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Abstract—The capture of interval-valued data is becoming an
increasingly common approach in data collection (from survey
based research to the collation of sensor data) as an efficient
method of obtaining information about uncertainty associated
with the data in question. To best utilise this data, several
methods of aggregating intervals into fuzzy sets have been
proposed in the fuzzy set literature, particularly within the
field of Computing with Words. Two key examples are the
Interval Approach and the Interval Agreement Approach and
their respective extensions. Each method takes a fundamentally
different approach to constructing fuzzy sets, making different
assumptions in respect to the nature and the reliability of the
data. The result is noticeably different fuzzy sets that do not
share the same statistical properties (such as central-tendency
and standard deviation). This begs the question of how these
techniques differ in respect to the relationship between the
original interval-valued data and the fuzzy sets produced – and
thus when and why each of the methods is the most appropriate.
This paper compares the results of both methods of constructing
fuzzy sets from interval-valued data. Statistical moments of the
fuzzy sets are compared against the interval-valued data to
evaluate how well key properties of the fuzzy sets match those of
the data; for example, does the standard deviation of the fuzzy
set represent the standard deviation of the raw interval-valued
data? We use comparisons on real-world data to demonstrate
how the methods differ and which is more appropriate given the
assumptions of the data.

I. INTRODUCTION

Intervals are a useful way of capturing uncertainty in data.
For example, intervals may be used to represent the error of
a measurement device, where the exact correct measurement
is not known but it is known to reside within the interval [1].
Another potentially valuable use of interval data is in surveys
[2], [3], where the interval represents a range of values that
the survey participant believes are possibly correct.

Collecting interval-valued responses in surveys has fre-
quently been applied in the context of computing with words
[3]–[6] to capture uncertainty about the meaning of words.
In these examples, the interval-valued survey responses are
aggregated into fuzzy sets that capture agreement or approxi-
mate the consensus of the respondents. Various methods have
been proposed, the most frequently used of which are based
on the Interval Approach (IA) [3] (and its extensions [4], [6])
and the Interval Agreement Approach (IAA) [7]–[9] (and its
extension [10]). Using the IA, intervals are aggregated into
normal, convex interval type-2 fuzzy sets that represent key
areas of agreement from respondents. Whereas, using the IAA,
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Fig. 1. Fuzzy sets representing the word little based on interval-valued survey
responses using the (a) IA and (b) IAA.

intervals are aggregated into type-1 fuzzy sets that may be
non-normal on non-convex and represent the full range of
agreement from respondents. We note that the generation of
type-2 fuzzy sets using the IAA is also possible, but only
arises when more than one type of uncertainty is modelled, e.g.
both inter-participant (between subjects) and intra-participant
(within subject) uncertainty.

To provide a basic illustration of the difference between the
IA and IAA, Fig. 1 shows fuzzy sets constructed using both ap-
proaches using interval-valued data taken from [11] describing
the word little on the scale [0, 10]. The IA uses each interval
response to build an individual type-1 membership function
that is interpreted as an embedded membership function of an
interval type-2 fuzzy set. The IAA, however, aggregates all
interval-valued data into a single type-1 membership function.
This difference arises due to the distinct intended applications
of the methods. The IA is designed to model the meaning
of words. It therefore removes outliers that would lead to
words with too broad of a meaning, and models only strong
areas of agreement in responses. By contrast, the IAA is
designed to model all agreement/disagreement in the data. It
takes the view that outliers may provide valuable information
and that, without external evidence, there is no justification
for disregarding so-called ‘outliers’.

The IA and IAA-based methods take fundamentally differ-
ent approaches in respect to representing interval-valued data
through fuzzy sets and, therefore, it is important to consider
how they compare to the data from which they are derived.
One important difference between these approaches, as out-
lined above, is that the IA involves data pre-processing but
the IAA does not. Thus, it is valuable to understand how the
IA and IAA fuzzy sets differ as a result of them representing
effectively different data (processed and non-processed). In



this paper, we analyse fuzzy sets based on interval-valued
data and contrast them with the original interval-valued data
through comparing key statistical features. The results of the
analysis enable us to determine how the fuzzy sets compare
against the data they are constructed from, as well as how the
methods and respective assumptions shape the fuzzy sets in
respect to the original data. This makes the decision of which
method is best for a given application an easier choice to make.

