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Detecting nanomechanical motion has become an important challenge in science and technology.
Recently, electromechanical coupling to focused electron beams has emerged as a promising method
adapted to ultralow scale systems. However the fundamental measurement processes associated with such
complex interaction remain to be explored. Here we report a highly sensitive detection of the Brownian
motion of μm-long semiconductor nanowires (InAs). The measurement imprecision is found to be set by
the shot noise of the secondary electrons generated along the electromechanical interaction. By carefully
analyzing the nanoelectromechanical dynamics, we demonstrate the existence of a radial backaction
process that we identify as originating from the momentum exchange between the electron beam and the
nanomechanical device, which is also known as radiation pressure.
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Introduction.—Nanomechanical devices are raising
increasing interest both in science and technology [1]
and are spreading in various fundamental and applied
fields [2–6]. Recently, electromechanical coupling to
focused electron beams has been pointed out as a very
promising alternative to optical schemes for nanomechan-
ical systems with dimensions well below the diffraction
limit [7,8], opening unprecedented technological perspec-
tives such as using nanotubes as scanning probe sensors
[9], atomically controlled e-beam assisted deposition [10]
and 3D nanoprinting [11]. In this context, where focused
electron beams are used both as detection and control
tools, it becomes crucial to identify and characterize
electromechanical backaction mechanisms that ultimately
limit the accuracy and potential of these applications.
Importantly, this question has not yet been thoroughly
explored in the relevant context of massive fermion-based
dissipative measurements, which therefore remains opened.
Recently, some of us have reported results deep in the
electrothermal regime [7]. Such effects however remain
strongly dependent upon structural anisotropies [12] and
therefore do not represent a fundamental backaction limi-
tation within the electromechanical measurement process.
Moreover, the origin of the measurement imprecision
within such a strongly dissipative process, where the
incident probe is practically annihilated during the inter-
action, remains to be addressed, previous investigations
being essentially limited by technical noises [7,8].
In this Letter, we experimentally investigate the basic

physical processes (i.e., measurement noise and measure-
ment backaction [13]) associated with the electromechanical

coupling between a focused electron beam and a nano-
mechanical resonator. We report ultrasensitive detection of
the Brownian motion of μm-long InAs nanowires, with a
sensitivity that can be as low as Simpxx ¼ ð270 fm=

ffiffiffiffiffiffi
Hz

p Þ2,
comparable or even better than state-of-the-art cavityless
optomechanical readout schemes for equivalent probe
powers [14]. We demonstrate that the sensitivity is set by
the gradient of secondary electron emission, with an
imprecision originating from the shot noise of the emitted
secondary electrons. In contrast to a previous work [7], our
nanomechanical system is found to be weakly sensitive to
dissipative electrothermal gradients. Combined with the
geometry of our experiment, this property enables us to
extract the fundamental component of the measurement
backaction process and demonstrate the existence of a radial
force associated with the nanoelectromechanical measure-
ment, which we identify as the radiation pressure force
exerted by the electron beam on our nanomechanical
structure. In a more general perspective, our work and
methods show that motion correlations between the two
orthogonal modes of a two-dimensional resonator enable
us to reveal sensitive information on the origin of the
measurement backaction force, which may be further
extended to various physical contexts such as light momen-
tum measurements [15,16] and ultrasensitive force micros-
copy [17,18].
Experimental setup.—The nanomechanical systems

investigated in this Letter consist of as-grown InAs nano-
wires. We grew the nanowires perpendicularly on a (111)B
InAs substrate by the vapor solid liquid method using
50 nm-gold catalysts in a molecular beam epitaxy setup.
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Representative structures are shown in Figs. 1(a) and 1(b).
The resulting nanowires are surmounted by a hemispherical
gold droplet [see Fig. 1(b)] and feature a wurtzite crystal
structure with a limited number of stacking faults. The
nanowires have lengths and diameters typically ranging
from 4 μm–5.5 μm and 60 nm–80 nm, respectively. The
results hereby reported have been obtained using three
distinct samples referenced as NWj∈f1;2;3g in the following.
The samples are mounted in a field emission scanning
electron microscope operating with a probe current set to
Ip ¼ 186 pA and an acceleration voltage V ¼ 3 kV. The
3D positioning stage hosting the sample is subsequently
carefully aligned for matching the electron beam direction
to the axis of the nanowires. Measuring the defocusing
between the wafer plane and the edge of the nanowires
enables us to estimate a residual tilt angle α ≃ 2.4°.
Figure 2(a) shows a typical scanning electron micrograph
obtained in such conditions with our samples.
The nanomechanical motion of the nanowire is detected

