
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3168  | https://doi.org/10.1038/s41598-021-82809-w

www.nature.com/scientificreports

Auditory beat perception 
is related to speech output fluency 
in post‑stroke aphasia
James D. Stefaniak1,2*, Matthew A. Lambon Ralph2, Blanca De Dios Perez3, 
Timothy D. Griffiths4,5,7 & Manon Grube4,6,7

Aphasia affects at least one third of stroke survivors, and there is increasing awareness that more 
fundamental deficits in auditory processing might contribute to impaired language performance 
in such individuals. We performed a comprehensive battery of psychoacoustic tasks assessing 
the perception of tone pairs and sequences across the domains of pitch, rhythm and timbre in 
17 individuals with post-stroke aphasia and 17 controls. At the level of individual differences we 
demonstrated a correlation between metrical pattern (beat) perception and speech output fluency 
with strong effect (Spearman’s rho = 0.72). This dissociated from more basic auditory timing 
perception, which did not correlate with output fluency. This was also specific in terms of the language 
and cognitive measures, amongst which phonological, semantic and executive function did not 
correlate with beat detection. We interpret the data in terms of a requirement for the analysis of the 
metrical structure of sound to construct fluent output, with both being a function of higher-order 
“temporal scaffolding”. The beat perception task herein allows measurement of timing analysis 
without any need to account for motor output deficit, and could be a potential clinical tool to examine 
this. This work suggests strategies to improve fluency after stroke by training in metrical pattern 
perception.

Post-stroke aphasia (PSA) is prevalent1 and debilitating2, and there is increasing awareness that deficits in non-
verbal cognitive processing might contribute to language performance in such individuals3–5. Indeed, there is 
evidence from multiple aetiologies including congenital amusia6,7, developmental dyslexia8, specific language 
impairment9, children who stutter10 and primary progressive aphasia11,12 that language impairment can co-occur 
with more fundamental deficits in auditory processing, just as auditory processing abilities associate with lan-
guage performance in healthy children13 and adults14. However, there has been no systematic investigation of 
auditory processing deficits across the range of pitch and melody, rhythm and metre, and timbre in post-stroke 
aphasia and whether these are associated with participants’ language impairments. In particular, it is unknown 
whether ‘output’ speech production deficits are associated with ‘input’ auditory processing deficits post stroke, 
as has been found in primary progressive aphasia11,12. We have therefore assessed central auditory processing of 
pitch, rhythm and timbre in a cohort of individuals with chronic PSA.

There are several specific questions we sought to address.
The small number of previous studies assessing central auditory processing in PSA have failed to assess the full 

range of auditory processing domains pertinent to language, including pitch and melody, rhythm and metre, and 
timbre15,16. For instance, both Fink et al. and Von Steinbüchel et al. found impaired temporal order judgement 
in PSA, but did not assess melody, metre or timbre processing17,18. Similarly, Robson et al. assessed pure tone 
frequency discrimination and timbre but not melody, rhythm or metre in a selective PSA group of Wernicke’s 
aphasia5,19, while Robin et al. assessed pitch and rhythm but not timbre processing20. Sihvonen et al. assessed pitch 
and rhythm but not metre or timbre21. Furthermore, most previous studies have tested the auditory processing 
of tone pairs or short tone sequences rather than longer and more abstract tone sequences, which may overlook 
processes used during the comprehension and production of more complex, naturalistic auditory stimuli such 
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as language. We therefore sought to measure auditory processing of tone pairs and sequences across the range 
of pitch and melody, rhythm and metre, and timbre domains in individuals with PSA.

Individuals with primary progressive aphasia have deficits in non-verbal auditory processing12. Intriguingly, 
recent work found that the non-fluent variant is particularly associated with auditory processing deficits for 
sequences of tones, suggesting the existence of a common neural substrate for processing auditory rhythmic 
structure in both auditory input and speech output11. Such a relationship has never been investigated in PSA; 
the aforementioned studies have only examined the relationship between auditory processing and language 
tests assessing comprehension but not speech production. Furthermore, previous work identified differences in 
auditory sequence processing at the group level between non-fluent and fluent variants of primary progressive 
aphasia11, but was not able to assess whether auditory sequence processing correlated with behavioural measures 
of speech fluency across individuals. If present, a relationship between auditory processing of tone sequences and 
speech output fluency would have significant implications for our understanding of fluent speech production, 
and for rehabilitation strategies such as melodic intonation therapy that might target such underlying auditory 
processing deficits in PSA22. We therefore had the a priori hypothesis that speech output fluency would correlate 
with the auditory processing of sequences of tones, but not with the processing of simpler tone pairs, in PSA.

We performed a comprehensive battery of psychoacoustic tasks assessing pitch, rhythm and timbre in a 
cohort of individuals with chronic PSA for whom a large range of detailed language assessments encompassing 
phonology, semantics, fluency and executive function were available. Our aims were: (a) to characterise the profile 
of auditory processing deficits in chronic PSA; and (b) to test the hypothesis that speech output fluency would 
correlate with the ability to process sequences of tones, but not with the ability to process simpler tone pairs.

