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Abstract
It is proven that the homotopy time-slice axiom for many types of algebraic quan-
tum field theories (AQFTs) taking values in chain complexes can be strictified.
This includes the cases of Haag–Kastler-type AQFTs on a fixed globally hyperbolic
Lorentzian manifold (with or without time-like boundary), locally covariant confor-
mal AQFTs in two spacetime dimensions, locally covariant AQFTs in one spacetime
dimension, and the relative Cauchy evolution. The strictification theorems established
in this paper prove that, under suitable hypotheses that hold true for the examples
listed above, there exists a Quillen equivalence between the model category of AQFTs
satisfying the homotopy time-slice axiom and themodel category of AQFTs satisfying
the usual strict time-slice axiom.
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1 Introduction and summary

The time-slice axiom is one of the central axioms of algebraic quantum field theory
(AQFT). It introduces a notion of time evolution on globally hyperbolic Lorentzian
manifolds, which is the key ingredient for analyzing the physical behavior of anAQFT,
for instance through the relative Cauchy evolution (RCE) and its associated stress-
energy tensor [12, 18], or through the local measurement schemes introduced in [19].

At a more technical level, an AQFT is described by an algebra A : OC → T over
a suitable colored operad OC, called the AQFT operad [9], that is associated to a
category of spacetimes C. (See Sect. 2.1 for the relevant mathematical background.)
The symmetric monoidal target category T is arbitrary, but the traditional examples
of AQFTs are based on the closed symmetric monoidal category T = VecK of vector
spaces over a fieldK of characteristic 0. In this context the time-slice axiom is imple-
mented by demanding that A sends a certain subset W of the 1-ary operations in OC,
the so-called Cauchy morphisms, to isomorphisms in T.

A modern research stream in AQFT is the exploration of homotopical phenom-
ena associated with quantum gauge theories, which has been initiated in [10] by the
development ofmodel categories that describeAQFTs taking values in the closed sym-
metric monoidal model category T = ChK of (possibly unbounded) chain complexes
ofK-vector spaces. This provides a suitable axiomatic framework for quantum gauge
theories on globally hyperbolic Lorentzian manifolds, which captures the explicit
examples obtained from the BRST/BV formalism for AQFT [20, 21] or from employ-
ing the techniques of derived geometry [4, 7]. A new phenomenon of such homotopical
AQFTs is that the time-slice axiom gets relaxed to what we call the homotopy time-
slice axiom, which demands that a ChK-valued AQFT A : OC → ChK sends every
Cauchymorphism inW to a quasi-isomorphism of chain complexes. This homotopical
relaxation from the strict time-slice axiom (involving isomorphisms) to the homotopy
time-slice axiom (involving quasi-isomorphisms) is not only natural from a homotopi-
cal algebra perspective to obtain an axiom that is stable under weak equivalences of
AQFTs, but it is also the variant of the time-slice axiom that is fulfilled by the typical
examples of quantum gauge theories constructed, for instance, in [4, 7, 20, 21].

While from an abstract point of view the relaxation from the strict to the homo-
topy time-slice axiom does not cause any serious complications, it unfortunately does
have a considerable impact on the concrete applicability of ChK-valued AQFTs to
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physically motivated problems. For instance, formulating the relative Cauchy evolu-
tion [12, 18] or setting up local measurement schemes [19] in this richer homotopical
context is considerably more involved than in the case of ordinary AQFTs, because
the maps A( f ) : A(M) → A(N ) associated with Cauchy morphisms f : M → N
do in general not admit strict inverses and working instead with quasi-inverses pro-
duces a tower of homotopy coherence data that is hard to control. A suitable strategy
to circumvent these issues is to establish strictification theorems that allow one to
replace the homotopy time-slice axiom by the strict one. In fact, if it would be pos-
sible to replace the ChK-valued AQFT A satisfying the homotopy time-slice axiom
by a weakly equivalent AQFT Ast that satisfies this axiom strictly, one could avoid all
the practical complications mentioned above by working simply with the equivalent
modelAst instead ofA. A first example of such strictification theorems, which is valid
for the special case where C is the RCE category and A is a linear homotopy AQFT,
has been proven recently in [11].

The aim of the present paper is to prove a variety of strictification theorems for the
homotopy time-slice axiom of AQFTs, including in particular the following relevant
cases:

(i) ChK-valuedHaag–Kastler-typeAQFTsonafixedglobally hyperbolicLorentzian
manifold M (with or without time-like boundary);

(ii) ChK-valued locally covariant conformal AQFTs in two spacetime dimensions;
(iii) ChK-valued locally covariant AQFTs in one spacetime dimension;
(iv) ChK-valued AQFTs on the RCE category, generalizing the result in [11].

