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2018.—Functional activity in the human brain is intrinsically orga-
nized into independently active, connected brain regions. These net-
works include sensorimotor systems, as well as higher-order cognitive
networks such as the default mode network (DMN), which dominates
activity when the brain is at rest, and the frontoparietal (FPN) and
salience (SN) networks, which are often engaged during demanding
tasks. Evidence from functional magnetic resonance imaging (fMRI)
suggests that although sensory systems are mature by the end of
childhood, the integrity of the FPN and SN develops throughout
adolescence. There has been little work to corroborate these findings
with electrophysiology. Using magnetoencephalography (MEG) re-
cordings of 48 participants (aged 9–25 yr) at rest, we find that
beta-band functional connectivity within the FPN, SN, and DMN
continues to increase through adolescence, whereas connectivity in
the visual system is mature by late childhood. In contrast to fMRI
results, but replicating the MEG findings of Schäfer et al. (Schäfer
CB, Morgan BR, Ye AX, Taylor MJ, Doesburg SM. Hum Brain Mapp
35: 5249–5261, 2014), we also see that connectivity between net-
works increases rather than decreases with age. This suggests that the
development of coordinated beta-band oscillations within and be-
tween higher-order cognitive networks through adolescence might
contribute to the developing abilities of adolescents to focus their
attention and coordinate diverse aspects of mental activity.

NEW & NOTEWORTHY Using magnetoencephalography to assess
beta frequency oscillations, we show that functional connectivity
within higher-order cognitive networks increases from childhood,
reaching adult values by age 20 yr. In contrast, connectivity within a
primary sensory (visual) network reaches adult values by age 14 yr. In
contrast to functional MRI findings, connectivity between cognitive
networks matures at a rate similar to within-network connectivity,
suggesting that coordination of beta oscillations both within and
between networks is associated with maturation of cognitive skills.

default mode network; development; frontoparietal network; magne-
toencephalography; salience network

INTRODUCTION

Resting-state networks measured with fMRI. A robust set of
functionally connected “resting-state” brain networks has been
one of the most important discoveries in functional magnetic
resonance imaging (fMRI) over the last two decades. Fluctu-
ations in fMRI blood oxygenation level-dependent (BOLD)
signal over time, assumed to reflect neural activity, are corre-
lated between brain regions. These correlated regions form the
nodes of multiple distinct networks that exhibit consistency in
spatial configuration across individuals. Moreover, networks
observed during rest are very similar to those observed during
the performance of tasks (Toro et al. 2008).

Fox et al. (2005) showed that a network of “task-positive”
brain regions that show increased BOLD signal in response to
cognitively demanding tasks is anticorrelated at rest with a
network of “task-negative” regions that show decreased BOLD
signal, a network known as the default mode network (DMN).
Furthermore, Seeley et al. (2007) showed that the task-positive
regions form two dissociable networks: a frontoparietal net-
work (FPN) implicated in executive control and a salience
network (SN), also known as the cingulo-opercular network,
involved in salience processing. In contrast, the DMN is
especially prominent during rest and has been hypothesized to
reflect internally directed mental activity (Fransson 2005; Ma-
son et al. 2007), although its role has been a topic of debate
(Gilbert et al. 2007; Raichle and Snyder 2007). The anticorre-
lation between the DMN and task-positive regions found by
Fox et al. (2005) is observed after covarying for global BOLD
fluctuations. If the effect of global fluctuations is not removed,
the correlations between DMN and task-positive sites are
typically near zero (Fox et al. 2009), whereas within-network
correlations are positive. Notably, both during task and during
rest there is clear segregation between DMN sites and task-
positive sites in FPN and SN.

Development of fMRI resting-state networks. Although there
is consistent evidence that these networks are spatially and
functionally distinct in adulthood, fMRI evidence suggests that
they emerge gradually over the course of childhood and ado-
lescence. Fair et al. (2009) reported that as age increases from
childhood to adulthood there is a shift from predominantly
local connections between brain regions to long-range connec-
tions. In particular, they found that with increasing age the
strength of connections within the FPN, SN, and DMN in-
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creased. However, rigorous reduction of effects attributable
to head movement indicates that these findings are partially
confounded by spuriously strong local connectivity and
underdetection of long-range connectivity in younger chil-
dren resulting from greater movement artifacts (Power et al.
2012). Nonetheless, even after allowing for movement arti-
facts, developmental changes in the connectivity between
networks are discernible.

In a resting-state fMRI study of 6- to 8-yr-old children, de
Bie et al. (2012) found that the DMN and other resting-state
networks involved in higher-order cognitive functions were
fragmented and incomplete, reflecting less developed func-
tional connectivity. In a resting-state fMRI study of 10- to
26-yr-olds, Marek et al. (2015) found that although within-
network connectivity had stabilized before adolescence, inte-
gration between networks increased during adolescence. This
increase was associated with increased ability to inhibit errors
in an antisaccade task, indicating a relationship between net-
work integration and maturation of cognitive control.