Materials and methods
Participants.  17 individuals with chronic PSA (the ‘PSA subgroup’) and 17 healthy controls participated in 
the psychoacoustic testing. Individuals with PSA were at least 1 year post left hemispheric stroke (either ischaemic 
or haemorrhagic), pre-morbidly right-handed and part of a larger cohort of 76 stroke survivors recruited from 
community groups throughout the North West of England for whom extensive neuropsychological and imaging 
data was available (Supplementary Methods). A number of the participants with PSA have been included in pre-
vious publications23,24. Aphasia was diagnosed and classified using the Boston Diagnostic Aphasia Examination 
(BDAE)25 and individuals with severe motor-speech disorders were excluded after being screened by a qualified 
speech-language pathologist. Controls were recruited from the volunteer panel of the MRC Cognition and Brain 
Sciences Unit, were right handed and had no history of neurological injury. All participants were native English 
speakers. Informed consent was obtained from all participants according to the Declaration of Helsinki under 
approval from the ‘North West—Haydock’ NHS research ethics committee (reference 01/8/094).

Demographic and clinical data for the PSA subgroup and controls are shown in the Supplementary Informa-
tion. The PSA subgroup and controls were not statistically significantly different at the group level for age (mean 
60.9 [SD 9.5] years in stroke survivors vs 62.5 (SD 4.3) in controls; t-test, t22 = − 0.60, two-sided p = 0.55) and sex 
(8 females in stroke survivors vs 9 females in controls; Chi-Square test, χ2

1 = 0.12, two-sided p = 0.73) but the 
PSA subgroup had significantly fewer years of education than controls (median 11.0 [IQR 6.0] years in stroke 
survivors vs 16.0 [IQR 4.0] in controls; Mann–Whitney U-test, U = 216.5, two-sided p = 0.01) (Supplementary 
Table S1). Over half (52.9%) of the PSA subgroup had a classification of ‘anomia’; the remainder were classified 
as Broca’s aphasia (17.6%), conduction aphasia (17.6%), mixed nonfluent aphasia (5.9%) and transcortical motor 
aphasia (5.9%) (Supplementary Table S2). PSA participants were in the chronic phase post-stroke (median 38 
[IQR 42] months from stroke to neuropsychological testing) (Supplementary Table S2).

Pure-tone audiograms were recorded in all participants using a Guymark Maico MA41 audiometer with 
Sennheiser HDA300 headphones to assess for evidence of peripheral hearing loss that might affect performance 
on the psychoacoustic tests. All participants had mean hearing levels < 20 dB HL between 0.25–1 kHz at octave 
intervals in at least one ear (Supplementary Table S3). There were no significant differences in pure tone audi-
ometry thresholds between the PSA subgroup and controls (Supplementary Table S4). Mean pure tone detection 
thresholds between 0.25 and 1 kHz were not significantly correlated with any of the psychoacoustic measures in 
the PSA subgroup (Supplementary Table S5).

Lesion overlap map.  Lesions were segmented from structural T1-weighted MRI images and normalised to 
MNI space using LINDA v0.5.0 (http://www.githu​b.com/doria​nps/LINDA​)26,27. The lesion overlap map of the 
PSA subgroup is shown in Fig. 1; it encompasses most of the left hemisphere including subcortical white matter.

Neuropsychological tests.  The entire cohort of 76 stroke survivors had previously been administered 
an extensive battery of neuropsychological tests and principal component analysis (PCA) results from earlier 
collection rounds of this database have been published28–30. Controls performed the ‘Cookie theft’ description 
(BDAE25) and the Raven’s Coloured Progressive Matrices31. Neuropsychological test scores for the entire cohort 
of 76 individuals with PSA are shown in Supplementary Table S6.

Psychoacoustic tests of pitch, rhythm and timbre.  The psychoacoustic tests used in this study had 
been developed and published previously11 and were administered using Matlab R2018a between February 2018 
and July 2019. Controls performed the ‘Cookie theft’ description25 and the Raven’s31 on the same day as psychoa-
coustic testing, while PSA participants had a median time interval of 36 (IQR 21) months between neuropsycho-
logical and psychoacoustic testing (Supplementary Table S2). Participants with PSA were stable in their cogni-
tive performance over time (see Supplementary Table S7). In both the PSA subgroup and controls we measured: 
pitch basic change detection (P1); pitch detection of local change (P2); pitch detection of global change (P3); 
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single time interval discrimination (R1); isochrony deviation detection (R2); metrical pattern discrimination 
(R3); and Dynamic Modulation (DM) detection. P2 and P3 required a same-different choice at a fixed difficulty 
level, whereas the other tests (P1, R1, R2, R3, DM) used a two-alternative forced-choice adaptive paradigm with 
a two-down, one-up algorithm that estimated the 70.9% correct point of the psychometric function32. Of note, 
single time interval discrimination is taken to be a measure of rhythm processing in this study.

At the start of each test, instructions were explained in a way that was understandable for the participant, 
and practice trials with feedback were performed to ensure that the participant understood the task and could 
perform reliably at the easiest difficulty level. Certain tasks using the adaptive difficulty paradigm were frequently 
too difficult for PSA participants to perform the default starting difficulty used in controls; PSA participants were 
therefore started at an easier level on these tasks. Due to the large number of trials performed (> 50), all partici-
pants reached a stable performance plateau by the end of each test. A basic description of the psychoacoustic 
tasks are provided below, but a more detailed description was published previously11.

All three pitch tasks (P1–P3) used pure tones of 250 ms duration and a 2000 ms interval between stimuli on 
each trial. In P1, two pairs of pure tones were presented on each trial. The participant had to indicate whether 
the first or the second pair had a change in frequency (either up or down). The size of the change in frequency 
was adaptively reduced and the threshold, in semitones, was used as the outcome measure. The task comprised 
of 50 trials.