Section II provides background on methods of constructing
fuzzy sets from interval-valued data taken from [11]. Then,
Section III explains how we compare the fuzzy sets against
the data, followed by results in Section IV. Finally, Section V
presents conclusions.

II. BACKGROUND

In this section, we cover two common methods of represent-
ing interval-valued data using fuzzy sets. The first type is IA-
based, which includes the IA [3] and subsequent enhancements
made on this [4], [6]. The second type is IAA-based, which
includes the IAA [9] and the related efficient-IAA [10].

The IA [3] maps interval-valued data to an interval type-2
fuzzy set with the goal of modelling linguistic variables. First,
the IA performs data pre-processing to remove unsuitable data,
then the remaining data is constructed into an interval type-2
fuzzy set. Four stages of data-processing are carried out; these
are: (1) bad data pre-processing, (2) outlier pre-processing,
(3) tolerance limit pre-processing, and (4) reasonable-interval
pre-processing. Creating a fuzzy set from the remaining data
consists of nine steps, in which each remaining interval is
converted into a type-1 membership function. Inadmissible
membership functions are removed, and the remaining are
aggregated into an interval type-2 fuzzy set. Details of the
data-processing and fuzzy set production can be found in [3].

The main limitations of the IA, as discussed in [4], are that
the resulting fuzzy sets are wide and the heights of the lower
membership function are low. Therefore, the fuzzy sets may
be too imprecise to be useful. To resolve this, the Enhanced
Interval Approach [4] was developed. The EIA builds on the
IA by refining the data pre-processing to have better control of
the width of the remaining intervals. The construction of the
lower membership function is also altered so that its height is
not too low to be useful.

Hao and Mendel [6] point out that the EIA may not assign
maximum membership to values that all survey participants
agree belong in the set, resulting in an inaccurate represen-
tation of the data. To resolve this, they developed the HM
Approach (HMA). In the HMA, the data pre-processing is
the same as for the EIA, but the method of constructing the
fuzzy set is improved by finding the most common overlap of
intervals and constructing the fuzzy set around this point.

To visualise the above three methods, Fig. 2 shows fuzzy
sets constructed using the IA, EIA and HMA using interval-
valued data that represent the word little on the scale [0, 10].

The data pre-processing employed by the IA, EIA and
HMA, while common, may pose a limitation. For example,
starting from 175 interval-valued data collected in a survey,
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Fig. 2. Fuzzy sets representing the word little based on interval-valued survey
responses using the (a) IA, (b) EIA and (c) HMA.

the remaining data points after pre-processing is between 3%
and 70% of the original data [6]; that is, in some cases up to
97% of the intervals are removed as outliers. Pre-processing
is used because the method is intended to capture the meaning
of words and intervals that disagree with the majority are
considered not useful. In other contexts, however, it may
not be safe to assume that outlying data are incorrect; they
may be outliers because their proponents have more expertise
or access to different information/experience, meaning their
answer could be just as or even more accurate. In addition,
removing such a large amount of data may not be acceptable
when only a small amount of raw data is available.

As an alternative to the IA-based methods, Wagner et al.
[7]–[9] developed the Interval Agreement Approach (IAA).
The IAA models basic interval-valued data through a type-1
fuzzy set instead of an interval type-2 fuzzy set. We refer
to interval-valued data as basic when they represent only
either intra- or inter-source uncertainty, but not both. For
example, a single survey completed once by each participant
is a basic interval-valued data set (capturing inter-participant
uncertainty). However, if the same survey was conducted
multiple times with the same participants, the data would
capture both inter- and intra-participant uncertainty – which
would result in type-2 fuzzy sets when modelled with the IAA.
Other key differences compared with the IA-based methods are
that it does not assume the data has a uni-modal distribution
and it does not employ pre-processing/remove outliers.