Development of electrophysiological resting-state networks.
Although the BOLD signal provides an index of the changes in
blood flow required to meet the metabolic demands of active
neurons and glia, it is only an indirect measure of neural
activity. Electroencephalography (EEG) and magnetoencepha-
lography (MEG) provide a more direct measurement of neural
signals, with sampling rates on the timescale of neural trans-
mission, albeit with lower spatial resolution. MEG studies have
discovered networks with spatial distributions similar to the
BOLD-defined resting-state networks (Brookes et al. 2011c;
Hipp et al. 2012). These electrophysiological networks are
revealed by between-node correlations in the amplitude enve-
lopes of neural oscillations in specific frequency bands. In most
of the networks, these correlations are strongest in the beta
band (�13–30 Hz), although between some nodes of the DMN
both alpha (�8–13 Hz) and beta oscillations exhibit strongly
correlated activity (Brookes et al. 2011c).

Using MEG, Schäfer et al. (2014) investigated the develop-
ment of seven resting-state networks (including the FPN and
DMN) between ages 6 and 34 yr. They reported a linear
increase in connectivity in the alpha and beta bands within
these networks over that age range. Furthermore, in contrast to
Fair et al.’s (2009) BOLD findings, namely, that the networks
become more clearly segregated with age, Schäfer et al. (2014)
reported that in MEG between-network amplitude envelope
correlations strengthened with age. However, they tested only
for linear dependence on age across the entire age range and
did not investigate whether within- and between-network con-
nectivity develop at different rates at different developmental
stages or whether the developmental trajectory of within-
network connectivity differs between networks.

We have previously reported (Brookes et al. 2018) results
from an MEG study of children and young people aged 9–25
yr showing that stationary connectivity between brain regions
defined with the AAL atlas (Tzourio-Mazoyer et al. 2002),
averaged across the whole brain, increased with age in the
alpha and beta frequency bands. We also found that the
temporal stability of transient dynamic spatio-temporal brain
states increased with age. In view of the fMRI findings of de
Bie et al. (2012) that the DMN and other resting-state networks
involved in higher-order cognitive functions were fragmented
and incomplete in 6- to 8-yr-old children, together with evi-

dence from cognitive studies that executive functions mature
more slowly than simple perceptual functions (Fuster 2002), in
this study we hypothesized that connectivity in the three
networks implicated in higher-order cognitive functions,
namely, the DMN, FPN, and SN, would mature more slowly
than the connectivity of primary sensory networks, for exam-
ple, the visual network that embraces primary and extrastriate
visual cortex.

Differences between fMRI and electrophysiological resting-
state networks. The relationship between the BOLD signal and
the beta-band MEG signal has yet to be established. In contrast
to the BOLD signal, in which task-related changes in the
“task-negative” DMN are in the opposite direction to those in
the “task-positive” FPN and SN, widespread beta desynchro-
nization in all three networks is observed during performance
of cognitively demanding tasks. For example, during the n-
back working memory task, which demands the simultaneous
maintenance and processing of information, beta desynchroni-
zation is widespread, especially in the midline and lateral
frontal and parietal regions involved in the FPN, SN, and DMN
(Brookes et al. 2011b). Moreover, using simultaneous EEG-
fMRI, Mantini et al. (2007) found that although global beta
power was negatively correlated with BOLD in regions of
task-positive networks, it was positively correlated with BOLD
in DMN regions. These findings have potentially major impli-
cations for understanding the relationship between oscillatory
activity observed with MEG and the BOLD signal observed
with fMRI, and for understanding the relationship between
BOLD activity and neural activity.

Consistent with the sizable between-network correlations
seen in MEG by Schäfer et al. (2014), Tewarie et al. (2014)
found that alpha- and beta-band functional connectivity is
strongest between nodes that form a pattern resembling that of
the “structural core” identified by Hagmann et al. (2008) based
on the density of white matter connections between regions.
This core embraced medial and lateral parietal cortex and
extended into lateral temporal cortex and to medial frontal
cortex. Hagmann et al. (2008) demonstrated similarity between
this structural core and a functional core based on correlations
between resting-state BOLD signals. This finding suggests that
the connections within the structural core may serve to inte-
grate the functions of distinguishable resting-state networks. In
a later study, Hagmann et al. (2010) demonstrated that the
white matter connections of the structural core continue to
develop through adolescence into young adulthood. It is thus
plausible that alpha and beta oscillations are also engaged in
both within- and between-network communication and that this
communication continues to strengthen through adolescence.