Unfortunately, we currently do not know if there exists a strictification theorem for
the homotopy time-slice axiom of ChK-valued locally covariant AQFTs in spacetime
dimension m ≥ 2. Our strictification theorems are not only more general than the one
in [11], but they are also stronger and more powerful in the following sense: Instead
of asking the object-wise question whether the homotopy time-slice axiom of an
individualChK-valued AQFTA can be strictified, we address the global strictification
problem that asks whether the model category L

̂WAQFT(C) of AQFTs that satisfy
the homotopy time-slice axiom (see [13] and Theorem 2.21) is Quillen equivalent to
the model categoryAQFT(C[W−1]) of AQFTs that satisfy the strict time-slice axiom
(see Corollary 2.15). Such global strictification theorems not only provide a solution
of the object-wise strictification problem, which as mentioned above is very useful
for physical applications such as RCE or measurement schemes, but they are also
conceptually very interesting as they show that the homotopy time-slice axiom has no
higher homotopical content in these cases. The availability of strictification theorems
seems to be a phenomenon that is strongly tied to AQFTs on globally hyperbolic
Lorentzianmanifolds and, in particular, it is linked to the one-dimensional behavior of
time evolution. Analogous results are not available for topological QFTs, formulated
in the context of locally constant prefactorization algebras as in [15, 16], where the
higher homotopical content of m-dimensional isotopy equivalences gives rise to the
homotopically non-trivial Em-operads, see [30, Theorem 5.4.5.9], [1] or [14].

The outline of the remainder of this paper is as follows: In Sect. 2, we collect the
relevant preliminaries for this work. Section 2.1 recalls some key aspects of orthog-
onal categories and their associated AQFT operads from [9]. Section 2.2 develops
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systematically a theory of localizations of orthogonal categories and explains how
these can be used to implement the strict time-slice axiom, see in particular Corollary
2.15. Section 2.3 recalls the projective model structure for ChK-valued AQFTs from
[10] and also the left Bousfield localized model structure from [13] that captures the
homotopy time-slice axiom. The Quillen adjunction established in Proposition 2.24
is the key result that allows us to formulate and prove our strictification theorems for
the homotopy time-slice axiom. Our first strictification theorem applies to reflective
localizations of orthogonal categories (in the sense of Definition 3.1) and it is proven
in Sect. 3, see in particular Theorem 3.6. This strictification theorem covers the exam-
ples (i), (ii) and (iii) from the itemization above. In Sect. 4, we focus on the case in
which the orthogonal category C carries an empty orthogonality relation ⊥C= ∅. We
then prove in Theorem 4.1 that in this case a sufficient condition for a strictification
theorem for the homotopy time-slice axiom of AQFTs is that a simpler strictification
problem at the level of ChK-valued functors can be solved. Building on earlier results
from [11], we then show that this is the case for the RCE category, which leads to
example (iv) from the itemization above. Appendix A proves that the localization
of the category Loc1 of connected globally hyperbolic Lorentzian 1-manifolds at all
Cauchymorphisms is reflective, which we need to deduce example (iii) from Theorem
3.6.

2 Preliminaries

2.1 Orthogonal categories, colored operads and AQFTs

Orthogonal categories [9] are an abstraction of the concept of a category of spacetimes
with a notion of causally independent pairs of subregions f1 : M1 → N ← M2 : f2.
The relevant definitions are as follows:

Definition 2.1 (a) Anorthogonal category is a pairC := (C,⊥C) consisting of a small
categoryC and a subset ⊥C ⊆ MorC t×tMorC (called orthogonality relation) of
the set of pairs ofmorphisms to a common target, such that the following conditions
hold true:

(i) Symmetry: ( f1, f2) ∈⊥C implies ( f2, f1) ∈⊥C.
(ii) Composition stability: ( f1, f2) ∈⊥C implies (g f1 h1, g f2 h2) ∈⊥C for all

composable morphisms g, h1 and h2.

We often write f1 ⊥C f2 instead of ( f1, f2) ∈⊥C to denote orthogonal pairs of
morphisms.

(b) An orthogonal functor F : C → D is a functor F : C → D between the underlying
categories that preserves orthogonal pairs, i.e. F( f1) ⊥D F( f2) for all f1 ⊥C f2.

(c) We denote by Cat⊥ the 2-category whose objects are orthogonal categories, 1-
morphisms are orthogonal functors and 2-morphisms are natural transformations
between orthogonal functors.

We would like to note in passing that the equivalences in the 2-category Cat⊥ can
be characterized explicitly.
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Lemma 2.2 [6, Lemma 2.7] An orthogonal functor F : C → D is an equivalence in
the 2-category Cat⊥ if and only if the following two conditions hold true:

(i) The underlying functor F : C → D is fully faithful and essentially surjective.
(ii) The orthogonality relation ⊥C = F∗(⊥D) agrees with the pullback along F (see

[9, Lemma 3.19]) of the orthogonality relation ⊥D, i.e. f1 ⊥C f2 if and only if
F( f1) ⊥D F( f2).

It was shown in [9] that, associated to each orthogonal categoryC, there is a colored
operad O

C
that codifies the algebraic structure of AQFTs on C. See also [8] for a

concise review. Recall that a colored operad (aka multicategory) is a generalization
of the concept of a category in which morphisms may have multiple inputs. More
precisely, a colored operad P consists of the following data:

(i) a class of objects, sometimes also called colors;
(ii) for each tuple (c, t) = ((c1, . . . , cn), t) of objects, a set of operations P

(t
c
)

from
c to t ;

(iii) composition maps γ : P(t
c
) × ∏n

i=1 P
(ci
di

) → P( t
(d1,...,dn)

)

;
(iv) unit elements 1 ∈ P(

t
t

)

;
(v) permutation actions P(σ ) : P(t

c
) → P( t

cσ
)

, for each σ ∈ �n , where cσ =
(cσ(1), . . . , cσ(n)).