by setting the electron beam spot to a high-contrast region
of the tip surface, on the external annulus delimiting the
central, dark region [which will be recalled as “detection
annulus” in the following, see Fig. 2(a)]. The vibrations
of the nanowire result in fluctuations of the secondary
electrons (SEs) current, which are directly monitored by
connecting a low noise electrical spectrum analyzer to the
amplified SEs detector output [7,8] [see Fig. 1(c)]. The
electromechanical spectrum obtained with NW1 is shown
in Fig. 2(b). Two peaks are revealed, corresponding to
each of the two vibrational directions of the nanowire.
Remarkably, the highest noise peak is resolved with a

signal-to-noise ratio exceeding 30 dB despite the relatively
high mechanical frequency. To calibrate the electro-
mechanical fluctuation spectrum, we assume the nano-
mechanical noise to be thermally driven—this hypothesis
will be further confirmed—with an effective mass m1 ¼
22 fg determined from the sample geometry, mechanical
resonance frequency Ω1=2π ¼ 2023.9 kHz, and temper-
ature T ≃ 300 K. The SEs fluctuations are subsequently
converted into equivalent displacement by matching the
SEs’ current variance with the thermal noise variance
ðΔxth;1Þ2 ¼ ðkBTÞ=ðm1Ω2

1Þ. In particular, we find a dis-

placement sensitivity Simp
xx ≃ ð270 fm=

ffiffiffiffiffiffi
Hz

p Þ2, which even
exceeds the performances of the most sensitive optical
cavityless detection schemes for freestanding resonators
with comparable dimensions [14]. The origin of the detec-
tion background is determined by measuring the evolution
of the off-resonant spectral density of the SEs current SSE;offII
as a function of the average scattered current ĪSE. We find a
linear relationship, SSE;offII ∝ ĪSE, characteristic of a Poisson
statistics, which demonstrates that SEs’ electromechanical
detection is shot noise limited [see Fig. 2(c)]. We however
emphasize that the underlying mechanism is very different
from the one usually encountered, e.g., in dispersive
optomechanical detection schemes, whose measurement
noise properties essentially rely on the input probe state.
Here, because of the strongly dissipative nature of the
electromechanical interaction, the input beam is almost
entirely destroyed, and the measured fluctuations essentially
reflect the discrete nature of the secondary electrons.

(b)

(c)

(a)

FIG. 1. (a) Scanning electron micrograph showing two InAs
nanowires similar to those used in this work (≃25° tilted view).
(b) Transmission electron microscopy image of the upper part of a
InAs nanowire. The dark hemisphere at the top of the nanowire is
the gold catalyst. (c) Schematic depicting the principle of the
experiment. A focused electron beam is sent on the nanowire,
whose vibrations result in fluctuations of the secondary electron
(SE) current. These fluctuations are monitored using a secondary
electrons detector which is further connected to an electrical
spectrum analyzer (ESA).

(a)

(c)

(b)

FIG. 2. (a) Magnified scanning electron micrograph showing an
InAs NW similar to those used in this Letter (top view). The
dashed line emphasizes the detection annulus, that is the region
where the e-beam spot is positioned for measuring nanomechan-
ical motion (see text). (b) Electromechanical fluctuations spectrum
obtained with NW1. The experimental data (dots) are fitted using
a double Lorentzian model (solid line). (c) Evolution of the
measurement noise background SSE;offVV as a function of the average
secondary electrons detector output VSE. The red, solid line
corresponds to a linear model, characteristic of Poisson statistics.
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Two-dimensional measurement and sensitivity.—To
further address the behavior of the electromechanical
coupling, we acquire the SE’s fluctuation spectra while
browsing the e-beam spot position all around the edge of
the dark central disk. Since we are detecting variations of
the SE’s emission rate, the corresponding intensity fluctu-
ations δISE can be generally written as:

δISEðr0; tÞ ≃∇ĪSEðr0Þ · δrðtÞ; ð1Þ

with ∇ĪSE the SEs intensity gradient, r0 the average, two-
dimensional position of the nanowire’s tip in the horizontal
plane and δrðtÞ the time dependent position variations,
δrðtÞ ¼ δx1ðtÞe1 þ δx2ðtÞe2 (e1;2 as the eigendirections of
vibration and δx1;2ðtÞ as the associated displacements
fluctuations). Because of the rotational symmetry [see
Fig. 2(a)], the intensity gradient is radial, ∇ĪSE ¼
½∂ ĪSE=∂r�r0er where (er, eθ is the polar base defined as
er ¼ cos θe1 þ sin θe2 and eθ ¼ − sin θe1 þ cos θe2). The
SEs intensity fluctuations therefore reflect the combination
of both displacements δx1ðtÞ and δx2ðtÞ, weighted by
their projection on the intensity gradient, δISEðr0; tÞ ¼
½∂ ĪSE=∂r�r0 × ½cos θδx1ðtÞ þ sin θδx2ðtÞ�, from which the
expression of the electromechanical fluctuations spectrum
[defined, in the limit of stationary fluctuations as
SSEII ½r0;Ω� ¼

Rþ∞
−∞ dte−iΩthδISEðr0; 0ÞδISEðr0; tÞi, can be

inferred:

SSEII ½r0;Ω� ¼
�∂ ĪSE

∂r
�

2

r0

× ðcos2θSr0;θxx;1½Ω� þ sin2θSr0;θxx;2½Ω�

þ sin 2θRefhδx1½Ω�δx2½−Ω�ir0;θgÞ ð2Þ

with Ω as the Fourier frequency, and Sr0;θxx;1 (resp. Sr0;θxx;2) as
the displacement fluctuations spectrum associated with δx1
(resp. δx2). Note that the superscript r0; θ is to remind that
the motion spectral density includes the contribution of a
measurement backaction a priori, which depends on the
electromechanical coupling rate, and henceforth on the
polar coordinates. The second line of Eq. (2) represents
θ-dependent motion correlations between the two vibra-
tional directions, which occur in presence of a common
external driving source [19], resulting in strong spectral
distortions compared to the uncorrelated bi-Lorentzian
model [first line of Eq. (2)].
Figure 3(a) shows four electromechanical spectra

acquired at four distinct azimuths (data acquired with
NW2). The experimental data (dots) are fitted using a
standard uncorrelated bi-Lorentzian model (solid lines,
with Sr0;θxx;j½Ω� ¼ Sr0;θFF;j=m

2
j(ðΩ2

j −Ω2Þ2 þ Γ2
jΩ2), Sr0;θFF;j the

white force spectral density driving nanomechanical
motion in direction and Γj the mechanical damping rate
associated to mode j). Since no deviation from this
model was observed for any azimuth, we therefore con-
clude that the correlation term of Eq. (2) vanishes,
hδx1½Ω�δx2½−Ω�iθ ¼ 0. We subsequently compute the ratio
of the peak values r2½θ� ¼ tan2 θ × Sr0;θxx;2½Ω2�=Sr0;θxx;1½Ω1� [see
Fig. 3(b)]. The experimental data (dots) are adjusted using
a tan2 model (dashed line), from which we deduce that
Sr0;θxx;2½Ω2� ≃ Sr0;θxx;1½Ω1�, ∀ θ. Assuming equal effective
masses in both vibrational directions, m2 ¼ m1 ¼ m, we
conclude that Sr0;θFF;1 ≃ Sr0;θFF;2, ∀ θ. This establishes thermal
noise as the dominant random source of motion.
Backaction gradients.—To further investigate the back-

action processes associated with the electromechanical

(a) (b) (c)

(d)

FIG. 3. (a) Four electromechanical fluctuation spectra acquired at four distinct azimuthal positions of the circumference of the
nanowire NW2 [θ ¼ π=16, 3π=16, 5π=16, and 7π=16 from (i) to (iv), see Fig. 3(b) for conventions]. (b) Ratio of the spectral amplitudes
of the two peaks as a function of the azimuth. The experimental data points (dots) are fitted using a tangent squared model (dashed line),
whose asymptotes enable us to determine the direction of the eigenaxis of vibration. Inset: Scanning electron micrograph of the device
showing the conventions used for the azimuth as well as the inferred direction of the vibrational axis. (c) Evolution of the effective
mechanical resonance frequencies Ω̃1 and Ω̃2 as a function of the azimuth (data acquired with NW3). Dashed lines are sinusoidal fit
(see text). (d) Frequency splitting as a function of the azimuth (data acquired with NW3). The experimental data (dots) are fitted using a
π-periodic sinusoidal model, characteristic of the (radial) radiation pressure backaction force (see text).
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measurement, we now examine the effects produced by
their gradients, which generally leave much stronger
dynamical signatures than fluctuations at room temper-
ature (as, e.g., for dynamical backaction in optomechanics
[16,20]). The backaction force is essentially the sum of
two contributions of different nature, Fba ¼ Fd þ Fq.
Here Fd denotes the contribution of dissipative mecha-
nisms, which result from heating due to e-beam absorp-
tion. Previous work has shown that electrothermal
actuation is the dominant dissipative mechanism with
semiconducting nanomechanical devices [7]: a fraction of
the electrical energy carried by the incident electron beam
is released as heat, yielding to deformations that are
equivalent to nanomechanical motion in one invariable
direction (imposed by the imperfect geometry of the
nanowire), Fdðr;θÞ¼Fdðr;θÞcosθde1þFdðr;θÞsinθde2,
with Fd as the modulus of the electrothermal force and
θd as the direction of the force in the basis ðe1; e2Þ. In
contrast, Fq denotes the measurement backaction force,
resulting from the only action of measuring the system,
independent from the experimental environment [13]. We
attribute this force to radiation pressure whereby the
incident electrons are transferring part of their momentum
to the nanowire in the radial direction, Fqðr; θÞ ¼
Fqðr; θÞer, with Fq the modulus of the radiation pressure
force.
Force gradients modify the effective restoring force