However, when investigating network connectivity with
MEG, an important caveat must be borne in mind. There is no
unique solution to the inverse problem of identifying the
location of the source of MEG signals detected with sensors
outside the brain. Techniques such as beamforming, employed
by Brookes et al. (2011c) to delineate resting-state networks in
MEG and by Schäfer et al. (2014) to investigate their devel-
opmental trajectory, constrain the solution of the inverse prob-
lem to minimize the contribution of sources in extraneous brain
regions to the estimated strength of the sources at a location of
interest. Whereas MEG has resolution of order 5–8 mm or
even less when identifying a strong local source, in situations
where diffuse sources from many brain regions contribute to
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the observed signal the signals from different sources can be
difficult to distinguish because of inaccurate forward modeling
that can generate the mislocalization of sources and also
because of blurring inherent in the inverse problem. This is the
problem of signal leakage, which could potentially account for
at least some of the positive correlations between network
nodes. Schäfer et al. (2014) minimized the risk of leakage by
assessing connectivity between regions separated by at least 35
mm. Another approach to the problem of leakage is to remove
zero-time lag correlations between the location of interest and
other regions likely to be contributing to the observed signal.

Aims of the present study. Using MEG data from the same
sample of children and young people as reported in Brookes et al.
(2018), we set out to investigate the maturation of beta-band
correlations between the nodes of the DMN, FPN, SN, and a
visual network (VN) embracing primary and extrastriate visual
cortex between the ages of 9 and 25 yr. We focused on beta-band
recordings because this is the frequency band within which most
resting-state networks are clearly expressed (Brookes et al.
2011c). To control for spurious positive correlations introduced
by leakage, we employed a symmetrical orthogonalization devel-
oped by Colclough et al. (2015). This procedure removes all
shared zero-time lag correlations between all regions in the anal-
ysis. We also used estimates of the lead fields at each sensor (the
predicted signals arising from a unit source at each source loca-
tion) to control for relative differences in signal strength attribut-
able to differences in head size and shape, and thus distance from
the signal sensors.

We made the following predictions: 1) With increasing age,
positive correlations in the amplitude of beta oscillations will

increase between nodes of the DMN, FPN, and SN. 2) Cru-
cially, the increase in correlation strength between the nodes of
each of the three attentional networks (DMN, FPN, and SN)
will follow a trajectory similar to the correlations within these
networks. This is in stark contrast to the anticorrelation (or lack
of correlation) between the DMN and the FPN/SN seen in
fMRI studies. 3) The correlations of beta oscillations within
and between attentional networks will mature more slowly than
the correlations between nodes of the VN.

The locations of the nodes of the networks are depicted in
Fig. 1.

MATERIALS AND METHODS

Participants. MEG measurements were made in 51 healthy partic-
ipants (27 female, 24 male) between the ages of 9 and 25 yr, inclusive.
Exclusion criteria included a history of a neurological disorder or a
contraindication to MRI scanning (such as metal in the body). Three
participants were excluded because of excessive head movement
(ages 9, 11, and 18 yr). For some analyses, the remaining 48 partic-
ipants were split into three groups: a child group (under 13 yr; 9
participants: 5 female, 4 male), an adolescent group (13–18 yr; 11
participants: 7 female, 4 male), and a young adult group (19 yr or
older; 28 participants: 15 female, 13 male). Participants (16 yr and
over) or a parent (of those under 16 yr) provided written informed
consent. The study was approved by the Ethics Committee of the
University of Nottingham Faculty of Medicine and Health Sciences.

MRI acquisition. A T1-weighted structural MRI scan was acquired
for each participant with an MPRAGE sequence on a Phillips Achieva
3T system (volume transmit and 32-channel receive head coil; 1-mm
isotropic voxels; TE 8 ms, TI 960 ms, TR 3s, FA 8°).

Fig. 1. The spherical regions of interest (ROIs) that represent the nodes of the 4 networks, displayed using BrainNet Viewer (http://www.nitrc.org/projects/bnv/)
(Xia et al. 2013) with the ICBM-152 template brain (Mazziotta et al. 2001b). The ROIs are located symmetrically in the 2 hemispheres. The coordinates of the
center of each ROI are specified in Montreal Neurological Institute space according to loci defined in the functional atlas developed by Yeo et al. For each
participant, the centers of the ROIs were mapped onto the corresponding location in that individual’s brain as described in MATERIALS AND METHODS.
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MEG acquisition. A 275-channel CTF MEG system was used in its
third-order synthetic gradiometer configuration to record 5 min of
awake resting-state data at a sampling rate of 600 Hz. During
acquisition, participants lay supine and were instructed to fixate on a
centrally presented marker that was back-projected onto a screen 35
cm ahead of them. Head padding, or a glass fiber insert for the MEG
helmet for participants with smaller heads, was used to reduce
movement and to center the head equidistant from all gradiometer
coils. Additional data (not presented here) were recorded during
cognitive tasks in separate runs. Before recording, a head shape was
obtained for the participant with a three-dimensional digitizer (Pol-
hemus); the locations of three head position coils were also digitized
(nasion and left/right preauricular points), and these were used to track
changes in head position throughout the MEG recordings. A head
shape extracted from the participant’s structural MRI was coregistered
with the head shape from the three-dimensional digitizer to enable
accurate calculation of MEG lead fields.