In P2 and P3, two sequences of four tones were played on each trial. Tones within each sequence had vary-
ing pitch; participants had to indicate whether the first and second sequences were the same or different to each 
other. In P2, on the ‘different’ trials, there was one change in frequency in the third or fourth tone that produced 
a ‘local’ change in pitch without a change in the ‘global’ pattern of ‘ups and downs’. In P3, on the ‘different’ trials, 
the change in frequency of the third or fourth tone produced a change in the global pitch ‘contour’ of ‘ups and 
downs’. P2 and P3 each consisted of 40 trials (20 ‘same’ and 20 ‘different). The percentage (score) correct on each 
task was the outcome measure.

All three rhythm tasks (R1-R3) used 500 Hz, 100 ms pure tones. In R1, two tone pairs were played on 
each trial. Each pair of tones had a slightly different inter-onset interval; the range of inter-onset intervals was 
300–600 ms. Participants had to indicate whether the first or the second tone pair had the longer interval. R1 
comprised of 50 trials; the difference between the interval of the first and the second pair was adjusted adaptively. 
The threshold, expressed as the percentage difference between the interval of the shorter and longer tone pair 
relative to the inter-onset-interval of the shorter pair, was used as the outcome measure.

In R2, each trial consisted of two five-tone sequences. One sequence was perfectly isochronous (i.e. had a 
constant inter-onset interval, with a value between 300 and 600 ms that was varied between trials); the other 
sequence was not isochronous but had one lengthened inter-onset interval (between the third and fourth tone). 
Participants had to indicate whether the first or the second sequence contained an ‘extra gap’. R2 comprised of 
50 trials; the difference between the lengthened inter-onset interval and the isochronous inter-onset interval was 
adaptively adjusted. The threshold, expressed as the percentage difference (relative to the otherwise isochronous 
inter-onset-interval), was used as the outcome measure.

In R3, each trial consisted of three seven-tone rhythmic sequences. Each sequence contained seven tones 
distributed over 16 time units of 180 to 220 ms each, with the unit duration varied between sequences (i.e. within 
trials). In its correct version the pattern of the sequences featured a strongly metrical beat induced by accented 
tones occurring every fourth time unit33. The first sequence on each trial always had the correct pattern, one of 
the second or the third sequence on each trial was the same as the first, but the remaining sequence (i.e. the third 
or the second) had a perturbation in the rhythm that affected the entire pattern and distorted its metricality (for 
details see33). The participant had to indicate whether the second or the third sequence sounded ‘different’ or 
‘wrong’. R3 contained 50 trials; the percentage difference in relative interval timing was adaptively adjusted and 
the threshold, expressed as the percentage of perturbation relative to the correct pattern, used as the outcome 
measure as described in33.

In the DM detection task, two 1000 ms sounds were played on each trial. One sound was unmodulated, the 
other sound was spectro-temporally modulated13,15. Participants had to indicate whether the first or the second 
sound was modulated. The degree of modulation was adaptively adjusted over 50 trials in the adaptive paradigm; 
the threshold was used as the outcome measure.

Figure 1.   Lesion overlap map. Lesion overlap map for the 17 participant post-stroke aphasia subgroup in MNI 
space and in neurological convention. Colour bar represents overlap number between 1 and 13.
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Sample audio files of example trials for each of the psychoacoustic tests are available as Supplementary 
Material.

Statistical analysis.  All variables were assessed for normality using the Kolmogorov–Smirnov test. As the 
PSA subgroup had significantly fewer years of education than controls (see earlier), group level comparisons 
between PSA and control participants were performed with years of education as a covariate of no interest. As 
several psychoacoustic, neuropsychological and pure tone audiometry variables were not normally distributed, 
non-parametric tests (Mann–Whitney U tests, one-way rank analysis of covariance (ANCOVA)34, Spearman 
correlations) were used.

Given the large number of neuropsychological measures available, we used a varimax-rotated PCA to reduce 
these scores to a smaller number of dimensions, as has been done previously23,28. As PCA is more stable with 
larger samples35, we performed the PCA on the correlation matrix of neuropsychological scores of the entire 
cohort of PSA participants (n = 76), which has been shown formally to be highly reliable and stable29. Scores 
from Principal Components (PCs) with an eigenvalue greater than 1 were taken to be estimates of underlying 
cognitive components in our 17 PSA participants and were used in correlation analyses with the psychoacoustic 
measures. We confirmed that PC scores remained representative of underlying cognitive components in the 17 
PSA subgroup through correlation analyses with neuropsychological scores.

We defined statistical significance as p < 0.05 with Bonferroni correction (by the number of tests) applied to 
the significance thresholds (i.e. reported p-values are uncorrected). Reported p-values for correlations between 
neuropsychological and/or psychoacoustic scores are one-tailed due to a priori hypotheses as to the direction of 
the associations, i.e. that better performance on auditory tasks would be associated with higher language scores. 
See the Supplementary Material for additional methodological details.

Results
Speech output fluency and executive function.  At the group level, the PSA subgroup was not signifi-
cantly worse than controls on the Raven’s Progressive Coloured Matrices (one-way rank ANCOVA with years 
of education as covariate, F(1,32) = 0.41, p = 0.53). The PSA subgroup produced significantly fewer words per 
minute (one-way rank ANCOVA with years of education as covariate, F(1,32) = 23.35, p = 0.00003), mean length 
of utterances (one-way rank ANCOVA with years of education as covariate, F(1,32) = 24.75, p = 0.00002) and 
speech tokens (one-way rank ANCOVA with years of education as covariate, F(1,32) = 15.72, p = 0.0004) on the 
‘Cookie theft’ description task than controls (Supplementary Table S8). This confirms that the PSA subgroup had 
significantly impaired fluency of connected speech, but relatively preserved non-linguistic cognitive function, 
compared to controls. Speech fluency and cognitive function test scores for the PSA subgroup and controls are 
shown in Supplementary Table S1.