In the IAA, the membership assigned to a value x within
a fuzzy set is the percentage of intervals that contain x.
Therefore, while outliers are present, their membership value
is typically low. IAA fuzzy sets do not have a normal mem-
bership function unless there is a value x that is within all
intervals in the data. The method also ensures, unlike IA
methods, that a multi-modal fuzzy set is created if the data
is multi-modal. A key benefit of the IAA is that it is clear
how much agreement exists in the data by visually observing
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Fig. 3. Fuzzy sets representing the word little based on interval-valued
survey responses using the (a) IAA and (b) eIAA using seven linguistic basis
functions.

the membership function. For example, Fig. 3(a) shows an
IAA model of the word little using the same interval-valued
data as used in Fig. 2. The fuzzy set shows that no more than
65% of participants agreed that the value 2 on the scale [0, 10]
is little.

A potential limitation of the IAA, as pointed out by Havens
et al. [10], is that the resulting membership functions can
appear unorthodox because the fuzzy sets are defined by
the endpoints of intervals, resulting in spikes in membership.
This is particularly evident with small data sets (see figures
in [2], for example). Havens et al. argued that the IAA is
a computationally inefficient representation and proposed an
improved model named the efficient IAA (eIAA). This creates
a simplified membership function by representing it as the
weighted sum of a set of basis functions.

Fig. 3 shows fuzzy sets constructed using the IAA and eIAA
using interval-valued data that represent the word little on the
scale [0, 10]. The general shape of the membership function
produced by the eIAA is the same as that by the IAA.

Other methods have also been proposed in the literature,
which capture an additional value within the interval that
represents the most certain point [12], [13]. However, collect-
ing a third data-point is less common as it leads to a more
complex survey for participants. Therefore, we do not cover
these methods in this paper.

We construct fuzzy sets from interval-valued data that has
frequently been used to demonstrate the IA-based approaches
[3], [4], [6] and is available online [11]. In this data, a total
of 174 participants gave end-points of an interval related to
the meaning of 32 different words on the scale [0, 10]. Each
resulting interval captures an interpretation of a given word by
one participant. Table I lists these words; for consistency, they
are presented in the same order as given in [3], [4], [6] where
further details on the method of data collection can be found.
In Table I, each word is assigned an ID number for ease of
reference within this paper.

III. METHODS

We analyse interval-valued data and fuzzy sets derived from
that data by comparing their moments: central tendency (CT)
and standard deviation (SD) around the CT1. We evaluate how

1Note, we also analysed higher moments (skew and kurtosis) but found the
excess width commonly found in calculations on intervals [14] too large for
useful results.

TABLE I
WORDS TO WHICH SURVEY PARTICIPANTS ASSIGNED INTERVALS.

ID word ID word

1 none to very little 17 modest amount
2 teeny-weeny 18 good amount
3 a smidgen 19 sizeable
4 tiny 20 quite a bit
5 very small 21 considerable amount
6 very little 22 substantial amount
7 a bit 23 a lot
8 little 24 high amount
9 low amount 25 very sizeable
10 small 26 large
11 somewhat small 27 very large
12 some 28 humongous amount
13 some to moderate 29 huge amount
14 moderate amount 30 very high amount
15 fair amount 31 extreme amount
16 medium 32 maximum amount

well the CT and SD of the fuzzy sets match the same moments
on the interval data. If the moments closely match, we say the
fuzzy set represents the data well. Where moments do not
match, we analyse how the fuzzy sets differ from the data.
The remainder of this section explains how the moments of
fuzzy sets and interval-valued data are calculated. Note that
the fuzzy sets in this paper are defined within the bounds
X = [0, 10] and are discretised into 101 points; i.e., X =
{0, 0.1, ...9.9, 10}. A total of 101 points was chosen as using a
finer discretisation did not change our results. However, using
fewer discrete points will lead to less accurate results.