in both nanomechanical motion directions, resulting in a
frequency shift δΩk

j ¼ 1=ð2mΩjÞð∂Fk;j=∂xjÞ (k ∈ fd; qg,
j ∈ f1; 2g), with Fk;j ¼ Fk · ej. Taking the above given
general expression for Fd and Fq subsequently yields to the
expressions given in the Supplemental Material [21].
In addition to the effects of backaction gradients, the

mechanical resonance frequencies may be prominently
affected by temperature-induced internal changes of the
nanomechanical system [24,25], resulting in common
mode frequency variations δΩth

1 ðθÞ¼δΩth
2 ðθÞ¼δΩthðθÞ¼P

kð∂Ω0=∂pkÞð∂pk=∂TÞδTðθÞ, with δT the temperature
variation and pk ∈ fR0; L; YInAs; ρInAsg the kth parameter
involved in the expression of the intrinsic mechanical
resonance frequency Ω0 ≃ ½0.6π=L�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπYInAsR2

0Þ=ðρInAsÞ
p

(with R0 the radius of the nanowire, YInAs Young’s modulus
and ρInAs the mass density). In total, each mechanical
resonance frequency shift generally expresses as the sum of
three terms, δΩi ¼ δΩd

i þ δΩq
i þ δΩth.

Figure 3(d) shows the evolution of the mechanical
resonance frequencies Ω̃iðθÞ ¼ Ωi þ δΩiðθÞ of NW3 as a
function of the azimuth of the electron beam spot on the
detection annulus (Ωi the intrinsic mechanical resonance
frequency associated with mode i). To zeroth order, both
frequencies are shifting from similar, sinusoidal amounts
(dot-dashed and dashed lines). Such behavior essentially
reflects the contribution of temperature changes, δΩiðθÞ≃
δΩthðθÞ, since force gradients cannot generate identical

2π− periodic frequency shifts other than zero (see
Supplemental Material [21]).
The sinusoidal evolution of the temperature is

explained because of the small tilt angle α of the incident
electron beam with respect to the top face of the nano-
wire, yielding to azimuth dependent energy deposition
(see Supplemental Material [21]). At room temperature,
the coefficient of thermal expansion of InAs is on the
order of αInAs ≃ 4.5 × 10−6 K−1 [26], negligible com-
pared to the relative change of Young’s modulus
ð1=YInAsÞð∂YInAs=∂TÞ ≃ 1.2 × 10−4 K−1 [27], yielding
to δΩthðθÞ ≃ ½1=ð2YInAsÞ�ð∂YInAs=∂TÞΩ0 × δTðθÞ. From
the amplitude of the sine wave ΔΩth=2π ¼ 5.15 kHz,
it is possible to determine the total temperature
variation over scanning the detection annulus ΔT ¼
2 × 2YInAsð∂YInAs=∂TÞ−1 × ½ΔΩth=Ω0� ≃ 58 K, in reason-
able agreement with simulations of energy absorption
(see Supplemental Material [21]). In a more general
perspective, this result exemplifies how our electro-
mechanical approach enables us to perform thermal
measurements in situ, and in particular to estimate e-
beam induced heating in nanomechanical structures.
Radiation pressure contribution.—To complete our

Letter, we examine the evolution of the frequency splitting
δΩsðθÞ ¼ Ω̃2ðθÞ − Ω̃1ðθÞ, which enables us to reject the
common-mode frequency variations as a function of the
azimuth. Because of the nondegenerate nature of the
nanowire, the splitting reads δΩsðθÞ¼δΩs;0þfδΩd