These data have to satisfy the usual associativity, unitality and equivariance axioms, see
e.g. [33] for the details. Similarly to categories, we often denote an operation φ ∈ P(t

c
)

by an arrow φ : c → t . Given also a tuple of operations ψ = (ψ1, . . . , ψn), with ψi :
di → ci , we denote the composition by juxtaposition φ ψ := γ (φ, (ψ1, . . . , ψn)) :
d → t , where d = (d1, . . . , dn). The permutation actions will be denoted by dots
φ ·σ := P(σ )(φ) : cσ → t . Colored operads assemble into a 2-category, see e.g. [17,
32] for the details.

Definition 2.3 We denote by Op the 2-category whose objects are colored operads,
1-morphisms are multifunctors and 2-morphisms are multinatural transformations.

The AQFT operad O
C
admits the following explicit description, see [8, 9].

Definition 2.4 Let C = (C,⊥C) ∈ Cat⊥ be an orthogonal category. The associated
AQFT operad O

C
∈ Op is the colored operad that is defined by the following data:

(i) the objects are the objects of C;
(ii) the set of operations from M = (M1, . . . , Mn) to N is the quotient set

O
C

(N
M

) :=
(

�n ×
n

∏

i=1

C(Mi , N )

)

/

∼⊥C
, (2.1)

where C(Mi , N ) denotes the set of C-morphisms from Mi to N and the equiva-
lence relation is defined as follows: (σ, f ) ∼⊥C

(σ ′, f ′) if and only if f = f ′ and
the right permutation σσ ′−1 : f σ−1 → f σ ′−1 is generated by transpositions of
adjacent orthogonal pairs;
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(iii) the composition of [σ, f ] : M → N with [σi , gi ] : Ki → Mi , for i = 1, . . . , n,
is

[σ, f ] [σ , g] := [

σ(σ1, . . . , σn), f g
] : K −→ N , (2.2a)

where σ(σ1, . . . , σn) denotes the composition in the unital associative operad
and

f g := (

f1 g11, . . . , f1 g1k1, . . . , fn gn1, . . . , fn gnkn
)

(2.2b)

is given by compositions in the category C;
(iv) the unit elements are 1 := [e, idN ] : N → N , where e ∈ �1 is the identity

permutation;
(v) the permutation action of σ ′ ∈ �n on [σ, f ] : M → N is

[σ, f ] · σ ′ := [σσ ′, f σ ′] : Mσ ′ −→ N , (2.3)

where f σ ′ = ( fσ ′(1), . . . , fσ ′(n)) and Mσ ′ = (Mσ ′(1), . . . , Mσ ′(n)) denote the
permuted tuples and σσ ′ is given by the group operation of the permutation group
�n .

Remark 2.5 There exists a useful presentation of the colored operad O
C
in terms of

generators and relations, see [9, Section 3.3] and also [8, Section 2.2] for a concise
review. Very briefly, there are three types of generators

N

M

f

N

∅

1N

N

N N

μN (2.4)

that, in AQFT terminology, describe the pushforward of observables along morphisms
f : M → N inC, the unit observable on N , and themultiplicationof observables on N .
These generators have to satisfy various relations, which can be classified into func-
toriality relations, algebra relations, compatibility relations and ⊥C-commutativity
relations. The latter may be visualized as

N

M1 M2

μN

f1 f2

=

N

M1 M2

μN

f2 f1 , (2.5)

for all ( f1 : M1 → N ) ⊥C ( f2 : M2 → N ), and their role is to implement the
quotient in the set of operations from Definition 2.4. The physical interpretation of the
⊥C-commutativity relations is that they enforce ‘Einstein causality’ for all orthogonal
pairs of morphisms.
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The assignment C �→ O
C
of AQFT operads can be upgraded to a 2-functor. Given

an orthogonal functor F : C → D, we define the multifunctor

OF : O
C

−→ O
D
,

M �−→ F(M),
([σ, f ] : M → N

) �−→ ([σ, F( f )] : F(M) → F(N )
)

, (2.6)

where F is defined to act component-wise on tuples, i.e. F(M) = (F(M1), . . . , F(Mn))

and also F( f ) = (F( f1), . . . , F( fn)). Given further a natural transformation

χ : F → G between orthogonal functors F,G : C → D, we define the multi-
natural transformation Oχ : OF → OG between the corresponding multifunctors
OF ,OG : O

C
→ O

D
by setting

(Oχ )M := [e, χM ] : F(M) −→ G(M), (2.7)

for all components M ∈ C. Summing up, we obtain

Proposition 2.6 The above defines a 2-functor

O : Cat⊥ −→ Op (2.8)

from the 2-category of orthogonal categories to the 2-category of colored operads.

