flow modeling to improve the resilience
assessment of interdependent critical infrastructures. However, the proposed model did
not cover the postdisaster network connectivity scenario and scalable reconfiguration of
power distribution systems. The authors in [11] also developed a mixed-integer linear
programming (MILP) framework on the basis of optimization formulations to generate the
effect of tweaking transmission line reactance. They leveraged two different approaches of
system resilience as a control mechanism of postdisturbance.

This study introduces a novel mixed-integer mathematical model to maximize the
demand satisfaction rate (DSR) in a postdisaster situation of power distribution systems.
The DSR for each node with a positive load demand is defined as the proportion of load
demand of that node that is supplied in the reconfigured distribution network. We define
the DSR of the entire power distribution network as the average of the achieved DSR
values over all the nodes with load demand. Our metric was tailored towards the optimal
deployment of sectionalizing switches and its evaluation using the demand satisfaction
rate). There are other metrics that have been developed in the literature. In [12], a com-
prehensive review of resilience evaluation metrics for power distribution networks was
provided. Hosseini and Parvania [13] developed specific resilience metrics such as ex-
pected load interruption rate and expected maximum load loss. In [14], the system recovery
index [15] was used for the performance evaluation of a microgrid. In our model, some
power lines in a power distribution network faced an outage due to a natural hazard such
as an earthquake or hurricane. Such power outages impede load accessibility for a number
of load–demand buses. Considering that, we optimized the use of sectionalizing switches
to maximize power accessibility and develop an optimized model that reconfigures power
distribution networks. Our proposed model optimally selects sectionalizing switches with
their optimal directions for activation to maximize the achievable DSR given disruptions in
power distribution networks.

We further analyze how to minimize the costs associated with using the sectionalizing
switches, and suggest a constraint to maximize the load accessibility given the budget
constraints. This is equivalent to a multiobjective optimization model in which the first
objective is to maximize DSR, and the second is to minimize the number of utilized or
closed sectionalizing switches. In order to produce the proposed optimization model, we
used optimization solver ‘Gurobi optimizer’ with a free academic license. In summary,
the contributions of this work are threefold:

• First, we define DSR as a quantified resilience measure and as the proportion of satisfied
demand in the reconfigured network in a postdisaster condition.

• Second, we propose a model to maximize the obtained DSR in a reconfigured network
given the sectionalizing switches. Our optimization model identifies the switches and
the direction in which they should be used.

• We provide further analysis of our problem by adding cost constraints to investigate
the multiobjective version in which the first objective is to maximize DSR while
minimizing the overall costs.
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The rest of this paper is organized as follows. In the next section, we provide the back-
ground literature of the studied problem. In Section 3, we first give the optimization model
to minimize the load generation costs while satisfying the load demand of all the bus nodes.
Then, we model the power distribution disturbance. In Section 4, we computationally test
our optimization model on both a virtually generated power distribution network and a
power distribution network from the real world.

2. Literature Review

Numerous optimization techniques have been developed to solve the optimal power
flow (OPF) problem. Conventional techniques, such as nonlinear programming, quadratic
programming, gradient’s method, and interior point methods, were employed in [16,17] and
suffer from some downsides, e.g., local minima traps, dimensionality curses, and theoretical
assumptions that do not guarantee an optimal global solution [17]. Adapting decentralized
techniques and applying mathematical decomposition approaches to solve the OPF prob-
lem were applied, which are mostly based on microgrid operation based on decentralized
algorithms on power management [18], power flow control [19], and simplified formulations
of OPF [20–22]. The authors in [23] designed an algorithm on the basis of the alternating
direction method of multipliers (ADMM) and moment relaxation that considered battery
storage and used the decomposition technique to solve OPF problems. However, they did
not formulate any multiphase OPF due to the complexity of the formulation. A generaliza-
tion formulation on proximal dual consensus for constrained multiagent optimization was
presented in [24] that could be applied to solve OPF-related problems. However, the authors
did not consider intertemporal constraints, e.g., the state of charge, which could be effective
for OPF. An OPF algorithm for the optimal operation of distribution grids was proposed
by the authors in [25]. Though they were close to the fulfilment of microgrid operational
requirements, they needed a multiperiod formulation that could be helpful in managing
power storage. In [26], a teaching-learning-based strategy for optimized power flow was
proposed, while in [27], a moth-swarm algorithm was presented. However, none of these
works proposed situationally aware OPF algorithms to enhance resilience through reliable
energy delivery in energy and transportation networks.