To calculate the CT of a fuzzy set, we use its centroid as

mf1
1 (A) =

∑
x∈X xµA(x)∑
x∈X µA(x)

, (1)

and we calculate the SD of a type-1 fuzzy set A as [15]:

mf1
2 (A) =

√∑
x∈X

(
(x−mf1

1 (A))2µA(x)
)∑

x∈X µA(x)
, (2)

where mf1
1 is the centroid as given in (1). Note that the

moments and centroid of a type-1 fuzzy set are crisp values.
We calculate the moments of an interval type-2 fuzzy set

using the Karnik-Mendel (KM) type-reduction algorithm [16].
We use the KM algorithm to calculate the centroid of a
type-2 fuzzy set by calculating the centroid of its embedded
membership functions. We denote the centroid of an interval
type-2 fuzzy set Ã as mf2

1 (Ã).
To calculate the second moment of Ã (to obtain the SD), we

replace the calculation of the centroid of the type-1 embedded
membership function in the KM algorithm with the calculation
of the moment as given in (2), and we sort

[
x − mf2

1 (Ã)
]2

into ascending order [17]. We denote the standard deviation
of an interval type-2 fuzzy set Ã as mf2

2 (Ã).
The result of the KM algorithm is an interval type-1 fuzzy

set, which is defined by a left and right endpoint, which we
use to define a crisp interval.

Moments of interval data are computed in terms of lower
and upper bounds. Consider a set of intervals Ā = {a1, ...an}



where a given interval a is defined as a = [al, ar]. We calculate
the central-tendency of Ā using the mean as follows [14]:

mr
1(Ā) =

[∑
a∈A al

n
,

∑
a∈A ar

n

]
(3)

To calculate the boundaries of the SD of intervals Ā, we
minimise (for the lower bound) and maximise (for the upper
bound) the following constrained optimisation problem [14]:

min /max mr
2(Ā) =

√√√√ 1

n

(∑
a∈A

x2

)
− 1

n2

(∑
a∈A

x

)2

(4)

such that al ≤ x ≤ ar.
To summarise, the moments of multiple interval-valued data

and of an interval type-2 fuzzy set are themselves intervals. By
contrast, the moments of a type-1 fuzzy set are crisp values.

Let mf1
k (A) be the kth statistical moment of a type-1 fuzzy

set A, where k = 1 or 2 for the CT and SD, respectively.
Also, let mr

k(Ā) be the kth statistical moment of a set of
interval values Ā. To evaluate if the moment of a type-1 fuzzy
set matches that of intervals, we check if mf1

k (A) ∈ mr
k(Ā).

Note that mf1
k (A) is a crisp value, whereas mr

k(Ā) is interval-
valued.

Let mf2
k (Ã) be the kth statistical moment of an interval type-

2 fuzzy set Ã. To evaluate if a moment of Ã matches the same
moment of a set of intervals Ā, we evaluate if mf2

k (Ã)c ∈
mr

k(Ā) and if mr
k(Ā)c ∈ mf2

k (Ã), where mr
k(Ā)c denotes

the centre of the interval mr
k(Ā). We use this as an efficient

approach comparable to the type-1 case and will explore other
methods in a future publication.

If the moments on the fuzzy sets do not match the same
moments on the interval-valued data, we calculate whether
the result of the moment is lower or higher; i.e., we check if
mf1

k (A) < mr
k(Ā) (for type-1 fuzzy sets) and if mf2

k (Ã)c <
mr

k(Ā)c (for type-2 fuzzy sets) to test if the moment on the
fuzzy set is lower than the moment on the data.

IV. RESULTS

In this section, we compare statistical moments of interval-
valued, data-driven fuzzy sets with the respective moments
computed directly for the same data. Table II show the results
of the CT and SD for the data and for the IAA and eIAA fuzzy
sets. The table highlights results where the moment of the
fuzzy set deviates from the moment of the intervals according
to our test. Using both IAA approaches, the CT of fuzzy words
1-7 is larger than the upper bound of the CT of the intervals,
and the CT of words 28-32 is smaller than the lower bound
of the intervals. Although the universe of discourse (UOD)
is in [0, 10], the CT according to the IAA is in the range
[3.79, 6.81], representing only a third of the scale.