AQFTs on C are by definition algebras over the AQFT operad O
C
with values in

a suitable closed symmetric monoidal category T. For ordinary AQFTs, one usually
takes T = VecK to be the category of vector spaces over a field K of characteristic 0,
while for homotopyAQFTs one takesT = ChK to be the category of chain complexes.
(The relevant model categorical aspects in the latter case will be discussed later in Sect.
2.3.) From our 2-categorical perspective, there is the following slick definition of the
category of AQFTs on C. Recall that to each symmetric monoidal category T one can
assign a colored operad (which we denote with abuse of notation by the same symbol)
that has the same objects and whose sets of operations are given by

T
(Y
X
) := T

(

⊗n
i=1 Xi ,Y

)

, (2.9)

for all tuples (X ,Y ) = ((X1, . . . , Xn),Y ) of objects in T. Operadic composition
is defined by compositions and tensor products of T-morphisms, the unit elements
correspond to the identitymorphisms1 = idY ∈ T

(

Y
Y

) = T(Y ,Y ) and the permutation
actions are defined via the symmetric braiding.

Definition 2.7 Let C ∈ Cat⊥ be an orthogonal category and T a closed symmetric
monoidal category. The category of T-valued AQFTs on C is defined as the Hom-
category

AQFT(C) := AlgO
C

(

T
) := HomOp

(O
C
,T

)

(2.10)
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in the 2-category Op from the AQFT operad OC to the colored operad associated to
T. More explicitly, an object in this category is a multifunctor A : O

C
→ T and

a morphism between two objects A,B : O
C

→ T is a multinatural transformation
ζ : A → B.

Observe that the assignment C �→ AQFT(C) admits a canonical upgrade to a
2-functor

AQFT : (Cat⊥)op −→ Cat (2.11)

to the 2-categoryCat of (not necessarily small) categories, functors and natural trans-
formations. Indeed, for each orthogonal functor F : C → D, we can define a pullback
functor

F∗ := (−)OF : AQFT(D) −→ AQFT(C) (2.12)

that acts on objects (A : O
D

→ T) �→ (AOF : O
C

→ T) by pre-composition
and on morphisms ζ �→ ζ OF by whiskering in the 2-category Op. The action of
the 2-functor (2.11) on 2-morphisms is given by whiskering too, i.e. for each natural
transformation χ : F → G between orthogonal functors we define χ∗ := (−)Oχ :
(−)OF → (−)OG .

We conclude this subsection by recording the following standard result about
operadic left Kan extensions, see e.g. [9, Theorem 2.11] for a spelled out proof.

Proposition 2.8 Suppose that the closed symmetric monoidal category T is cocom-
plete, i.e. it admits all small colimits. Then, for each orthogonal functor F : C → D,
the pullback functor in (2.12) admits a left adjoint, i.e. we obtain an adjunction

F! : AQFT(C) AQFT(D) : F∗ . (2.13)

2.2 Time-slice axiom and localizations

Note that our Definition 2.7 of AQFTs does not explicitly refer to one of the cen-
tral physical axioms, namely the time-slice axiom. The goal of this subsection is to
clarify, in the case where the target T is an ordinary category (in contrast to a model
category such as T = ChK), the precise sense in which the time-slice axiom may be
implemented by a localization of orthogonal categories (see Corollary 2.15).

Let us start by making precise the concept of localization of orthogonal categories,
which has previously appeared in a more ad hoc fashion in [9, Section 4.2]. Similarly
to ordinary category theory, localizations in Cat⊥ are characterized by the following
universal property.

Definition 2.9 Let C be an orthogonal category andW ⊆ MorC a subset. A localiza-
tion of C atW is an orthogonal category C[W−1] together with an orthogonal functor
L : C → C[W−1] satisfying the following properties:

(i) For all morphisms ( f : M → N ) ∈ W , the morphism L( f ) : L(M) → L(N ) is
an isomorphism in C[W−1].
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(ii) For any orthogonal category D and any orthogonal functor F : C → D that
sends morphisms in W to isomorphisms in D, there exists an orthogonal functor
FW : C[W−1] → D and a natural isomorphism F ∼= FW L .

(iii) For all orthogonal functors G, H : C[W−1] → D, the whiskering map

(−)L : Nat(G, H) −→ Nat(GL, HL) (2.14)

between the sets of 2-morphisms (i.e. natural transformations) is a bijection.

Remark 2.10 Denoting by Hom
Cat⊥

(

C,D
) ∈ Cat the Hom-category between two

objects C and D in the 2-category Cat⊥ of orthogonal categories, the properties from
Definition 2.9 can be rephrased more concisely as follows: For every orthogonal cat-
egory D, the functor

(−)L : Hom
Cat⊥

(

C[W−1],D) −→ Hom
Cat⊥

(

C,D
)W (2.15a)

is an equivalence of categories, where

Hom
Cat⊥

(

C,D
)W ⊆ Hom

Cat⊥
(

C,D
)

(2.15b)

denotes the full subcategory of orthogonal functors that send W to isomorphisms.

It is easy to prove that the ad hoc concept of localization of orthogonal categories
from [9, Section 4.2] defines a localization in the sense of Definition 2.9.