The authors in [28] introduced a synthetic model that could calculate the estimated
time of restoration (ETR) for a load, generate a safe switching sequence, and reveal solutions
for crews. Their proposed model could not perform system reconfiguration and was unable
to make decisions regarding resource allocation. In [29], a distributed coordination scheme
via information exchange among microgrid agents was presented. The authors discussed
an approach to form microgrids on the basis of the local communication of the microgrid
agents. Interesting work on leveraging the reconfiguration flexibility of distributed systems
while considering the radiality constraints of microgrids was proposed in [30] and was
specifically designed for postdisaster microgrid formation. The authors in [31] constructed
an optimization model on the basis of inequitably distributed system restoration, and the
model was effective in reconfiguring a system topology and dispatching optimal models to
crews, even in the presence of unbalanced master power sources. Moreover, the authors
in [32] established a spectral depiction of power distribution by capturing subtrees from
different families within a transmission network. They proposed a strategy to localize the
cascading failures within a power distribution network. However, they did not discuss
how to perform characterization to reduce cascading failure by switching off the fault
transmission lines.

Prior works also focused on restoring power distribution networks during disasters
by adapting active islanding strategies, and considering distributed generators and
microgrids [29,33–37]. For instance, spanning tree-based restoration algorithms were
proposed to restore critical loads in [33,36]. However, the heuristic approach can be
time-consuming while searching for a restoration plan. Few other works proposed
partitioning the distributed system into smaller islands of grids and using distributed
generators to restore loads [38,39]. However, these approaches considered single-phase
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distribution feeders without tie switches, rendering the methods inapplicable to the
actual real-life problem of DSR. Some other related works [40–42] attempted to resolve
the DSR problem by considering three-phase systems. These studies considered the
practical parameters and models of the grid; for example, the authors in [42] considered
an unbalanced distribution network and microgrids in the proposed service restoration
algorithms. In this study, we focus on the topological properties of a distribution network
graph and define a new resilience indicator, referred to as the demand satisfaction rate,
to quantify the load loss. Using a novel mathematical model and an algorithm capable
of matching optimal solutions rather than the physical constraints of the power grid,
we focus on reconfiguring the graph topology using sectionalizing switches to enhance
resilience on the basis of the identified indicator. In our prior works on power distri-
bution networks, we developed abstract algorithms for optimal sensor placement [43]
and outage detection [44] in power distribution networks on the basis of the topology of
the grid. This class of studies mainly tackled the structural challenges that the power
distribution grid may face, and complemented existing work with several layers of
real-world details, including unbalanced three-phase models.

3. Optimal Power Flow

We modelled the distribution network as a graph G = (V, E) with N nodes, where
V is the set of nodes and E is the set of links. Further, we denote the edge between nodes
i and k with li,k; hence, li,k ∈ E means there was a connection between these two nodes.
Let δi denote the neighborhood of node i, i.e., δi = {k ∈ V | li,k ∈ E}. We denote the
impedance of connecting edge (power line/cable) between nodes i and k by zik = rik + jxik,

where rik is the resistance, and xi,k gives the reactance of link li,k. Then, gik =
rik

x2
ik + r2

ik

and bik =
xik

x2
ik + r2

ik
represent the conductance and susceptance of line li,k, respectively.

We also assumed that we had p power generators in nodes indexed from 1 to p, where
p < N, and we show this set via P = {1, ..., p}. In a feasible solution where the generated
power is transferred to all the nodes in the distribution network, and all the nodes had
access to sufficient power and assuming a quadratic cost function for power generation,
the mathematical problem formulation can be given as in the following:

min
PG

∑
n∈δG

(
anP2

Gn
+ bnPGn + cn

)
(1)

PGi − PLi = ∑
j∈δi

[bij(θi − θj) + gij(εi − εj)], ∀i ∈ V (2)

θ1 = 0 (3)

PGn ≤ PGn ≤ PGn , ∀n ∈ δp, ∀p ∈ P (4)