Auditory processing.  Figure 2 shows the time course of the participants’ performances on the seven psy-
choacoustic tests. P2 and P3 required a same-different choice at a fixed difficulty level and their cumulative 
scores correct graphs demonstrate a progressive increase of the cumulative correct score throughout both tests. 
The other psychoacoustic tests (P1, R1-R3, DM) used an adaptive difficulty paradigm and their “staircase plots” 
demonstrate a consistent decrease in the detection or discrimination threshold until a stable plateau was reached 
before the end of each test. Figure 2 suggests that participants in the PSA subgroup were able to perform the 
psychoacoustic tests consistently, without evidence of fatigue or losing track of the task. Psychoacoustic scores 
for the PSA subgroup and controls are shown in Supplementary Table S1.

The PSA group were only statistically significantly impaired in comparison to the controls on one of the seven 
psychoacoustic tests performed; this was Dynamic Modulation detection (one-way rank ANCOVA with years 
of education as covariate, F(1,32) = 12.58, p = 0.001; threshold higher in participants with PSA than controls) 
(Table 1). For the other six psychoacoustic tests performed there was no significant impairment at the group 
level (Table 1).

It was possible that PSA participants might have been significantly impaired on psychoacoustic tasks at the 
individual level, even if there was no group difference compared to controls. We therefore compared, individu-
ally, each PSA participant’s psychoacoustic scores to the control group data using the Bayesian Test for a Deficit 
controlling for years of education as a covariate36. This conservative analysis identified a number of impairments 
at the individual level. In addition, several participants with PSA were unable to perform one or more of the 
rhythm processing tasks at the easiest difficulty level; we were not able to include these participants in group 
difference or correlation analyses of the corresponding psychoacoustic test as a reliable threshold was not able 
to be obtained, but these participants clearly had impaired auditory processing as well. Overall, five participants 
with PSA were able to perform the task but had significantly impaired performance on DM detection; three 
participants with PSA were able to perform the task but had significantly impaired performance on basic pitch 
discrimination (P1); one participant with PSA was able to perform the task but had significantly impaired per-
formance on single time interval discrimination (R1), with an additional participant being unable to perform 
this task at the easiest difficulty level; two participants with PSA were able to perform the task but had signifi-
cantly impaired performance on isochrony deviation detection (R2), with an additional three participants being 
unable to perform this task at the easiest difficulty level; and two participants with PSA were unable to perform 
metrical pattern discrimination (R3) at the easiest difficulty level (Supplementary Table S9). We did not find 
evidence that any of the participants with PSA were significantly impaired at the individual level on either of the 
psychoacoustic tests requiring processing of pitch in short tone sequences (P2, P3) (Supplementary Table S9).
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Figure 2.   Timecourses for the seven psychoacoustic tests. Each graph shows the timecourse of all participants’ 
performances throughout one of the seven psychoacoustic tests. X-axes represent trial number. Grey shaded 
areas represent ± the mean absolute difference from the median performance for all PSA participants (dark 
grey) and all control participants (light grey); overlap between PSA participants and controls is indicated by 
crossed-hatch. ‘P1’ = pitch basic change detection; ‘P2’ = pitch detection of local change; ‘P3’ = pitch detection of 
global change; ‘R1’ = rhythm single time interval discrimination; ‘R2’ = rhythm isochrony deviation detection; 
‘R3’ = rhythm metrical pattern discrimination for a strongly metrical sequence; ‘DM’ = Dynamic Modulation 
detection.

Table 1.   Group level comparisons of psychoacoustic scores between participants with post-stroke aphasia 
and controls. One-way rank ANCOVAs comparing psychoacoustic scores between the post-stroke aphasia 
subgroup and control group, with years of education included as a covariate. For tests in which the outcome 
measure was a threshold, lower scores correspond to better performance. * indicates the p-value is significant 
at the Bonferroni corrected significance threshold of p < 0.007 (corrected for 7 comparisons).

Psychoacoustic measure Participants with aphasia (median, IQR) Controls (median, IQR) P value

Pitch basic change detection threshold (semitones) 0.83 (1.32) 0.30 (0.13) 0.03

Pitch detection of local change (% correct) 70.00 (19.00) 85.00 (15.00) 0.06

Pitch detection of global change (% correct) 85.00 (17.00) 95.00 (7.00) 0.06

Rhythm single time interval discrimination threshold 
(%) 44.50 (52.00) 18.00 (24.00) 0.12

Rhythm isochrony deviation detection threshold (%) 18.90 (15.50) 13.00 (7.80) 0.06

Rhythm metrical pattern discrimination threshold (%) 14.00 (6.00) 11.00 (4.83) 0.27