MEG preprocessing including removal of segments contaminated
by head movement. The 5-min resting-state recordings were seg-
mented into 10-s epochs. Given concerns in the fMRI literature that
head movement can artifactually reduce measurements of long-range
brain connectivity (Power et al. 2012), we excluded all epochs that
had a head position coil �4 mm from its starting position at any time
point. Despite this strict criterion, 41 participants lost no epochs. In
the three participants who were excluded from the analysis, more than
half (i.e., �15) of the epochs were lost because of head movement.
Epochs with excessive noise were then identified through visual
inspection (2 epochs were lost for 2 participants; 3 epochs were lost
for 1 participant). Data were frequency-filtered into the beta (13–30
Hz) and alpha (8–13 Hz) bands for further analyses.

Regions of interest. A spatial transform from each participant’s
coregistered structural MRI to the standard Montreal Neurological
Institute (MNI)152 brain (Mazziotta et al. 2001a) was determined
with SPM 8 (https://www.fil.ion.ucl.ac.uk/spm). This also produced
the inverse transform, which was used to transform regions of interest
(ROIs) defined in MNI space into equivalent regions of the coregis-
tered structural MRI, which was in the space of the MEG system. The
ROIs themselves were defined as spheres of radius 10 mm centered on
MNI coordinates identified by Yeo et al. (2011) as nodes of resting-
state networks in a large fMRI data set (incorporating a total of 1,000
participants). Sixteen nodes were chosen, to represent the DMN, FPN,
SN, and a visual sensory network (see Fig. 1). In the case of 14 nodes,
specific MNI coordinates specified by Yeo et al. (2011) were em-
ployed. In the cases of two of the nodes (precuneus and dorsolateral
prefrontal cortex) where the coordinates specified by Yeo et al. did not
correspond closely to the coordinates of nodes employed by Fair et al.
(2009), coordinates specified by Fair et al. were employed after
transformation from Talairach to MNI coordinates. In both instances,
the selected site nonetheless lay within the relevant region defined
within the Yeo et al. atlas. For each participant, the spheres were
transformed from MNI space into equivalent regions of the partici-
pant’s brain and the transformed ROIs were used for that participant
in all subsequent analyses. The transformed ROIs were masked with
a downsampled brain mask to exclude nonbrain voxels and to convert
the ROIs to 8-mm3 voxel size.

Deriving an activity time course for each ROI. For each participant,
the time course of activity for each voxel in the grid of 8-mm3 voxels
spanning the brain was calculated with a scalar linearly constrained
minimum-variance beamformer applied to the MEG data (Brookes et
al. 2011a; Robinson and Vrba 1999), with lead fields created with a
multiple local sphere head model (Huang et al. 1999) and a dipole
approximation of activity within each voxel (Sarvas 1987). Between
2,737 and 4,233 voxels were used for beamforming per participant
[mean 3,455 voxels (SD 333)]. Dipole orientation was determined for
each voxel by searching for the orientation that gave maximum
signal-to-noise ratio. The covariance matrix was calculated over the
full time series in the frequency band 13–30 Hz for the beta-band

analyses and in the frequency band 8–13 Hz for the alpha-band
analyses and then regularized with the Tikhonov method using a
regularization value of 4 times the minimum eigenvalue of the
unregularized covariance matrix, as used in Brookes et al. (2011c).
For each voxel, the beamformer calculates a vector of weights, one for
each sensor, to weight the measured magnetic fields at that sensor.
This gives a time course of activity for each voxel. The beamformer
weights are chosen to pass activity within the target voxel while
maximally suppressing activity at nontarget regions (including exter-
nal interference). Beamformer methods (at least, without leakage
correction) would be expected to produce artifactually large connec-
tivities between ROIs if the beamformer weights for the ROIs are
highly correlated. In the present case, beamformer weight correla-
tions, averaged across participants and calculated using the centroid
voxel for each ROI, were �0.2 in all but three instances: between the
right medial frontal gyrus and the right insula (r � 0.29), between the
anterior cingulate cortex and the left insula (r � 0.30), and between
the left medial frontal gyrus and the left insula (r � 0.46). The
anterior cingulate cortex and left and right insula, considered part of
the SN, are deeper brain regions to which MEG is less sensitive;
therefore, as noted in DISCUSSION, effects involving the SN should
be treated with caution. Principal component analysis was performed
on the time series data for all voxels within each ROI. The first
principal component was taken as a representative time course of
activity for that ROI.