2ðθÞ−
δΩd

1ðθÞgþfδΩq
2ðθÞ−δΩq

1ðθÞg, with δΩs;0=2π ≃ 15.2 kHz
the bare fundamental resonance frequency splitting. From
the above study of the thermal shifts, it is possible to
show that dissipative backaction gradients do not contribute
to the azimuthal variations of the frequency splitting (i.e.,
δΩd

2ðθÞ − δΩd
1ðθÞ is θ independent, see Supplemental

Material [21]). Any observed evolution is therefore neces-
sarily attributed to the fundamental, radiation pressure
component. Assuming rotational invariance (∂Fq=∂θ¼0),
the corresponding contribution can be further expressed as
2mΩ0fδΩq

2ðθÞ − δΩq
1ðθÞg ¼ ½Fq=R − ð∂Fq=∂rÞR� cos 2θ,

which is a π-periodic sinusoidal function of the azimuth,
noticeably. Figure 3(d) shows the experimentally obtained
azimuthal evolution of the frequency splitting (dots). The
dashed line is an offset, π-periodic sine wave fit, in excellent
agreement with our model.
Discussion.—To gain additional qualitative insight

and relate the measured frequency splitting amplitude
ΔΩs=2π ¼ 600 Hz to the radiation pressure force, we
further assume a quadratic form FqðrÞ ¼ φ″

qr2 [which
can be justified by the curved secondary electron intensity
profile, see Fig. 2(a)]. This enables us to estimate the
amplitude of the radiation pressure force exerted in the
horizontal plane, FqðRÞ ¼ mΩ0ΔΩsR ≃ 34fN. An inter-
pretation of this value can be drawn by considering

the associated uncertainty product
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Simp
xx × Simp

FF

q
, with
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ffiffiffiffiffiffiffiffiffi
Simp
FF

q
¼ Fq=

ffiffiffiffiffiffiffiffiffi
Ip=e

p
≃ 9.8 × 10−19 N=

ffiffiffiffiffiffi
Hz

p
the radiation

pressure backaction noise (Ip=e the incident electron
flux, e ≃ 1.6 × 10−19 C the electron charge). We obtainffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Simp
xx × Simp

FF

q
≃ 5300ℏ=2. While being much reduced

compared to previous studies [7], this result indicates that
the present electromechanical measurements operate far
from the Heisenberg limit, for which a product of (ℏ=2) is
expected. This excess of imprecision may arise from two
contributions. First, it is likely that we operate far from the
Cramér-Rao bound, which would correspond to the highest
attainable displacement sensitivity [28]. Indeed for sym-
metry reasons, the present Letter has been achieved by
operating on the detection annulus, which is at the expense
of a decreased secondary electron gradient, yielding to a
much reduced displacement sensitivity. The second reason
that may explain the observed imprecision excess is more
fundamental and related to the massive nature of the
electrons. As demonstrated above, the measurement impre-
cision is set by secondary electron shot noise, which
depends on the secondary electron yield (SEY), which is
the number of emitted secondary electrons per incident
primary electron. The SEY is a function of the incident
electrons velocity, which is determined by the acceleration
voltage. For gold, the SEY peaks around V ≃ 300 V [29],
whereas we pump our systems using electrons that are
more than three times faster (V ¼ 3 keV), resulting in a
backaction noise excess.
Conclusion.—In conclusion, we have reported ultra-

sensitive, shot-noise-limited nano-electromechanical detec-
tion of very high frequency semiconducting nanowires.
Placing ourselves in a radial detection geometry, we have
been able to show that this technique comes with negligible
backaction noise at room temperature. The measurement
backaction manifests as frequency changes. By analyzing
the spectral behavior as a function of the electron beam spot
azimuth in the upper horizontal plane, we have shown that
it is possible to isolate the contribution of the radiation
pressure force gradient as opposed to dissipative backaction
mechanisms. Our results open the fundamental perspective
to further explore the dissipative measurement regime with
massive fermions. This regime has already attracted atten-
tion albeit with massless bosons (photons), e.g., with
studies of the quantum limits of photothermal cooling
[30]. Here, in contrast, the massive nature of the electrons
enables us to somehow tune the backaction noise with
respect to the measurement noise. How the fundamental
measurement principles ultimately affect the corresponding
sensitivity limits remains to be explored. In particular, the
use of a material with much higher secondary electron
yield, operated at much lower acceleration, may enable us
to approach (or even beat) the Heisenberg limit.
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