The CT of the IAA is skewed further to the centre of the
UOD than the data because only the endpoints of the intervals
are included in the calculation of the CT on the data (see (4)),
but all values within the interval are included when calculating
the centroid of the IAA set (see (1)). For example, consider
word 32 – Fig. 4(a) shows the IAA set. Most responses for
this word are a subset of [8, 10], but nearly 20% of participants

TABLE II
RESULTS OF CT AND SD ON THE INTERVAL-VALUED DATA AND THE IAA
AND EIAA FUZZY SETS FOR EACH WORD [11]. RESULTS IN BOLD SHOW
WHEN THE FUZZY SET MOMENT DOES NOT MATCH THE CORRESPONDING

MOMENT FOR THE DATA ACCORDING TO OUR TEST.

CT SD

word raw data IAA eIAA raw data IAA eIAA

1 [0.52, 3.09] 4.1 4.15 [1.07, 16.03] 3.06 3.19
2 [0.81, 3.59] 4.53 4.56 [2.57, 18.79] 3.04 3.17
3 [0.76, 4.05] 4.31 4.33 [1.85, 18.66] 2.98 3.1
4 [0.48, 3.0] 3.89 3.89 [1.01, 14.88] 3.06 3.18
5 [0.5, 2.85] 3.8 3.8 [1.4, 14.44] 3.13 3.24
6 [0.37, 2.91] 3.79 3.78 [0.53, 14.59] 3.1 3.21
7 [0.79, 3.62] 3.84 3.83 [1.17, 14.91] 2.93 3.03
8 [0.74, 4.02] 3.69 3.71 [0.79, 15.27] 2.85 2.95
9 [0.75, 4.02] 3.54 3.53 [0.78, 14.95] 2.85 2.94
10 [0.69, 3.91] 3.48 3.49 [0.45, 14.03] 2.78 2.88
11 [1.3, 4.31] 3.76 3.74 [1.27, 13.45] 2.71 2.8
12 [1.69, 5.76] 4.43 4.44 [0.73, 15.24] 2.53 2.6
13 [2.61, 6.66] 4.76 4.76 [0.46, 12.5] 2.27 2.33
14 [3.34, 6.98] 5.16 5.15 [0.29, 10.13] 2.22 2.29
15 [3.57, 7.3] 5.27 5.27 [0.78, 12.58] 2.34 2.42
16 [3.39, 6.85] 5.16 5.16 [0.16, 7.53] 1.99 2.09
17 [2.75, 6.21] 4.8 4.79 [0.92, 13.07] 2.44 2.51
18 [4.77, 8.49] 6.12 6.11 [0.83, 13.88] 2.48 2.58
19 [3.97, 8.44] 5.72 5.72 [1.42, 17.38] 2.61 2.69
20 [2.79, 6.37] 5.04 5.04 [3.85, 18.08] 2.8 2.89
21 [4.85, 8.67] 6.13 6.14 [0.83, 14.49] 2.52 2.58
22 [4.89, 8.97] 6.19 6.18 [0.51, 15.58] 2.57 2.66
23 [5.7, 9.21] 6.6 6.58 [0.97, 14.79] 2.69 2.77
24 [6.21, 9.47] 6.62 6.59 [0.46, 13.78] 2.72 2.81
25 [4.91, 8.94] 6.09 6.08 [1.5, 17.72] 2.73 2.82
26 [5.53, 9.48] 6.54 6.54 [0.43, 15.51] 2.68 2.75
27 [6.37, 9.66] 6.38 6.35 [0.4, 16.01] 2.92 3.01
38 [6.21, 9.42] 5.84 5.83 [1.64, 18.22] 2.94 3.05
29 [6.75, 9.75] 6.43 6.4 [0.65, 15.33] 2.94 3.05
30 [7.35, 9.76] 6.81 6.77 [0.39, 11.59] 2.91 3
31 [6.67, 9.67] 5.93 5.92 [1.73, 18.42] 3.08 3.2
32 [7.59, 9.84] 5.88 5.87 [0.96, 15.09] 3.09 3.21
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Fig. 4. Fuzzy sets representing word 32 using (a) IAA and (b) HMA.

gave the answer [0, 10]. These wide results skew the CT of
the IAA towards m1 = 5, but they do not skew the CT on the
raw data as strongly.