Reduction of signal leakage between ROI time courses. The sym-
metrical multivariate leakage correction developed by Colclough et al.
(2015) was applied to the 16 ROI time courses for each participant
separately. This procedure removes all correlations at zero phase lag
between ROI time courses by obtaining a set of orthonormal time
courses that are closest to the data and then adjusting the orientations
and lengths of the orthogonal vectors so that the corrected time
courses are as close to the uncorrected time courses as possible. The
technique removes any correlations attributable to signal leakage, at
the expense of genuine zero-phase lag connectivity. For each ROI, the
amplitude envelopes of the corrected time courses were then calcu-
lated as the absolute values of the Hilbert-transformed corrected time
courses, and the amplitude envelopes were low-pass filtered at 1 Hz.

Calculating connectivity and adjusting for variation in head size
and shape across participants. The Pearson correlation coefficient
was calculated between the amplitude envelope time courses for each
pair of ROIs for each participant and then Fisher-transformed to give
our measure of connectivity. This measure of connectivity is one of
the most repeatable and reliable connectivity measures available in
MEG (Colclough et al. 2016). In a developmental study, one impor-
tant issue to address is the possibility that there might be appreciable
differences in head size and shape across the age range. Connectivity
values were therefore adjusted by multiple linear regression to allow
for variation in MEG sensitivity across participants due to variation in
head size and shape. An estimate of the sensitivity of MEG to a given
ROI in a given participant was obtained by computing the Frobenius
norm of the lead field vector for each voxel in that ROI and participant
and then averaging the Frobenius norms across voxels in that ROI.
The lead field vector for a voxel gives the signal that would be
produced at each of the MEG sensors by a dipole source of unit
strength located at that voxel. It is calculated using a participant’s
anatomical MRI scan and thus is determined by the participant’s head
size and shape, in particular the distance between each voxel and the
MEG sensors. The Frobenius norm is the square root of the sum of
squares of the values in a lead field vector.

For each pair of ROIs separately, the connectivity values, Cj, across
participants were modeled with Eq. 1:

Cj � �1 � �2�1 � e��3�agej�age0�� � �4 · �F1 j � �5 · �F2 j � � j
(1)

The equation incorporates estimates of differences in observed
connectivity due to differences in Frobenius norm across participants.
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�F1j and �F2j are the differences between the Frobenius norms for
participant j and the average across all participants for the two ROIs.
The other terms are agej (age of participant j) and age0 (age of the
youngest participant), an intercept term, �1; a term describing changes
in connectivity with age, �2�1 � e��3�agej�age0��; and a residual term,
�j. The term describing the change in connectivity with age represents
a growth curve in which connectivity initially increases at a rate
specified by �3 while the rate of increase gradually decreases asymp-
totically toward a value of 0 in adulthood. �2 represents the increase
in connectivity from the earliest observed age to the asymptotic adult
value. (The shape of the growth curve is illustrated in Fig. 4). �1, �2,
�3, �4, and �5 are fitted parameters. After fitting, the estimated
pairwise connectivity for the two ROIs for participant j, Cj

=, was
obtained by subtracting out the two Frobenius norm terms (Eq. 2):

C'
j � Cj � �4 · �F1 j � �5 · �F2 j (2)

In the VN, the adjustment had virtually no effect. This was likely
because participants were scanned in a supine position—head size
would have had minimal effect on distance from the visual cortex to
the nearest (occipital) sensors in this position. The effect was small
but appreciable in the DMN and FPN, likely since in individuals with
larger heads the frontal cortex would have been closer to the nearest
(frontal) sensors than in individuals with smaller heads (again because
participants were scanned in the supine position). The correction led
to an increase in estimated connectivity in the FPN and DMN in the
younger individuals, thereby diminishing the estimated increase in
connectivity with age. In the SN, the effects were small. The corrected
connectivity values are used throughout this report.

RESULTS

Figure 2 shows mean connectivity between each pair of ROIs
for the adult group in the beta (13–30 Hz) frequency band. Black
squares enclose the within-network pairs of DMN, FPN, SN, and
VN nodes. Note that no negative connectivity values are apparent,
indicating that no pair of ROIs has anticorrelated time courses.

However, some values are relatively small, in particular those
between VN nodes and nodes from other networks. Connectivity
is strongest within the VN (extrastriate cortex left/right and a
midline V1 ROI), with values from 0.46 to 0.49. In contrast,
connectivity values between the VN and other network nodes
apart from the precuneus are small. Connectivity between ROIs in
the DMN is also particularly strong, although there are also
sizable connectivities between some DMN and FPN ROIs. Rel-
atively strong connectivity is typically seen for homologous pairs
of ROIs in left and right cortex.