Dynamic modulation detection threshold (%) 0.33 (0.48) 0.15 (0.08) 0.001*
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Principal component analysis of neuropsychological scores.  We performed varimax-rotated PCA 
on the correlation matrix of neuropsychological test scores of the entire cohort of stroke survivors (n = 76), 
including those who underwent psychoacoustic testing (n = 17) and those who did not (n = 59). The Kaiser–
Meyer–Olkin value was 0.82, indicating adequate sampling37. Four rotated PCs with eigenvalues greater than 1 
explaining 27.73% (PC1), 17.71% (PC2), 17.63% (PC3) and 15.22% (PC4) of the variance were obtained, consist-
ent with previous publications using data from this cohort of stroke survivors28–30 (Table 2). PC1 was loaded onto 
primarily by immediate non-word and word repetition (subtests 8 and 9 from the Psycholinguistic Assessment 
of Language Processing in Aphasia battery38), Boston Naming Test39, Forward Digit Span40, and Cambridge 
Semantic Battery picture naming41; it was interpreted as representing phonological ability. PC2 was loaded onto 
primarily by the Cambridge Semantic Battery spoken word-to-picture matching41, spoken sentence comprehen-
sion from the Comprehensive Aphasia Test42, 96-trial synonym judgement test43 and Type-Token Ratio from the 
‘Cookie theft’ picture description task; PC2 was interpreted as representing semantic processing. PC3 was loaded 
onto mainly by the number of speech tokens, Mean Length of Utterance and Words Per Minute from the ‘Cookie 
theft’ picture description task; this component was interpreted as representing fluency of connected speech. PC4 
was loaded onto primarily by the Raven’s Coloured Progressive Matrices and the Brixton Spatial Anticipation 
Test44; this was interpreting as representing executive function.

Principal Component 3 as a measure of speech output fluency.  In the PCA performed on the 
neuropsychological scores of the entire cohort of 76 individuals with PSA, PC3 was loaded by measures of con-
nected speech fluency obtained from the ‘Cookie theft’ description task (all loadings ≥ 0.79); PC3 was not loaded 
by any of the other neuropsychological scores (all other loadings ≤ 0.25) (Table 2). To ensure that PC3 remained 
associated with speech fluency but not the other neuropsychological scores in the PSA subgroup, we computed 
Spearman correlations between PC3 score and all 14 neuropsychological test scores in the PSA subgroup (Sup-
plementary Table S10). The three ‘Cookie theft’ fluency scores (Words Per Minute, Mean Length of Utterance 
and number of speech tokens) correlated positively with PC3 (lowest Spearman rho 0.91), even after Bonferroni 
correcting for 14 multiple comparisons (Supplementary Table S10). By contrast, all other neuropsychological 
test scores did not significantly correlate with PC3 (highest Spearman rho 0.34), even before Bonferroni correc-
tion (Supplementary Table S10). This confirms that PC3 is a specific measure of speech output fluency in the PSA 
subgroup who underwent psychoacoustic testing.

In the PCA performed on the neuropsychological scores of the entire cohort of 76 individuals with PSA, 
PCs were, by definition, orthogonal. In the PSA subgroup, PC3 was neither significantly correlated with PC1 
(Spearman’s rho = − 0.25; two-sided p = 0.33) nor with PC4 (Spearman’s rho = 0.08; two-sided p = 0.77) but was 
significantly negatively correlated with PC2 (Spearman’s rho = − 0.67; two-sided uncorrected p = 0.003; better PC3 
fluency associated with worse PC2 semantics). In subsequent analyses assessing associations between auditory 
processing and PC3 (fluency), we therefore partialled out PC2 scores to ensure that any associations with PC3 
could not be explained by confounding with PC2.

Auditory sequence processing and speech output fluency.  In order to test the hypothesis that the 
auditory analysis of tone sequences would be associated with speech output fluency in PSA, we computed Spear-
man correlations between psychoacoustic measures and PC3 (Table 3). The psychoacoustic measures that cor-
related significantly with PC3 after Bonferroni correction were: P3 (Spearman’s rho = 0.63; uncorrected one-

Table 2.   Component matrix of neuropsychological scores from the entire cohort of participants with post-
stroke aphasia. Varimax rotated principal component analysis performed on the neuropsychological scores 
of the entire cohort of 76 individuals with post-stroke aphasia. The loading of each score onto each rotated 
principal component is shown. Variables with major loadings (defined as > 0.50) are in bold. ‘CSB’ = Cambridge 
Semantic Battery.

Neuropsychological test

Component loadings

PC 1 PC 2 PC 3 PC 4

Immediate non-word repetition 0.90 0.09 0.19 0.19

Immediate word repetition 0.90 0.18 0.14 0.13

Boston naming test 0.83 0.38 0.16 0.11

CSB picture naming 0.84 0.40 0.12 0.13

Forward digit span 0.58 0.49 0.12 0.24

CSB spoken word-to-picture matching 0.24 0.77 0.15 0.21

Spoken sentence comprehension 0.39 0.53 0.20 0.46

Synonym judgement test 0.32 0.51 0.25 0.47

‘Cookie Theft’ type-token ratio 0.23 0.82 − 0.02 − 0.08

‘Cookie Theft’ number of speech tokens − 0.01 − 0.06 0.89 0.19

‘Cookie Theft’ mean length of utterance 0.25 0.21 0.88 0.12

‘Cookie Theft’ words per minute 0.25 0.14 0.79 0.12

Raven’s coloured progressive matrices 0.12 0.11 0.10 0.86

Brixton spatial anticipation test 0.16 0.05 0.20 0.83
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sided p = 0.003; better pitch global change detection associated with better speech fluency); R1 (Spearman’s 
rho = − 0.64; uncorrected one-sided p = 0.004; better single time interval discrimination associated with better 
speech fluency); and R3 (Spearman’s rho = − 0.72; uncorrected one-sided p = 0.001; better metrical pattern dis-
crimination associated with better speech fluency) (Fig. 3) (Table 3).