εi ≤ εi ≤ εi, ∀i ∈ V (5)

θi ≤ θi ≤ θi ∀i ∈ V (6)

− Pij ≤ [bij(θi − θj) + gij(εi − εj)] ≤ Pij, ∀(i, j) ∈ E (7)

where εi = vmini − 1 and εi = vmaxi − 1 denote the minimal and maximal lower bounds of
voltage deviation, respectively. i = 1 was taken to be the slack bus. Further, for the sake
of consistency in the power balance equation, we assumed PGi = PGi

= 0, ∀i /∈ δG. This
ensures the elimination of the power injected via the transformer in the power balance
equation. In order to ensure the feasibility of the power distribution, the constraint sets from
(2) to (7) should hold. We only modelled active power flow because this study focuses on
structural reconfiguration, considering the physical connectivity of power distribution lines.
Our major focus is on the connectivity of the power grid after disasters and the outages of
some lines. Hence, we considered the graph-based model of the grid, i.e., single diagram
representation, and ensured an optimal reconfiguration strategy to maintain a maximal
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number of loads and minimize the disconnected loads. In addition to prior studies on
cascading failure analysis, e.g., [32], in our prior works on optimal sensor placement [43,44],
we made similar assumptions for the connectivity of the distribution grid, and only focused
on the active power and operational topology of the network.).

3.1. Disruption in the Power Network

As a result of a disruption in the distribution network, we assumed that a subset
of links B ⊂ E were damaged, facing a line outage, and hence were not useable. In this
scenario, the postdisruption distribution network is given by G′ = (V, E \ B). This results
in an unbalance in load access for some of the nodes in the network, and some might lose
access to the power supply. Furthermore, a set of links, referred to as sectionalizing switches
and denoted by O, only operate during such disruptions as emergency links. Assuming
that all such links are active and operating after the incident, the graph of the distribution
network changes into G′′ = (V, E ∪O \ B). Even in this condition, the topology of the
distribution network can prevent regular power supply to all the nodes.

Here, we define a problem in which we maximized the DSR over all the nodes in
the network. Since there are some nodes without a load demand, by definition, DSR only
calculates the average satisfied load demand over buses with a positive demand. We find
the distribution flows of the power and the DSR for each bus. In this way, we can directly
apply some restrictions, such as forcing a higher DSR for critical nodes such as hospitals
and fire stations.

Max ∑
i∈V

αi (8)

PGi − PLi = ∑
j∈δ
′′
i

( fij − f ji), ∀i ∈ V (9)

fij = [bij(θi − θj) + gij(εi − εj)], ∀(i, j) ∈ E \ {O ∪ B} (10)

[bij(θi − θj) + gij(εi − εj)] ≤ fij + ∑
l∈V

PLl (1− yij) ∀(i, j) ∈ O (11)

− Pij ≤ [bij(θi − θj) + gij(εi − εj)] ≤ Pij, ∀(i, j) ∈ E ∪O \ B (12)

yij + yji ≤ 1, ∀(i, j) ∈ O (13)

fij ≤ ∑
l∈V

PLl ∗ yij ∀(i, j) ∈ {E ∪O} \ B (14)

yij ∈ {0, 1}, ∀(i, j) ∈ {E ∪O} \ B (15)

fij ≥ 0, ∀(i, j) ∈ {E ∪O} \ B (16)

We also enforce the constraints that are explained in (3)–(6). In the above formulation,
the DSR value of each bus corresponds to the α value that is associated with that node.
The objective function (8) maximizes the DSR values over all the nodes in the network.
The yij binary variables denote whether a link is used and in which direction it is operating.
If a positive power flow is sent from bus i to bus j with the specified direction, yij is
1; otherwise, it is 0. The fij variables identify the amount of flow sent from node i to node j.
The flow variable only identifies the positive amounts. Adding the sectionalizing switches,
the structure of the network changes from a tree, and there are loops in the network, so we
had to define the new flow variables to calculate the direction of the sent power. Constraint
(9) is to set the flow balance equations similar to the one given in (2). The difference here is
that the neighbors of each node are calculated in graph G′′ = (V, E∪O \ B) and are denoted
by δ

′′
i , and the flows are stored in the fij variables. Then, on the basis of whether these flow

variables are calculated on regular links or sectionalizing switches, the relationship of the
flow variables and the characteristics of the power links is set on Constraints (10) and (11),
respectively. Constraint Set (12) is the same as (7), with the difference that it is defined
on the edge set of graph G′′. Through Constraint Set (13), we identify the direction of the
flow sent on each link and we calculate whether a sectionalizing switch is activated or not,
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and the direction in which the sectionalizing switch is used. Given Constraint (14), only
positive flow is distributed in a link or sectionalizing switch in the direction in which it is
activated. Lastly, we have all the restrictions on the variables.