Group differences in within-network connectivity. Figure 3
shows connectivity within and between each network, averaging
across ROI pairs, in each of the three age groups. This again
shows the strong within-network and weak between-network
connectivity for the visual region, in contrast to the strong within-
and between-network connectivity for the DMN, FPN, and SN in
the adult group. There are similar but weaker connectivities in the
adolescent group and markedly weaker connectivities in the child
group. The VN is the only network that is already well connected
in children. We tested for fundamental developmental changes in
connectivity by comparing the networks measured in adults and
children, shown in Fig. 3D. All differences between groups have
an uncorrected P value of �0.05, estimated with planned permu-
tation tests, in which group membership was randomly reas-
signed, and repeated 10,000 times to form a null distribution of
differences. The difference in within-network connectivity for the
VN as well as the difference in connectivity between the VN and
the DMN are nonsignificant when Bonferroni correcting for the
11 comparisons (i.e., using P � 0.0045), whereas all other
differences remain significant.

Based on previous reports of strong within-network connec-
tivity in the alpha band for the DMN (Brookes et al. 2011c), we
also calculated differences in alpha-band (8–13 Hz) connec-

Fig. 2. Mean connectivity in the beta band in
the young adult group (age � 18 yr). Black
boxes denote the 3 attentional networks and
the visual network. Deep blue denotes zero
connectivity; no negative correlations were
observed. Connectivity is the Fisher-trans-
formed correlation between amplitude enve-
lopes of 13- to 30-Hz signals, with adjust-
ment to allow for variation between partici-
pants in head shape and size. Abbreviations
of region names are defined as shown in
Fig. 1.
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tivity between adults and children for this network. Mean
within-network connectivity for the DMN was 0.140 for adults
and 0.059 for children, and this difference was significant at the
P � 0.002 level with a planned permutation test (and signifi-
cant at the Bonferroni-adjusted threshold of P � 0.0045).

Within-network connectivity vs. age. Figure 4A plots within-
network beta-band connectivity against age for all 48 partici-
pants for the four attentional networks. As described in MATERIALS

AND METHODS, we fitted the 48 data points for each network with
a monotonic curve of the form (Eq. 3)

C � �1 � �2�1 � e��3�age�age0�� (3)

where age0 is the age of the youngest participant; �1, �2, and
�3 are fitted parameters. �1 represents the connectivity at the
earliest observed age, �2 represents the increase in connectivity

from the earliest observed age to the asymptotic adult value,
and �3 represents the initial rate of increase in connectivity
with age. C is the connectivity between pairs of ROIs after
correction for between-subject variation in Frobenius norms,
which reflect variation due to change in head size and shape
with age (see MATERIALS AND METHODS).

The model fit was significantly better than that of an inter-
cept-only model, determined with F-tests comparing the dif-
ference in the residual sum-of-squares error between the full
model and the intercept-only model, DMN: F(2,45) � 11.456,
P � 0.001; FPN: F(2,45) � 6.110, P � 0.005; SN:
F(2,45) � 4.783, P � 0.013; VN: F(2,45) � 3.364, P � 0.044,
confirming significant change with age in all four networks.
The rate of change of connectivity with age was greatest for the
VN, as were the initial connectivity and the absolute increase

Fig. 3. A–C: beta-band connectivities averaged across the pairs
of regions of interest (ROIs) within each of the 4 networks in
adults, adolescents (aged 13–18 yr), and children. D: difference
in connectivity between adults and children. Uncorrected P
values: *P � 0.05, **P � 0.005, ***P � 0.001. All cells
marked ** or *** are significant at the corrected threshold
(Bonferroni correction for the 11 comparisons). DMN, default
mode network; FPN, frontoparietal network; SN, salience net-
work; VIS, visual network.

Fig. 4. A: within-network beta-band
connectivity for each of our 4 net-
works as a function of age. Symbols
show individual participants, and
lines show model fits. DMN, default
mode network; FPN, frontoparietal
network; SN, salience network; VIS,
visual network. Fitted values of the
parameter governing the initial rate
of increase of connectivity with age
(�3, which has units years�1) are
given in the key. B: beta-band con-
nectivity between each pair of cog-
nitive networks as a function of age
(DMN-FPN, DMN-SN, FPN-SN)
and the mean connectivity between
the 3 cognitive networks and the vi-
sual network as a function of age
(COG-VIS).
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in connectivity (black line in Fig. 4A). Note that visual con-
nectivity increased rapidly in childhood, reaching a plateau by
the beginning of adolescence. A permutation test compared the
initial rate of change parameter between the VN (0.465) and
the attentional networks (0.186). ROIs were collapsed across
the three attentional networks for this analysis. The difference
in the initial rate of change parameter was compared to a
distribution computed under the null hypothesis that the net-
work labels—visual or attentional—are interchangeable. That
is, for each of 10,000 permutations ROIs were randomly
reassigned to belong to either the visual (3 ROIs) or attentional
(13 ROIs) networks, developmental trajectories were fitted for
the two new networks, and the difference in the rate of change
parameter between the two new networks was added to the null
distribution. The permutation test indicated that the rate of
change was significantly greater for the VN than the attentional
networks (P � 0.022).