We wanted to identify psychoacoustic measures that were specifically associated with fluency, independent 
of other components of language. As PC3 scores were significantly negatively correlated with ‘semantic’ PC2 
scores in this PSA subgroup, we repeated Spearman correlations between psychoacoustic measures and ‘fluency’ 
PC3 scores, while partialling out ‘semantic’ PC2 scores (Table 4). After partialling out PC2, only R3 remained 
significantly correlated with PC3 fluency scores (Spearman’s rho = − 0.66, uncorrected one-sided p = 0.005; more 
precise metrical rhythmic pattern discrimination associated with higher speech fluency) (Table 4). The psychoa-
coustic measures from the other tests based on tone sequences (P2, P3 and R2), or the more basic psychoacoustic 
tests using single sounds or tone pairs (P1, R1 and DM), were not significantly correlated with PC3 scores after 
partialling out PC2 and Bonferroni correcting for multiple comparisons (n = 7; Table 4).

In order to confirm that rhythm metrical pattern discrimination (R3) was specifically associated with PC3 
fluency, and not with other PCs of language, we performed Spearman correlations between R3 and PC1, PC2 
and PC4 scores. R3 was not significantly correlated with PC1 (Spearman’s rho = − 0.03; one-sided uncorrected 
p = 0.45), PC2 (Spearman’s rho = 0.39; one-sided uncorrected p = 0.07) or PC4 (Spearman’s rho = 0.29, one-sided 
uncorrected p = 0.15). In order to confirm that R3′s association with PC3 was not due to increased executive pro-
cessing demands during R3 relative to other psychoacoustic tasks, we performed Spearman correlations between 
R3 and PC3 while partialling out PC4 ‘executive’ scores. R3 remained significantly correlated with PC3 ‘fluency’ 
scores with no decrease in strength after partialling out PC4 (Spearman’s rho = − 0.75; one-sided uncorrected 
p = 0.001). Finally, to exclude effects of peripheral hearing, we confirmed that R3 was not significantly correlated 
with mean pure tone audiometry thresholds between 0.25 and 1 kHz on either side (Supplementary Table S5).

Dynamic modulation detection and language.  Since the PSA subgroup performed significantly 
worse than controls on DM detection (Table 1), we additionally performed Spearman correlations to look for 
any association between DM detection and the other PCs of language. DM detection was not significantly corre-
lated with PC1 (Spearman’s rho = − 0.03; one-sided uncorrected p = 0.45), PC2 (Spearman’s rho = 0.31; one-sided 
uncorrected p = 0.11) or PC4 (Spearman’s rho = − 0.14; one-sided uncorrected p = 0.29). As DM detection has 
previously been associated with spoken comprehension in participants with Wernicke’s aphasia5, we addition-
ally looked for associations between DM detection and individual neuropsychological tests assessing spoken 
comprehension. However, DM detection was not significantly correlated with Spoken Word-to-Picture Match-
ing (Spearman’s rho = 0.07; one-sided uncorrected p = 0.39) or Spoken Sentence Comprehension (Spearman’s 
rho = 0.09; one-sided uncorrected p = 0.37).

Summary
Group level comparisons identified significantly impaired fluent speech production and timbre DM processing 
in the PSA subgroup relative to controls. Individual case-group control comparisons identified further deficits 
in specific psychoacoustic measures. Correlations demonstrated a strong association between rhythm metrical 
pattern discrimination and ‘fluency’ Principal Component 3.

Discussion
In order to investigate central auditory processing deficits in PSA, and whether auditory input processing of 
tone sequences relates to speech output fluency, we have performed an extensive battery of tests assessing the 
processing of pitch and melody, rhythm and metre, and timbre in individuals with chronic aphasia following 
left hemisphere stroke and controls. Intriguingly, there was a strong association between participants’ ability to 
discriminate the metrical pattern of strongly metrical tone sequences, and speech output fluency. This provides 
novel insights into the nature of fluent speech production in PSA and has conceptually replicated and extended 

Table 3.   Correlations between psychoacoustic measures and Principal Component 3 fluency. ‘P value’ 
corresponds to uncorrected one-sided p-values from Spearman correlations comparing psychoacoustic 
scores with PC3 fluency scores in the post-stroke aphasia subgroup. * indicates the p-value is significant at 
the Bonferroni corrected significance threshold of p < 0.007 (corrected for 7 comparisons). ‘PC’ = Principal 
Component.

Psychoacoustic measure

Spearman correlation with PC3

Spearman’s rho P value

Pitch basic change detection threshold (semitones) − 0.21 0.21

Pitch detection of local change (% correct) 0.43 0.04

Pitch detection of global change (% correct) 0.63 0.003*

Rhythm single time interval discrimination threshold (%) − 0.64 0.004*

Rhythm isochrony deviation detection threshold (%) − 0.20 0.24

Rhythm metrical pattern discrimination threshold (%) − 0.72 0.001*

Dynamic modulation detection threshold (%) − 0.15 0.29
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previous work in primary progressive aphasia that suggested a relationship between auditory input processing 
of tone sequences and fluent speech production11.