4. Data Design and Performance Analysis

In this section, we test our model on two sets of instances. The first dataset was a
virtually generated power distribution network with 33 nodes, and the second dataset
was extracted from an actual power distribution network with 233 nodes. In both of these
cases, we assumed that the cumulative amount of power generated in the source nodes
was sufficient to satisfy the demand of the entire nodes. In this case, we could change the
α parameters from a continuous variable between 0 and 1 into binary variables that took
exactly the value of 1 if a node was reachable, and 0 if a node was not reachable from the
source node.

4.1. Virtually Generated Power Distribution Network

In this section, we tested our model on a virtually generated distribution network.
This distribution network is given in Figure 1. In this network, the node indexed by 1 was
the only node where power was generated and distributed. All the nodes other than this
source node were assumed to have a positive demand. The links denoted by solid lines are
the regular power lines, and the dashed lines are sectionalizing switches.
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Figure 1. Graph representation of the Case 33 sample.

We generated 10 scenarios where damage to the links had occurred at different loca-
tions. Then, using sectionalizing switches, we maximized the number of nodes that had
received their required load. As was stated above, we assumed the generated power in the
source location to be sufficient to satisfy the load demand for all the nodes. These generated
instances are given in Table 1.
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Table 1. Scenarios for the virtual distribution network.

Case Sectionalizing Switches Line Outages

C1 (9, 15), (12, 22), (18, 33), (25, 29), (8, 21) (10, 11), (28, 29), (20, 21)
C2 (9, 15), (12, 22), (18, 33), (25, 29), (8, 21) (3, 23), (13, 14), (21, 22), (16, 17)
C3 (9, 15), (12, 22), (18, 33), (25, 29), (8, 21) (2, 3), (10, 11), (14, 15), (21, 22)
C4 (9, 15), (12, 22), (18, 33), (25, 29), (8, 21) (10, 11), (28, 29), (20, 21), (8, 9), (13, 14)
C5 (9, 15), (12, 22), (18, 33), (25, 29), (8, 21) (31, 32), (15, 16), (6, 7), (21, 22), (3, 23)
C6 (9, 15), (12, 22), (18, 33), (25, 29), (8, 21) (28, 29), (14, 15), (6, 26), (2, 19), (21, 22)
C7 (9, 15), (12, 22), (18, 33), (25, 29), (8, 21) (28, 29), (20, 21), (24, 25), (26, 27), (19, 20), (16, 17)
C8 (9, 15), (12, 22), (18, 33), (25, 29), (8, 21) (10, 11), (6, 26), (30, 29), (23, 24), (13, 14), (21, 22)
C9 (9, 15), (12, 22), (18, 33), (25, 29), (8, 21) (9, 10), (28, 29), (2, 19), (32, 33), (15, 16), (23, 24)

C10 (9, 15), (12, 22), (18, 33), (25, 29), (8, 21) (2, 3), (10, 11), (14, 15), (21, 22), (6, 7), (29, 30)

In these instances, 32 nodes had positive demand, and Table 2 gives the result of
testing our model for each of the cases given in Table 1. We first solved the problem in the
case where the sectionalizing switches were not used, and then also solved the case where
we could use as many sectionalizing switches as were available.

In this table, the first column on the left, shown by case, gives the corresponding case
name from Table 1. The columns denoted by “Without Sectionalizing Switches” give the
results of not using sectionalizing switches for the redistribution of the power, and the
“With Sectionalizing Switches” columns give the results of testing the given model under
the same disaster scenarios. “Number of Satisfied Nodes” gives the number of nodes that
received their entire demand. We had 32 nodes that had a positive load demand. The next
column, denoted by “Percentage of Satisfied Nodes”, gives the percentage of nodes that
received their full demand. This is the value of the next column over 32. The next column
shows the demand satisfaction rate, given that the total load demand was 37.15 units.
Using the sectionalizing switches increased the achieved DSR in all the tested instances.