Between-network connectivity vs. age. Figure 4B shows
connectivity between each pair of cognitive networks (DMN-
FPN, DMN-SN, FPN-SN); in each case, connectivity between
the networks is positive and increases monotonically with age.
The figure also shows the mean connectivity between the VN
and the cognitive networks (COG-VIS; weighted to give equal
weight to the 3 cognitive networks despite the differences in
the number of ROIs). The between-network connectivity for
the VN increased across childhood but reached a much lower
value than that reached by the connectivity between the cog-
nitive networks. The connectivity between the VN and the
DMN reached a higher plateau than that between the VN and
FPN or SN (data not shown); this may be because the precu-
neus, part of the DMN, is known to play a role as an extra-
striate visual area (Stiers et al. 2006). Indeed, the precuneus,
out of all the cognitive network areas, showed the strongest
connectivity with the VN (Fig. 2).

The model again provided a significantly better fit than an
intercept-only model in each case: DMN-FPN: F(2,45) �
10.485, P � 0.001; DMN-SN: F(2,45) � 8.272, P �
0.001; FPN-SN: F(2,45) � 6.413, P � 0.004; COG-VIS:
F(2,45) � 4.939, P � 0.012. We also computed connectivity
between the DMN and FPN after excluding the two DMN
nodes in angular gyrus (left/right), which lie close to the FPN
nodes in the intraparietal sulcus. Results were similar to when
the angular gyrus nodes were included [data not shown; the
model fit remained significant, F(2,45) � 9.074, P � 0.001,
and the rate parameter increased very slightly to 0.200 from
0.196].

Thus our data confirm the prediction that positive correlation
between nodes of the FPN and DMN and the SN and DMN
increases with age in a similar manner to connectivity within
these networks (mean initial rate parameter for growth of
connectivity with age within the FPN, DMN, and SN is
0.20/yr, and mean parameter for growth of connectivity be-
tween these networks is 0.17/yr).

DISCUSSION

We found that positive correlations between beta amplitude
envelopes increased between nodes of the DMN, FPN, and SN
throughout adolescence and into young adulthood. Further-
more, the increase in correlation strength between the three
attentional networks (DMN, FPN, and SN) followed a trajec-

tory similar to that of the correlations within these networks. In
contrast to these slowly maturing correlations within and be-
tween attentional networks, we found that correlations between
nodes of the VN matured rapidly during childhood.

Given that the nodes of the VN are confined to occipital
cortex, whereas the FPN and DMN extend from parietal to
frontal cortex, this finding is, in itself, consistent with the
observation of Fair et al. that network maturation involves a
shift from local to more long-range connectivity patterns.
However, we also observed that the connections within the SN
follow a developmental trajectory similar to those in FPN and
DMN, maturing more slowly than those in the VN, despite the
fact that the average distance between the nodes in the SN (47
mm) is similar to the average distance between sites in the VN
(45 mm). This suggests that slower maturation is specific to
connections with anterior brain regions rather than with greater
distance between network nodes per se. This would be consis-
tent with the extensive evidence that association cortex in the
frontal lobe, involved in executive functions, is a late-devel-
oping region of the cortex (Fuster 2002).

The finding that beta amplitude correlations within the
attentional networks followed a developmental trajectory sim-
ilar to correlations between networks suggests that beta ampli-
tude correlations reflect a process responsible for integration of
activity within and between these networks. Attentional regu-
lation depends on the capacity to switch off processing of
situationally irrelevant information while prioritizing the pro-
cessing of relevant information. Our findings are consistent
with the expectation that the maturation of attentional control
not only depends on the strengthening of communication
within specialized attentional networks but also requires the
strengthening of integration between these networks. This
conclusion is similar to the conclusion of Marek et al. (2015)
based on correlations between resting-state BOLD signals that
the transition to adult-level inhibitory control is dependent
upon the refinement and strengthening of integration between
specialized networks. However, it should be noted that, con-
sistent with much other data regarding BOLD signals, Marek et
al. found that resting-state BOLD signal in nodes of the DMN
is only minimally correlated with that in other resting-state
networks including the FPN and SN.