A central aim of this work was to characterise central auditory processing deficits in PSA across the domains 
of pitch and melody (P1–P3), rhythm and metre (R1–R3) and timbre (DM detection). Previous work in PSA 
has tended to focus on auditory processing of single sounds or tone pairs (rather than sequences) in a limited 
number of domains, and has broadly found impaired processing of rhythm17,18,20 and timbre5 following left 
hemisphere stroke despite relative preservation of pitch processing5,20. The present study assessed pitch (P1–P3) 
and rhythm (R1–R3) of tone pairs and sequences, as well as an aspect of timbre processing (DM detection), in 17 
individuals with a variety of aphasia profiles. Despite the PSA group having significantly impaired speech fluency 
(Supplementary Table S8) and the lesion overlap map encompassing large parts of the left hemisphere (Fig. 1), 

Figure 3.   Psychoacoustic measures and speech fluency. Scatter plots showing significant correlations between 
‘fluency’ Principal Component 3 scores (y-axis) and P3 (better pitch global change detection associated 
with better speech fluency), R1 (better single time interval discrimination associated with better speech 
fluency) and R3 (better metrical pattern discrimination associated with better speech fluency) (on x-axes) in 
the group of participants with post-stroke aphasia. The straight line represents the least-squares line of best 
fit. ‘PC’ = Principal Component; ‘P3’ = pitch detection of global change; ‘R1’ = rhythm single time interval 
discrimination; ‘R3’ = rhythm metrical pattern discrimination for a strongly metrical sequence.
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we found no significant group-level impairment for the rhythm processing tasks performed (Table 1). We did not 
find evidence that any of the PSA participants were significantly impaired on the psychoacoustic tests process-
ing pitch in tone sequences (P2, P3) (Supplementary Table S9). Three of the PSA participants had significantly 
impaired detection of basic pitch changes in tone pairs (P1); one participant had impaired discrimination of time 
intervals in tone pairs (R1) with an additional participant being unable to perform this task at the easiest difficulty 
level; two participants had impaired isochrony deviation detection in tone sequences (R2) with an additional 
three being unable to perform this task at the easiest difficult level; and two participants were unable to perform 
metrical pattern discrimination at the easiest difficult level (Supplementary Table S9). Timbre spectro-temporal 
modulation was the only psychoacoustic task that was significantly impaired in the PSA subgroup (Table 1), but 
we found no association between timbre processing ability and any of the PCs of language, despite an associa-
tion with auditory comprehension having been demonstrated previously in Wernicke’s aphasia5,19. A possible 
explanation for this relative lack of group-level auditory processing deficits is the heterogeneity of PSA and the 
possibility that auditory processing deficits differ depending on the lesion location and neuropsychological pro-
file; indeed, our PSA subgroup did not contain anyone with classical Wernicke’s aphasia, as studied by Robson 
et al.5. We recruited individuals with any aphasia type, but the resultant subgroup consisted mainly of individuals 
with ‘expressive’ aphasia classifications (Supplementary Table S2). Previous studies associating timbre processing 
with auditory comprehension did so in a group selected for having Wernicke’s aphasia5,19. It is possible that if our 
sample had included more individuals with severe comprehension deficits, we would have observed an associa-
tion between timbre processing and auditory comprehension as well. Furthermore, three participants with PSA 
in this study were unable to perform one or more of the rhythm processing tasks at the easiest difficulty level 
(Supplementary Table S9). We were not able to include these participants in the group difference or correlation 
analyses because we could not quantify a reliable threshold; however, these three individuals with PSA clearly 
had impaired rhythm processing.

Our second main hypothesis was that there would be an association between the auditory processing of tone 
sequences and speech output fluency in PSA. This was based on previous research suggesting that individu-
als with the nonfluent variant of primary progressive aphasia are significantly impaired at auditory sequence 
processing relative to fluent variants11. The present study looked for associations between four tests of auditory 
sequence processing, as well as three psychoacoustic tests using tone pairs or sounds, and behavioural measures 
of speech output fluency. We found a strong association between speech output fluency (PC3) and one of the 
sequence processing tasks, namely rhythm metrical pattern discrimination (R3) (Table 4). Furthermore, this 
psychoacoustic measure was not correlated with the other PCs of language (PC1, PC2 or PC4) and thus was 
not a generic marker of aphasia severity. Neither the other sequence processing tasks (P2, P3, R2) nor the tasks 
involving processing of pairs of tones (P1, R1) or sounds (DM) were significantly associated with speech output 
fluency in this sample (Table 4). The present study therefore demonstrates that there is an association between 
‘input’ auditory processing and ‘output’ speech fluency in PSA, in particular between the discrimination of met-
rical pattern in tone sequences and fluent speech production. A novel implication of this study is therefore that 
the ability to detect metrical pattern in the incoming auditory stream might be a sensitive measure of an ability 
that is critical for the fluent production of connected speech.

The metricality of a tone sequence, as used in R3, is the higher-order temporal structure determined by the 
grouping of salvos of notes that induce the sense of a regularly occurring metrical ‘beat’ or ‘downbeat’, even 
when all notes have the same intensity, duration and pitch33,45,46. A high degree of metrical structure enables us 
to anticipate and predict the higher-order temporal structure of upcoming sound, akin to a ‘temporal scaffold-
ing’ based on the metrical beat33. The association between metricality discrimination and fluency observed in 
this study suggests that the cognitive process of predicting the higher-order temporal structure of future sound 
might be important for both the discrimination of metricality in incoming auditory sound, and the production 
of metrical sound in fluent connected speech. Critically, isochrony deviation detection (R2) was not associated 
with speech fluency in this study. The difference between the two tasks is two-fold. Isochrony deviation detection 
(R2) tests lower-order differences in timing between consecutive tones in a simple isochronous sequence and 
uses a local deviation. By contrast, the deviation in the metrical task (R3) is distributed across the entire pattern, 

Table 4.   Correlations between psychoacoustic measures and Principal Component 3 fluency, controlling for 
Principal Component 2. ‘P value’ corresponds to uncorrected one-sided p-values from Spearman correlations 
comparing psychoacoustic scores with PC3 fluency scores, partialling out PC2 scores, in the PSA subgroup. * 
indicates the p-value is significant at the Bonferroni corrected significance threshold of p < 0.007 (corrected for 
7 comparisons). ‘PC’ = Principal Component.