Proposition 2.11 Let C = (C,⊥C) be an orthogonal category and W ⊆ MorC a
subset. Consider the localization L : C → C[W−1] of the underlying categoryC at W
and endow C[W−1] with the pushforward orthogonality relation ⊥C[W−1]:= L∗(⊥C)

(see [9, Lemma 3.19]), i.e. the minimal orthogonality relation such that L : C →
C[W−1] is an orthogonal functor. Then the resulting orthogonal functor L : C →
C[W−1] is a localization in the sense of Definition 2.9.

Proof Items (i) and (iii) hold true because the underlying functor L : C → C[W−1]
is a localization of categories. For item (ii), we obtain at the level of the underlying
categories a functor FW : C[W−1] → D and a natural isomorphism F ∼= FW L .
It remains to show that FW is orthogonal with respect to ⊥C[W−1] = L∗(⊥C). By
composition stability of ⊥D and the definition of the pushforward orthogonality rela-
tion (see [9, Lemma 3.19]), this is the case if and only if FW L( f1) ⊥D FW L( f2),
for all f1 ⊥C f2. The latter holds true because F ∼= FW L are naturally isomorphic
and ⊥D is composition stable. Let us spell out this last step in more detail: Writing
( f1 : M1 → N ) ⊥C ( f2 : M2 → N ) and χ : F → FW L for the given natural
isomorphism, we obtain that

(

FW L( f1), FW L( f2)
) = (

χN F( f1) χ−1
M1

, χN F( f2) χ−1
M2

) ∈⊥D (2.16)

because ⊥D is composition stable and F( f1) ⊥D F( f2) as a consequence of F being
an orthogonal functor. �
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We shall now prove that the 2-functor O : Cat⊥ → Op from Proposition 2.6
that assigns to an orthogonal category C its AQFT operad O

C
maps localizations of

orthogonal categories to localizations of operads. The latter are characterized by the
following universal property.

Definition 2.12 Let P be a colored operad and W ⊆ Mor1P a subset of 1-ary oper-
ations in P. A localization of P at W is a colored operad P[W−1] together with a
multifunctor L : P → P[W−1] satisfying the following properties:

(i) For all operations (φ : c → t) ∈ W , the 1-ary operation L(φ) : L(c) → L(t) is
an isomorphism in P[W−1].

(ii) For any colored operadQ and anymultifunctor F : P → Q that sends operations
in W to isomorphisms inQ, there exists a multifunctor FW : P[W−1] → Q and
a multinatural isomorphism F ∼= FW L .

(iii) For all multifunctors G, H : P[W−1] → Q, the whiskering map

(−)L : mNat(G, H) −→ mNat(GL, HL) (2.17)

between the sets of 2-morphisms (i.e. multinatural transformations) is a bijection.

Remark 2.13 Similarly to Remark 2.10, the properties from Definition 2.12 can be
rephrased more concisely as follows: For every colored operad Q, the functor

(−)L : HomOp
(P[W−1],Q) −→ HomOp

(P,Q)W (2.18a)

is an equivalence of categories, where

HomOp
(P,Q)W ⊆ HomOp

(P,Q)

(2.18b)

denotes the full subcategory of multifunctors that send W to isomorphisms.

Proposition 2.14 Suppose that L : C → C[W−1] is a localization of orthogonal
categories. Applying the 2-functor from Proposition 2.6 defines a multifunctor OL :
O

C
→ O

C[W−1] that exhibits a localization of the colored operad O
C
at the set of

1-ary operations W ⊆ Mor1OC
.

Proof Because of 2-functoriality and uniqueness (up to equivalence) of localizations,
we can pick without loss of generality a particular model for the underlying localized
categoryC[W−1]. To allow for an effective use of the generators-relations description
of the AQFT operads from Remark 2.5, we work with the Gabriel–Zisman model [23]
inwhichC[W−1] has the sameobjects asC and itsmorphisms are given by equivalence
classes of chains of zig-zags of C-morphisms, where all reverse-pointing morphisms
must be in W . In short, the category C[W−1] is generated by all C-morphisms f :
M → N and formal inverses w−1 : M → N of all W -morphisms w : N → M
modulo the equivalence relation described in [23]. The localization functor L : C →
C[W−1] then acts on objects and morphisms simply as M �→ M and ( f : M →
N ) �→ ( f : M → N ).
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We shall now explicitly verify thatOL : O
C

→ O
C[W−1] satisfies the three proper-

ties from Definition 2.12 that characterize a localization of colored operads. Item (i)
is obvious from the definition of OL in (2.6). For item (ii), consider any multifunctor
F : O

C
→ Q that sends operations in W to isomorphisms. We have to provide an

extension of F along OL to a multifunctor FW : O
C[W−1] → Q. Using the Gabriel–

Zisman model forC[W−1] and our generators-relations description from Remark 2.5,
we can construct a strict extension (i.e. the multinatural isomorphism F ∼= FW OL is
the identity) by mapping the formal inverses of W -morphisms as follows

(

w−1 : M → N
) �−→ (

F(w)−1 : F(M) → F(N )
)

. (2.19)

It is easy to check that this is compatible with the relations of O
C[W−1], hence we

obtain a multifunctor FW : O
C[W−1] → Q such that F = FW OL .