By contrast, The IA methods treat the responses [0, 10] as
incorrect definitions of the words, resulting from a lack of
understanding of the question (for example, the interval [0, 10]
is the maximum amount in terms of the possible interval size
on the given scale) or due to incorrectly inputting the desired
answer (see the HMA fuzzy set, also in Fig. 4, to compare the
IAA with an approach that removes this data). However, the
IAA models agreement and therefore retains the information
provided that around 20% of the participants disagreed with
the rest.



TABLE III
RESULTS OF CT AND SD ON THE PRE-PROCESSED INTERVAL-VALUED DATA AND THE IA, EIA AND HMA FUZZY SETS FOR EACH WORD. RESULTS IN

BOLD SHOW WHEN THE FUZZY SET MOMENT DOES NOT MATCH THE DATA MOMENT ACCORDING TO OUR TEST.

CT SD

word data IA EIA HMA data IA EIA HMA

1 [0.0,0.56] [0.35,1.68] [0.02,0.66] [0.46,0.52] [0.0,0.47] [0.68,1.15] [0.24,0.42] [0.35,0.4]
2 [0.03,0.49] [0.12,3.31] [0.07,0.38] [0.27,0.37] [0.0,0.3] [1.41,1.62] [0.14,0.3] [0.2,0.28]
3 [0.07,0.87] [0.21,4.38] [0.19,0.65] [0.52,0.58] [0.0,0.53] [1.92,2.21] [0.26,0.47] [0.36,0.41]
4 [0.03,0.68] [0.14,1.48] [0.07,0.59] [0.44,0.61] [0.0,0.47] [0.6,0.91] [0.22,0.42] [0.35,0.46]
5 [0.03,0.72] [0.13,1.49] [0.07,0.59] [0.43,0.68] [0.0,0.48] [0.61,0.89] [0.22,0.42] [0.35,0.52]
6 [0.02,0.88] [0.15,1.48] [0.09,0.88] [0.59,0.8] [0.0,0.61] [0.6,0.91] [0.35,0.58] [0.45,0.59]
7 [0.15,1.49] [0.32,1.94] [0.35,1.09] [0.88,0.98] [0.0,0.94] [0.79,1.24] [0.45,0.75] [0.59,0.67]
8 [0.29,2.31] [0.46,2.26] [0.46,1.57] [1.2,2.03] [0.0,1.35] [0.92,1.48] [0.63,1.07] [0.9,1.46]
9 [0.19,2.4] [0.43,2.04] [0.48,1.84] [1.23,2.15] [0.0,1.45] [0.82,1.34] [0.73,1.24] [0.94,1.56]
10 [0.24,2.43] [0.41,2.14] [0.41,1.76] [1.24,2.33] [0.0,1.43] [0.87,1.39] [0.71,1.17] [1.0,1.71]
11 [0.72,2.87] [0.89,4.15] [0.98,3.17] [1.59,1.87] [0.0,1.5] [0.45,1.21] [0.2,0.94] [1.03,1.23]
12 [1.81,4.35] [1.64,7.1] [1.83,5.0] [3.07,3.38] [0.0,1.81] [0.78,1.96] [0.2,1.37] [1.2,1.4]
13 [2.73,6.05] [1.65,7.64] [2.0,6.82] [4.07,4.91] [0.0,2.35] [0.2,2.02] [0.2,1.9] [1.54,2.07]
14 [3.85,6.4] [2.55,7.75] [3.48,6.98] [4.36,5.9] [0.0,1.62] [0.17,1.88] [0.14,1.41] [1.03,1.98]
15 [3.79,6.86] [2.01,8.43] [3.03,7.51] [4.73,5.95] [0.0,2.07] [0.1,2.04] [0.14,1.65] [1.3,2.05]
16 [3.71,6.38] [5.04,5.04] [3.16,6.92] [4.14,5.87] [0.0,1.53] [1.53,1.53] [0.1,1.46] [0.97,2.04]
17 [3.24,5.79] [1.69,7.72] [2.06,6.35] [4.32,5.09] [0.0,1.93] [0.22,2.05] [0.22,1.64] [1.39,1.87]
18 [5.86,8.32] [3.0,8.78] [5.38,8.6] [6.53,7.13] [0.0,1.76] [0.91,2.03] [0.22,1.37] [1.18,1.57]
19 [5.18,9.0] [6.12,8.72] [6.66,8.72] [6.92,7.28] [0.0,2.6] [1.57,2.56] [1.36,2.19] [1.72,1.98]
20 [3.26,5.13] [2.25,7.82] [3.18,4.83] [3.54,3.93] [0.0,1.33] [0.24,1.92] [0.48,0.97] [0.91,1.14]
21 [6.21,9.15] [3.46,8.78] [5.47,8.92] [7.2,7.96] [0.0,2.06] [0.71,1.87] [0.28,1.28] [1.35,1.9]
22 [6.41,9.44] [6.05,9.05] [7.41,9.09] [7.41,7.97] [0.0,2.06] [1.61,2.56] [1.05,1.71] [1.34,1.75]
23 [7.44,9.81] [6.95,9.44] [7.99,9.44] [7.93,8.55] [0.0,1.58] [1.25,1.95] [0.81,1.36] [1.01,1.46]
24 [7.98,9.9] [7.64,9.62] [8.42,9.62] [8.37,8.76] [0.0,1.29] [0.97,1.51] [0.63,1.07] [0.88,1.16]
25 [7.18,9.64] [6.05,9.39] [7.93,9.34] [8.17,8.24] [0.0,1.71] [1.66,2.42] [0.84,1.38] [1.16,1.21]
26 [7.28,9.77] [6.62,9.43] [7.93,9.43] [7.69,8.52] [0.0,1.61] [1.4,2.14] [0.83,1.39] [1.07,1.65]
27 [8.51,10.0] [7.24,9.64] [8.36,9.92] [8.31,9.05] [0.0,1.07] [1.16,1.7] [0.67,0.92] [0.79,1.26]
28 [9.43,10.0] [6.36,9.29] [9.33,9.98] [9.38,9.53] [0.0,0.47] [1.5,2.36] [0.24,0.42] [0.37,0.47]
29 [9.01,10.0] [7.77,9.8] [8.69,9.98] [8.85,9.25] [0.0,0.8] [0.94,1.3] [0.51,0.69] [0.59,0.86]
30 [8.9,10.0] [8.28,9.85] [8.58,9.98] [8.65,9.19] [0.0,0.88] [0.71,1.02] [0.55,0.72] [0.66,1.0]
31 [9.51,10.0] [7.8,9.76] [9.44,9.98] [9.38,9.63] [0.0,0.41] [0.92,1.36] [0.2,0.37] [0.32,0.48]
32 [9.88,10.0] [8.58,9.98] [9.9,9.98] [9.89,9.92] [0.0,0.07] [0.55,0.72] [0.0,0.1] [0.1,0.1]