Psychoacoustic measure

Spearman correlation with PC3 (partialling 
out PC2)

Spearman’s rho P value

Pitch basic change detection threshold (semitones) − 0.03 0.46

Pitch detection of local change (% correct) 0.23 0.20

Pitch detection of global change (% correct) 0.52 0.02

Rhythm single time interval discrimination threshold (%) − 0.27 0.17

Rhythm isochrony deviation detection threshold (%) 0.27 0.81

Rhythm metrical pattern discrimination threshold (%) − 0.66 0.005*

Dynamic modulation detection threshold (%) 0.09 0.63



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3168  | https://doi.org/10.1038/s41598-021-82809-w

www.nature.com/scientificreports/

and the pattern is more abstract with a hierarchically organised beat structure. Previous lesion work47–49 has 
suggested that higher-order metrical processing can be doubly-dissociated from the processing of lower-order 
differences in timing between consecutive tones in a sequence. The lack of an observed association between 
isochrony deviation detection and fluency therefore raises the possibility that the association between fluency 
and metrical pattern discrimination might not be due to rhythm processing in general. Rather, there might be 
a specific association between fluency and the ability to process the higher-order regularity of accented tones 
within a sequence as embodied by metrical patterns. This is in keeping with previous work showing an associa-
tion between rapid automatised naming in healthy adults and their ability to detect a roughly regular beat in an 
otherwise irregular sequence, but not their ability to detect isochrony deviation50.

It might be argued that the metrical pattern discrimination task (R3) is harder than the other three sequence 
processing tasks (P2, P3, and R2), because R3 requires comparisons between three sequences of tones (and the 
other three tasks require comparisons between two sequences of tones). However, we think this is unlikely to 
be the reason for the observed association between metrical pattern discrimination and speech fluency. Firstly, 
R3 requires the detection of a perturbation that is detectable within the sequence, unlike P2 or P3. Although 
R2 also requires the detection of a perturbation within the sequence, in R3 the deviation is distributed across 
the entire sequence with a number of different interval ratios, whereas R2 requires the analysis of one deviat-
ing interval from an otherwise isochronous beat. Secondly, the same sequence is used as the reference on all 
50 trials in R3; a different metrical pattern does not have to be remembered on each trial. This is similar to R2 
(which uses the same sequence at different tempi) but is in stark contrast to the two pitch sequence tasks (P2 
and P3), which use different reference sequences on each trial that have to be remembered and compared to the 
target sequence. Thirdly, unlike P2 and P3, R3 used a two-alternative forced-choice adaptive difficulty paradigm 
with a two-down, one-up algorithm that is designed to reduce working memory load32. Fourthly, R3 was not 
significantly correlated with PC4 ‘executive’ scores, and its association with PC3 ‘fluency’ scores remained after 
partialling out PC4 ‘executive’ scores.

The strong and extremely robust correlation between rhythm metrical pattern discrimination and speech 
output fluency might seem surprising given the absence of impairments at the group and individual-level for 
this psychoacoustic task in the PSA subgroup relative to controls. Assuming that the impaired speech fluency 
observed in the PSA subgroup was a consequence of stroke, this suggests that some of the observed correla-
tion between fluency and R3 might not be a consequence of stroke damaging a single neural substrate that is 
responsible for both fluency and R3. One possible explanation is that premorbid inter-individual differences in 
the ability to discriminate metrical pattern mitigates the effect of stroke on speech output fluency. Alternatively, 
recovery mechanisms post-stroke might have involved improvements in metricality discrimination which in 
turn helped fluency to recover. Similar possibilities were recently proposed when structural changes outside the 
lesion mask (and thus not directly caused by stroke) were associated with reading recovery in post-stroke central 
alexia51. It would be of great interest if rehabilitation strategies that use singing to aid recovery of propositional 
speech, such as melodic intonation therapy22, were found to be mediated by improved metricality discrimina-
tion. Existing techniques that augment metricality using rhythmic auditory stimuli improve speech output post 
stroke52,53. These findings go further by suggesting that a potential avenue for future therapies might be to target 
auditory metricality discrimination to aid fluency in PSA.

A limitation of the current work is that we were not able to elucidate the neural structures associated with cen-
tral auditory processing, and particularly metricality discrimination, in PSA. Previous work using the Montreal 
Battery of Evaluation of Amusia54 in individuals with focal cortical damage following tumour or epilepsy surgery 
has suggested that the anterior superior temporal gyrus (STG) is critical for melody and metre processing48,49. 
Parkinson’s disease, in which basal ganglia degeneration occurs, is associated with impaired metricality-based 
rhythm discrimination55. Metrical rhythms elicit greater activation in the basal ganglia and supplementary motor 
area56, and striatal activation is thought to represent metricality prediction (rather than detection)57. Future work 
should elucidate the neural substrates of auditory processing post-stroke, and particularly whether the anterior 
STG, striatum or supplementary motor area contribute to speech fluency through metricality discrimination 
in PSA.

Conclusion
Our findings demonstrate that there is a strong association between the ability to analyse metrical pattern struc-
ture in the incoming auditory stream and fluent production of connected speech. This has significant implica-
tions for our understanding of fluent speech production, and for rehabilitation strategies that might use rhythm 
processing to aid recovery of fluency post stroke.

Data availability
Behavioural data analysed in this study are available in Supplementary Tables S1, S2, S3, S6 and S7. 
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