Our finding of positive correlations in the beta band between
the DMN and the other two attentional networks (FPN and SN)
does not preclude the possibility that anticorrelation might be
observed in other frequency bands. It is noteworthy that in a
study employing intracerebral electrodes, Ossandón et al.
(2011) observed transient suppression of power in the high
gamma band (60–14 Hz) in the DMN during a visual search
task. In contrast, there were increases in high gamma power in
task-positive regions such as visual cortex and the dorsal
attention network. There were widespread power decreases in
beta-band power in DMN, visual cortex, and dorsal attention
network. Thus, at least during that task, the relationship be-
tween beta and gamma oscillations differed between DMN and
task-positive sites. Indeed, studies of intracerebral recordings
in monkeys (Logothetis et al. 2001) and cats (Niessing et al.
2005) demonstrate that the BOLD signal is most closely related
to gamma-band signals.

It is noteworthy that we observed that correlations between
nodes of the VN were substantially stronger than correlations
within the other three networks, whereas correlations between
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the VN and the other networks were appreciably lower than the
correlations between the other three networks, especially in
adults. This would be anticipated if functional connections
within and between networks form, dissolve, and reform rap-
idly in such a manner that a particular node of one of the
attentional networks is transiently engaged in communication
not only with nodes within the same network but also with
nodes from one of the other two networks. Thus the zero-order
beta-band within-network correlations for each of the three
attentional networks (DMN, FPN, SN) are likely to be reduced
on account of the variance at each node that is shared with
nodes from other networks. This explanation is supported by
the analysis of dynamic beta-band connectivity in adult partic-
ipants by de Pasquale et al. (2012). They computed pairwise
correlations in a sliding window of 10-s duration. Within-
network correlations in a particular network were appreci-
ably greater during transient periods that de Pasquale et al.
designated that region’s “maximum connectivity windows”
(MCWs). Consistent with our findings, they found that during
MCWs in which the DMN was maximally internally con-
nected, the DMN was also appreciably more strongly corre-
lated with other networks, especially the FPN, and a ventral
attention network resembling the SN. On the other hand,
during MCWs in which the visual network was maximally
internally correlated, the visual network was only weakly
correlated with other networks.

Our earlier investigation into the development of dynamic
connectivity in the same participant sample (Brookes et al.
2018), identified eight transient spatio-temporal brain states
with typical durations of order 50 ms. In the case of one of
those transient states, which was characterized by high spatial
loading in bilateral parietal and temporal cortex, the percentage
of total time spent in the transient state showed a developmen-
tal trajectory similar to the development of connectivity within
and between the FPN, DMN, and SN reported in this article
(Fig. 4). Despite the marked differences in spatial distribution
between that transient state and the three attentional networks
examined in this article, the similarity in developmental tra-
jectory raises the possibility that transient bursts of oscillations
in parietal and temporal cortex might play a role in the
coordination of activity within and between the FPN, DMN,
and SN.

In interpreting our results several potential limitations
should be borne in mind. Spurious enhancement of correlati-
ons between nodes due to leakage of signal between brain sites
remains a possibility, although there were low correlations
between beamformer weights for all pairs of network nodes
and we took care to remove any zero-lag correlations before
our connectivity analysis. The lower sensitivity of MEG to
signals from deeper brain regions, together with our observa-
tion that as participants’ head sizes increased with age the
signal strength recorded at the sensors from our ROIs in-
creased, indicates that the effects we observed in the relatively
deeply located SN must be regarded with caution. However,
although we observed that controlling for variation in lead
fields to correct for variation of head size did produce a slight
reduction in the effects of age reported in this article, the
adjustment was small compared with the observed effects of
age.

Another caveat is that MEG may be less sensitive than fMRI
at detecting changes in connectivity in short-range connections

because of its lower spatial resolution. However, this is un-
likely to account for our observation that beta-band connectiv-
ity between the long-range networks (DMN and FPN) devel-
oped at a rate similar to connectivity within these networks.
MEG has higher temporal resolution than fMRI, allowing the
investigation of signals in different frequency bands. Interest-
ingly, Bastos et al. (2015) found that in primate visual areas
feedforward signals were predominantly carried in the gamma
and theta bands, whereas feedback signals were predominantly
carried in the beta band. This lends support to the concept that
beta-band signals play a higher-order role in coordinating
activity within and between networks. Both within- and be-
tween-network connections would be expected to play a crucial
role in well-coordinated, mature brain function. Our findings
suggest that the development of beta-band connectivity plays a
key role in the development of both within- and between-
network coordination.

In summary, we have presented electrophysiological evi-
dence that attentional networks develop throughout adoles-
cence, continuing to develop after the primary visual network
has matured at the end of childhood. Moreover, the synchrony
of beta-band oscillatory power between the attentional net-
works increases at a rate similar to the synchrony within each
network. The development of connectivity within and between
attentional networks may contribute to the developing abilities
of adolescents to focus their attention, exploit their growing
working memory, and prioritize tasks and activities.
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