Table 2. Results of the tested instances on the virtual network.

Without Sectionalizing Switches With Sectionalizing Switches

Case Number of
Satisfied Nodes

Percentage of
Satisfied Nodes Achieved DSR Number of

Satisfied Nodes
Percentage of

Satisfied Nodes Achieved DSR

C1 17 53% 60% 32 100% 100%
C2 23 72% 62% 32 100% 100%
C3 4 13% 10% 27 84% 90%
C4 15 47% 57% 32 100% 100%
C5 14 44% 36% 27 84% 87%
C6 15 50% 58% 29 90% 95%
C7 19 59% 54% 21 65% 59%
C8 13 40% 35% 22 69% 62%
C9 12 38% 31% 22 69% 52%

C10 4 13% 10% 16 50% 47%

Figure 2 shows the relation of the achieved DSR levels with and without sectionalizing
switches. While the achievable DSR without sectionalizing switches significantly depended
on the location of the line outages, using the sectionalizing switches could significantly
increase the achieved DSR in all the cases.



Sensors 2023, 23, 1200 8 of 13

 

0

10

20

30

40

50

60

70

80

90

100

Case 1 (3) Case 2 (4) Case 3 (4) Case 4 (5) Case 5 (5) Case 6 (5) Case 7 (6) Case 8 (6) Case 9 (6) Case 10 (6)

A
ch

ie
ve

d
 D

S
R

 L
ev

el

Case number (# of line outages)

Without Normally Open Switches With Normally Open Switches

Figure 2. Comparison of DSR level with and without switches.

Figure 1 gives the graphical representation of the virtual network, and Figure 3 gives
the graphical representation of how the power was distributed given the line outages and
sectionalizing switches of Case C6. In this case, links (2, 19), (6, 26), (28, 29), (14, 15), and (21,
22) experienced outages and could not be used. However, using the sectionalizing switches,
we could satisfy the demand of up to 29 nodes, as given in the right-hand side of Figure 3,
and Nodes 26–28 were not reachable with intact links or sectionalizing switches.
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(b) Scenario 6 results

Figure 3. Obtained solution for Case C6.

4.2. Real Power Distribution Network

In order to further study our optimization model and investigate its scalability, we
generated 10 instances of a real power distribution network on the island of Rhodes, as
shown in Table 3. This network has 234 buses and 239 lines. In these scenarios, on the basis
of line outages and sectionalizing switches, the power distribution in the network changes.
The goal of this model is to maximize the number of nodes that receive their full power
demand or equivalently maximize the achieved DSR. In each of these scenarios, there were
four lines that faced an outage in the hypothetical disaster situation. We tested each of these
scenarios under three cases: (1) no sectionalizing switch is available; (2) three sectionalizing
switches are available; (3) six sectionalizing switches are available. In the following, we
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first give the features of the tested instances in Table 3, and then demonstrate the results in
Table 4.

Table 3. Scenarios.

Sectionalizing Switches Line Outages

S1-1 {(6 ,15), (64, 154), (104, 109)} {(98,100),(139, 141), (117,119), (215, 217)}
S2-1 {(6 ,15), (64, 154), (104, 109)} {(117,119), (215, 217), (95, 109), (135, 138)}
S3-1 {(6 ,15), (64, 154), (104, 109)} {(89,93), (112,113), (95, 96), (46, 50)}
S4-1 {(6 ,15), (64, 154), (104, 109)} {(112, 113), (154, 157), (54, 68), (42, 44)}
S5-1 {(6 ,15), (64, 154), (104, 109)} {(127, 129), (69, 71), (129, 131), (95, 96)}
S6-1 {(6 ,15), (64, 154), (104, 109)} {(25,28),(60,62),(98,100),(115, 117)}
S7-1 {(6 ,15), (64, 154), (104, 109)} {(95,187), (135,138), (89, 93), (95,96)}
S8-1 {(6 ,15), (64, 154), (104, 109)} {(95,109), (52, 54), (152, 154), (113, 115)}
S9-1 {(6 ,15), (64, 154), (104, 109)} {(8,14), (138, 148), (127, 129), (96, 98)}