For item (iii), injectivity is obvious and surjectivity is shown by the following
argument: Given anymultinatural transformation ζ : GOL → H OL ofmultifunctors
from O

C
to Q, we have to prove that the underlying components

{

ζM : G(M) →
H(M)

}

M∈C are multinatural on O
C[W−1] too. Since multinaturality can be checked

at the level of the generators, this amounts to showing that for each formal inverse
w−1 : M → N the naturality diagram

G(M)

ζM

G(w−1)
G(N )

ζN

H(M)
H(w−1)

H(N )

(2.20)

in Q commutes. Since G(w−1) = G(w)−1 and H(w−1) = H(w)−1 in Q, these
naturality conditions are already enforced by the arity 1 generators of O

C
. �

The relevance of this result for AQFT can be summarized as follows.

Corollary 2.15 Let C be an orthogonal category and W ⊆ MorC a subset. Denote by

AQFT(C)W ⊆ AQFT(C) (2.21)

the full subcategory of AQFTs on C that send W to isomorphisms in T. In AQFT
terminology, one may say that such theories satisfy the time-slice axiom for the set of
morphisms W. Then the pullback functor

L∗ := (−)OL : AQFT
(

C[W−1]) −→ AQFT(C)W (2.22)

associated to the localization L : C → C[W−1] of orthogonal categories defines an
equivalence between the category of AQFTs on C[W−1] and the category of AQFTs
on C that satisfy the time-slice axiom for W.
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Proof By Proposition 2.14, the multifunctor OL : O
C

→ OC[W−1] is a localization
of the colored operad O

C
at W , hence the statement is a direct consequence of the

universal property from Remark 2.13. �
Remark 2.16 For a cocomplete closed symmetric monoidal categoryT, Corollary 2.15
can be rephrased in the language of Proposition 2.8. This will be useful to understand
our strategy and constructions in Sects. 3 and 4. The orthogonal localization functor
L : C → C[W−1] defines by Proposition 2.8 an adjunction

L ! : AQFT(C) AQFT
(

C[W−1]) : L∗ , (2.23)

whose right adjoint is the pullback functor L∗ = (−)OL and whose left adjoint L !
is given by operadic left Kan extension (see e.g. [9, Proposition 2.12] for an explicit
colimit formula). Using this adjunction, we can associate to any A ∈ AQFT(C) the
AQFT L∗L !(A) ∈ AQFT(C)W that satisfies the time-slice axiom, whether or not
the original A satisfies this axiom, together with a comparison morphism ηA : A →
L∗L !(A) given by the adjunction unit η : id → L∗ L !. In general, the comparison
morphism will not be an isomorphism, henceA and L∗L !(A) define different AQFTs.
The result in Corollary 2.15 implies that the adjunction (2.23) induces an adjoint
equivalence

L ! : AQFT
(

C)W ∼ AQFT
(

C[W−1]) : L∗ (2.24)

when we restrict to the full subcategory AQFT(C)W ⊆ AQFT(C) of AQFTs that
satisfy the time-slice axiom. As a consequence, the comparison morphism ηA : A →
L∗L !(A) is an isomorphism if and only if the theory A ∈ AQFT(C)W satisfies the
time-slice axiom.

2.3 Model category structures

For the rest of this paper, we fix the target category

T := ChK (2.25)

to be the closed symmetric monoidal category of (possibly unbounded) chain com-
plexes of vector spaces over a field K of characteristic 0. By [29, Sections 2.3 and
4.2], T = ChK carries the structure of a closed symmetric monoidal model category
in which the weak equivalences are the quasi-isomorphisms and the fibrations are the
degree-wise surjective chain maps. As a consequence of Hinich’s results [25, 26],
this model structure can be transferred to the category of ChK-valued AQFTs on an
orthogonal category C. The following model categories appeared first in [10].

Theorem 2.17 For each orthogonal category C, the associated category

AQFT(C) := AlgO
C

(

ChK
) := HomOp

(O
C
,ChK

)

(2.26)
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ofChK-valued AQFTs carries a model structure in which a morphism ζ : A → B is a
weak equivalence (respectively, fibration) if each component ζM : A(M) → B(M) is
a quasi-isomorphism (respectively, degree-wise surjective). We call this the projective
model structure on AQFT(C).

Remark 2.18 Note that every object inAQFT(C) is a fibrant object.Wewill frequently
use this fact without further emphasis in our arguments below. This fact is not essential,
but it simplifies some arguments.

An immediate but fundamental consequence of such model structures is given by
the following result, which encodes numerous universal constructions among AQFTs.

Proposition 2.19 For each orthogonal functor F : C → D, the adjunction from
Proposition 2.8, i.e. F! : AQFT(C) � AQFT(D) : F∗, is a Quillen adjunction for
the projective model structures from Theorem 2.17.