The SD of the IAA methods all fit well with the words
according to our test, except for word 20, where the result
is lower for the fuzzy set than the intervals. In addition, the
results of the IAA and eIAA are similar, demonstrating that
the eIAA provides a good approximation of the IAA.

Table III shows the results of the CT and SD of the pre-
processed intervals and of the IA, EIA and HMA fuzzy sets.
The table highlights results where the moment of the fuzzy
set does not match the moment of the interval according to
our test. Looking first at the IA fuzzy sets, the moment of the
fuzzy set often does not match the moment of the intervals.
This mainly occurs for words at the ends of the scale (words
1-7 and words 21-32). As with the IAA, the CT of words 1-7
is higher according to the IA set than according to the data,
and for words 29-32 the CT is lower than that of the data.
This is because the IA fuzzy sets are often very wide [4].

Note that the lower bound of the SD of the pre-processed
data is always 0. This is because, for each word, there is a
value x that is within all of the remaining intervals. Therefore,
if each interval was reduced to this crisp value x, the SD of
the data would be 0, hence this is the lower bound. However,
in the case of a type-2 fuzzy set, the SD is only 0 if the fuzzy
set is a singleton, i.e., representative of a crisp value.

The EIA and HMA perform better at modelling the pre-

processed data than the IA according to our test. The moments
of the EIA fuzzy sets pass our test and for the HMA all except
word 31 passes our test.