S10-1 {(6 ,15), (64, 154), (104, 109)} {(113,115), (138, 148), (187, 95), (76,77)}
S1-2 {(6 ,15), (3, 135), (64, 154), (54, 80), (104, 109), (57, 14)} {(98,100),(139, 141), (117,119), (215, 217)}
S2-2 {(6 ,15), (3, 135), (64, 154), (54, 80), (104, 109), (57, 14)} {(117,119), (215, 217), (95, 109), (135, 138)}
S3-2 {(6 ,15), (3, 135), (64, 154), (54, 80), (104, 109), (57, 14)} {(89,93), (112,113), (95, 96), (46, 50)}
S4-2 {(6 ,15), (3, 135), (64, 154), (54, 80), (104, 109), (57, 14)} {(112, 113), (154, 157), (54, 68), (42, 44)}
S5-2 {(6 ,15), (3, 135), (64, 154), (54, 80), (104, 109), (57, 14)} {(127, 129), (69, 71), (129, 131), (95, 96)}
S6-2 {(6 ,15), (3, 135), (64, 154), (54, 80), (104, 109), (57, 14)} {(25,28),(60,62),(98,100),(115, 117)}
S7-2 {(6 ,15), (3, 135), (64, 154), (54, 80), (104, 109), (57, 14)} {(95,187), (135,138), (89, 93), (95,96)}
S8-2 {(6 ,15), (3, 135), (64, 154), (54, 80), (104, 109), (57, 14)} {(95,109), (52, 54), (152, 154), (113, 115)}
S9-2 {(6 ,15), (3, 135), (64, 154), (54, 80), (104, 109), (57, 14)} {(8,14), (138, 148), (127, 129), (96, 98)}

S10-2 {(6 ,15), (3, 135), (64, 154), (54, 80), (104, 109), (57, 14)} {(113,115), (138, 148), (187, 95), (76,77)}

Table 4 shows the results of testing our model on the 10 scenarios introduced in
Table 3. In these instances, there were 88 nodes with a positive demand. In Table 4, we
present the results of tested instances on a real network for 0, 3, and 6 sectioning switches
considering the cases mentioned in Table 3. In Cases S3, S4, S6, and S8, using only 3
sectionalizing switches did not help in increasing the achieved DSR; however, by using 6
sectionalizing switches, we were able to significantly increase the achieved DSR values.
On the other hand, in Scenarios S1, S2, and S10, the increase in the gained DSR in cases
with 3 and 6 sectionalizing switches was not significant. For the rest of the scenarios,
including S5, S7, and S9, an increasing trend in the achieved DSR from the cases with 0,
3, and 6 sectionalizing switches was evident. Another important observation regards the
scalability of the proposed mathematical model and the optimization problem. In all of
these problem instances, the model was solved within only a few seconds. Given that the
instances with 234 buses and 239 lines were solved in merely a few seconds, we could
confirm the performance of the optimization model and that it could solve even larger
real-world instances in under a minute.

Table 4. Results of the tested instances on a real network.

Without Sectionalizing Switches 3 Sectionalizing Switches 6 Sectionalizing Switches

Case Number of
Satisfied Nodes Achieved DSR Number of

Satisfied Nodes Achieved DSR Number of
Satisfied Nodes Achieved DSR

S1 58 66% 80 85% 80 85%
S2 56 60% 79 85% 84 89%
S3 23 30% 23 30% 81 84%
S4 20 28% 20 28% 76 78%
S5 34 40% 55 60% 88 100%
S6 12 20% 12 20% 83 89%
S7 46 52% 61 68% 88 100%
S8 25 31% 25 31% 82 84%
S9 5 7.7% 77 90% 88 100%

S10 56 62% 75 78% 82 84%
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4.3. Sensitivity Analysis of the Number of Sectionalizing Switches