Proof The right adjoint F∗ = (−)OF is a pullback functor, hence it preserves both
the fibrations and the weak equivalences as these are defined component-wise. This
in particular implies that F∗ is a right Quillen functor. �

The implementation of the time-slice axiom in this homotopical context is more
subtle than in the case of an ordinary target category T that we have discussed in Sect.
2.2. Demanding that a multifunctor A : O

C
→ ChK sends a subset W ⊆ MorC to

isomorphisms is neither realized in concrete examples (see e.g. the linear quantum
gauge theories constructed in [4, 7]) nor is it compatible with weak equivalences:
Indeed, given a weak equivalence ζ : A → B in the model category AQFT(C),
it is in general not true that A satisfies this property if and only if B does. The
homotopically correct generalization of the time-slice axiom, which is stable under
weak equivalences of AQFTs, is given by replacing the concept of isomorphisms with
that of quasi-isomorphisms.

Definition 2.20 Let C be an orthogonal category and W ⊆ MorC a subset. An object
A ∈ AQFT(C) is said to satisfy the homotopy time-slice axiom for W if, as a multi-
functor A : O

C
→ ChK, it sends W to quasi-isomorphisms.

It is important to stress that this definition introduces the homotopy time-slice axiom
only at the level of the objects in the model category AQFT(C), but it does not define
their morphisms and (higher) homotopies. Since model structures do not in general
restrict in a sensible way to full subcategories, more work is required to obtain a model
category that presents the homotopy theory of AQFTs satisfying the homotopy time-
slice axiom. This issue has been addressed and solved in [13, Section 3.2], where two
different but equivalent approaches have been identified. The first approach, which
we shall sketch only briefly as it will not play an important role in our paper, uses the
concept of homotopical localization of operads, generalizing Dwyer-Kan localization
of simplicial categories [27], in order to invert (up to homotopy) the 1-ary operations
W in the AQFT operad O

C
. Homotopical localizations can be determined in the

model category sOp of simplicial (i.e. sSet-enriched) colored operads and they are
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defined by the following homotopical generalization of the universal property from
Definition 2.12 and Remark 2.13: A sOp-morphism L∞ : P → P[W−1]∞ is called
a homotopical localization of P ∈ sOp at a subset W of 1-ary operations in P if L∞
sends W to equivalences and, for every Q ∈ sOp, the pullback map

(−)L∞ : MapsOp
(P[W−1]∞,Q) −→ MapsOp(P,Q)hoW (2.27)

is aweak homotopy equivalence,whereMapsOp(P[W−1]∞,Q) ∈ sSet is themapping
space in sOp and MapsOp(P,Q)hoW ⊆ MapsOp(P,Q) denotes the simplicial subset
of maps that send W to equivalences. Homotopical localizations of operads can be
computed by a homotopy pushout that is similar to the one for simplicial categories [27,
Section 3] or by a generalization of Hammock localization to trees [3]. In our AQFT
context, the universal property (2.27) implies that the homotopy time-slice axiom
from Definition 2.20 can be enforced by considering algebras over the homotopically
localized AQFT operad O

C
[W−1]∞ ∈ sOp. Passing over ChK-enriched colored

operads by using the normalized chains functor N∗(−,K) : sSet → ChK, we can
define the model category

AQFT(C)hoW := AlgO
C
[W−1]∞

(

ChK
) := HomOpChK

(

N∗
(O

C
[W−1]∞,K

)

,ChK
)

(2.28)

of ChK-enriched multifunctors, endowed with the projective model structure from
[25, 26]. This perspective on the homotopy time-slice axiom is conceptually very clear
thanks to the universal property of homotopical localizations (2.27), but unfortunately
it is difficult to use in practice because it is hard to compute homotopical localizations
such as O

C
[W−1]∞.

In order to prove our results in this paper, it will be convenient to use the equivalent
approach from [13, Section 3.2] that enforces the homotopy time-slice axiom via a
left Bousfield localization. (We refer the reader to [2] or to Hirschhorn’s book [28]
for an introduction to Bousfield localizations of model categories and the related
concepts of local objects and local equivalences.) The basic idea is to work with the
same underlying category AQFT(C), but to introduce a new model structure that has
more weak equivalences and fewer fibrations than the projective one in Theorem 2.17.
When designed correctly, this will lead to a new model category L

̂WAQFT(C) that
is Quillen equivalent to (2.28) and in which the homotopy time-slice axiom becomes
a fibrancy condition. The construction of such a model structure is slightly technical
and the relevant details can be found in [13] and [14, Section 6]. The main result may
be summarized as follows.

Theorem 2.21 Let C be an orthogonal category and W ⊆ MorC a subset. Denote by
AQFT(C) the projective AQFT model category from Theorem 2.17.

(a) There exists a subset ̂W ⊆ MorAQFT(C) (see Remark 2.22 below for an explicit
description) such that an objectA ∈ AQFT(C) is ̂W-local if and only if it satisfies
the homotopy time-slice axiom for W ⊆ MorC.
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(b) The left Bousfield localization L
̂WAQFT(C) of the projective AQFT model cate-

gory at ̂W from item (a) exists. The fibrant objects in this localized model structure
are precisely the AQFTs satisfying the homotopy time-slice axiom for W.

(c) The homotopical localization multifunctor L∞ : O
C

→ O
C
[W−1]∞ induces via

pullback a Quillen equivalence

L∞
! : L

̂WAQFT(C) ∼ AQFT
(

C)hoW : L∞∗ (2.29)

betweenL
̂WAQFT(C) and the projective model categoryAQFT

(

C)hoW in (2.28).