Next, we compare the CT and SD of the IA-based sets with
the original non-processed data. (Note, we do not include a
table of the results together for space consideration. The results
on the non-processed data are within Table II and the results
of the IA-based fuzzy sets are within Table III). The CT of
the IA sets matches that of the data. However, the CT of the
EIA sets is lower than the data for words 1-7 and higher for
words 30-32. Similarly, the CT of the HMA sets for words
1-3 is lower and for words 30-32 is higher than of the data.
The SD of the IA-based sets is different to the data for several
words. For the IA sets, the SD of the fuzzy set is smaller than
the SD of the data for words 1, 3, 4-7, 11, 20, 31, and 32.
For the EIA, the SD of the fuzzy set is smaller than the data
for words 1-7, 11, 18, 20, 21, 25, 29-32, for the HMA it is
smaller for words 1-7, 11, 20, 25, 30-32. This demonstrates
that the IA methods provide a model that is fundamentally
different to the full data before pre-processing. Specifically,
they extract key areas of majority agreement that can provide a
useful model of a word. This involves removing intervals that
are perceived as non-sensical (e.g. encompassing the entire
scale) or in disagreement with most other responses.



These results show that it is generally the words at the ends
of the scale that are vulnerable to being misrepresented by their
fuzzy membership function. In addition, there is a considerable
difference between representations produced by the IA-based
methods and by the IAA-based methods as a result of the
data-processing performed by the former.

Overall, the results show that the EIA and HMA provide a
good representation of the remaining data after pre-processing,
whereas the IA often has a CT or SD that differs from the data.
Results also show that the IA methods represent noticeably
different data to the original unprocessed data. Therefore,
while the IA fuzzy sets provide a good model of pre-processed
data, it is not a suitable method if all data points need to be
treated with equal importance.

The IAA-based methods do not perform any data pre-
processing and therefore provide a closer representation of
the original data. However, the mean of the fuzzy set may
be lower (higher) than the mean of data where that data is
skewed towards the high (low) end of the scale. This is because
outliers skew the membership function further to the centre of
the UOD than may be desired.

V. CONCLUSIONS

In recent years, the use of interval-valued data has grown
in the literature, taking advantage of the fact that such data
captures uncertainty around the true answer. Two key methods
that use interval-valued data to build fuzzy sets have been pro-
posed in the literature. The first are the IA based approaches,
designed to capture the meaning of words by modelling
the most important subset of the data with a type-2 fuzzy
set. The second are the IAA based approaches, designed to
capture agreement over all of the data with a type-1 fuzzy set.
These unique techniques differ such that they produce visually
different fuzzy sets that differ in key statistical moments.

We compare the CT and SD of interval-valued data-driven
fuzzy sets with the same moments on the data to show how
the fuzzy sets compare to the data from which they are con-
structed. As the IA and IAA methods are designed to capture
different details of the data, their moments differ appreciably.
We demonstrate that the EIA and HMA effectively capture
the moments of the pre-processed data, whereas the IA does
not do so according to our test. The fuzzy sets generated by
each of these three methods however differs considerably from
the original non-processed data, thus care should be taken if
such strong pruning of the data is appropriate for the given
application. The IAA effectively captures the SD of the data.
The CT of the IAA sets is skewed towards the centre of the
UOD when, in fact, the values of x with highest membership
are near the edge of the UOD. This is due to outliers in the
data and the choice of using the centroid to calculate the CT.
Results indicate that a different measure of CT, such as the
mean-of-maxima, would be more appropriate for IAA sets. We
recommend that the EIA or HMA methods should be used
only when outliers cannot provide meaningful information,
otherwise, the IAA or eIAA methods are useful.

The results of this paper are limited in that we have only
used a single dataset to analyse the methods. In addition,
the data set is large (containing 174 intervals per word) and
therefore does not show the effect of the data-processing of
the IA methods on small data sets. This is an important
point to investigate as these methods remove up to 90% of
the data, leaving very few data points if the unprocessed
dataset is small. In addition, the IA methods assume the
data is unimodal whereas the IAA methods make no such
assumptions. Future work will further investigate fuzzy sets
constructed from interval-valued data in cases of small and
multi-modal data sets.
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