In the formulation presented in Section 3.1, we did not set a restriction on the num-
ber of sectionalizing switches, and only maximized the DSR. However, since there is
a cost associated with using these sectionalizing switches, the number of used section-
alizing switches should be kept at a minimal level. For that, we could take different
approaches. One approach is to set an upper limit on the number of sectionalizing
switches that are used. Another approach is to use a multiobjective function that first
maximizes the DSR and then minimizes the number of used sectionalizing switches.
Here, we further investigate the scenarios for the real power distribution network in-
troduced above to analyze what level of DSR can be achieved with an upper limit on
the number of used sectionalizing switches. We obtained the maximal DSR level for
the six available sectionalizing switches from Table 4. For example, for Scenario S6,
using all the introduced sectionalizing switches, the maximal achievable DSR level was
89%. To perform this analysis, we defined an upper bound on the number of used
sectionalizing switches, and added this constraint as

∑
(i,j)∈O

yij + yji ≤ U

to the model given in Section 3.1, where U gives the imposed upper limit. The results of
testing these scenarios are given in Table 5. As observed, we did not need to open all
six switches to achieve the maximal DSR level in any of these instances. For Scenario
S4, only opening 1 sectionalizing switch was sufficient to achieve the maximal possible
DSR level; for Scenarios S1, S3, and S5, only two sectionalizing switches were needed
to guarantee the maximal DSR level, and for Scenarios S2, and S6–S9, using three
sectionalizing switches that had been carefully chosen resulted in the maximal achievable
DSR level. Among these scenarios, only in Scenario S9 did we need to utilize more than 3
sectionalizing switches to achieve the maximal possible DSR. For this scenario, opening
4 normally open switches obtained the maximal achievable DSR.

Table 5. Sensitivity analysis of the number of sectionalizing switches.

Upper Limit 1 2 3

Case Number of
Satisfied Nodes Achieved DSR Number of

Satisfied Nodes Achieved DSR Number of
Satisfied Nodes Achieved DSR

S1 74 80% 80 85% 80 85%
S2 71 75% 79 86% 84 89%
S3 58 61% 81 84% 81 84%
S4 76 78% 76 78% 76 78%
S5 67 80% 88 100% 88 100%
S6 74 81% 80 85% 83 89%
S7 64 78% 79 93% 88 100%
S8 56 60% 75 76% 82 84%
S9 60 75% 71 85% 81 95%

S10 66 71% 75 77% 82 84%

Figure 4 gives the average results of testing our model on the 10 generated instances
for the real power distribution network. This graph shows how using more sectionaliz-
ing switches can enable us to achieve a higher DSR. For example, over these instances,
on average, if no sectionalizing switches were used, only just under 40% of the load
demand could be satisfied. This value increased to almost 74% by using only one section-
alizing switch. The average DSR value increased to 85 and 89% once there was an upper
limit of 2 and 3 on the utilized sectionalizing switches, respectively. The achieved DSR,
however, remained just over 89% once the number of utilized sectionalizing switches
had increased beyond 3. This confirmed the importance of the optimal selection of these
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switches to also consider the economic aspect of this reconfiguration while maximizing
the achievable load demand.

 
  

As this is a graph-based method, we cannot compare it with existing algorithms that focus on 
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Figure 4. Average achieved DSR with limit on utilized sectionalizing switches.

5. Conclusions

In the immediate stage after a disaster, some lines in power distribution networks
face an outage. This outage on the lines impedes accessibility to some of the buses in
the power distribution network. In this study, we addressed the use of sectionalizing
switches to increase power accessibility in postdisruption situations, tailoring a graph-
based distribution network model using a single-line diagram. We defined the demand
satisfaction rate (DSR) concept and developed a mixed-integer programming model to show
how the use of sectionalizing switches can significantly increase DSR. Overall, the outcomes
of this research were as follows:

1. Our proposed mathematical model could choose the sectionalizing switches and set
the direction to maximize the level of DSR.

2. The performance evaluation of our proposed model considering real-world settings
with 234 buses and 239 lines demonstrates that our proposed model is scalable even
in large-scale power distribution networks.

3. Our investigations also showed that maximizing the level of DSR does not necessarily
mean maximizing the expenditures on sectionalizing switch facilities. For example,
in some scenarios where six sectionalizing switches were available, using only one
sectionalizing switch increased the DSR value to almost 74%, which was under 40% if
no sectionalizing switch was used.

In future work, we plan to consider fault isolation as an effective protection scheme to
minimize the impact of line failure after natural hazards.
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