Remark 2.22 The set ̂W of AQFT morphisms is determined from the given set W of
C-morphisms by the following construction from [14, Definition 6.5 and Proposition
6.4]: Using the covariant Yoneda embedding

y(−) : Cop −→ Fun(C,ChK) , M �−→ y(M) = C(M,−) ⊗ K, (2.30)

we can assign to everyC-morphism f : M → N amorphism y( f ) : y(N ) → y(M) of
ChK-valued functors onC. We further can shift the homological degree by any integer
r ∈ Z and consider y( f )[r ] : y(N )[r ] → y(M)[r ]. Since i : C ↪→ O

C
embeds as the

category of 1-ary operations in the AQFT operad, we obtain in analogy to Propositions
2.8 and 2.19 a Quillen adjunction i! : Fun(C,ChK) � AQFT(C) : i∗. The subset
̂W ⊆ MorAQFT(C) then consists of the morphisms

i!
(

y( f )[r ]) : i!
(

y(N )[r ]) −→ i!
(

y(M)[r ]), (2.31)

where ( f : M → N ) ∈ W runs over all morphisms in W and r ∈ Z runs over all
integers.

Remark 2.23 The reader might wonder about the physical interpretation of the left
Bousfield localized model category L

̂WAQFT(C) and its additional weak equiva-
lences. In particular, one should not be surprised that every AQFT A ∈ AQFT(C),
whether or not it satisfies the homotopy time-slice axiom, is weakly equivalent in
L

̂WAQFT(C) to an AQFT that satisfies the homotopy time-slice axiom, e.g. by tak-
ing a local fibrant replacement of A. We would like to stress that this behavior is not
inconsistent and in fact necessary for the model category L

̂WAQFT(C) to be Quillen
equivalent to themodel categoryAQFT(C)hoW in (2.28) that describesAQFTs satisfy-
ing the homotopy time-slice axiom through the concept of homotopical localizations,
which is precisely the statement of Theorem2.21(c). In otherwords, for themodel cate-
goryL

̂WAQFT(C) to describe the homotopy theory ofAQFTs satisfying the homotopy
time-slice axiom, it necessarily must be true that every object in L

̂WAQFT(C) is
weakly equivalent to an AQFT that satisfies this axiom. To avoid any misconceptions
about the additional weak equivalences in the model category L

̂WAQFT(C), let us
recall the following standard result about left Bousfield localizations, see e.g. [28,
Theorem 3.2.13]: Given any two fibrant objects A,B ∈ L

̂WAQFT(C) in the local-
ized model category, a morphism ζ : A → B is a local weak equivalence if and only
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if it is a projective weak equivalence in the sense of Theorem 2.17. Using Theorem
2.21(b) and translating this result to AQFT terminology, this means that both types
of weak equivalences (local and projective) coincide whenever A and B satisfy the
homotopy time-slice axiom. In particular, this implies that there are no additional weak
equivalences between the objects that the model category L

̂WAQFT(C) is designed
to describe.

The following result will be crucial for formulating and proving our strictification
theorems for the homotopy time-slice axiom.

Proposition 2.24 Suppose that L : C → C[W−1] is a localization of orthogonal cat-
egories. The associated adjunction from Proposition 2.8 defines a Quillen adjunction

L ! : L
̂WAQFT(C) AQFT

(

C[W−1]) : L∗ (2.32)

between the Bousfield localized model categoryL
̂WAQFT(C) from Theorem 2.21 and

the projective model category AQFT
(

C[W−1]) of AQFTs on C[W−1] from Theorem
2.17.

Proof From the equivalent characterizations of Quillen adjunctions, see e.g. [28,
Proposition 8.5.3], we find it most convenient to prove that L ! preserves cofibrations
and that L∗ preserves fibrations. Recalling that the cofibrations in the left Bousfield
localization L

̂WAQFT(C) agree by [28, Definition 3.3.1] with the cofibrations in the
projective model categoryAQFT(C), the first claim follows directly from Proposition
2.19.

To prove that L∗ preserves fibrations, let us first observe that, for every B ∈
AQFT

(

C[W−1]), the AQFT L∗(B) ∈ L
̂WAQFT(C) satisfies the strict time-slice

axiom and hence also the homotopy time-slice axiom. Recalling Theorem 2.21(b),
this means that L∗ maps to the fibrant objects in L

̂WAQFT(C). Combining this with
Proposition 2.19, we obtain that L∗ maps fibrations to projective fibrations between
fibrant objects in L

̂WAQFT(C), which due to [28, Proposition 3.3.16] are also fibra-
tions in the localized model structure. �
Remark 2.25 Observe that the Quillen adjunction from Proposition 2.24 allows us
to compare between the homotopy time-slice axiom from Definition 2.20 and the
usual strict time-slice axiom that is formulated in terms of isomorphisms rather than
quasi-isomorphisms. Indeed, by Theorem 2.21(c), the model category L

̂WAQFT(C)

describes AQFTs that satisfy the homotopy time-slice axiom and, by Corollary 2.15,
the model categoryAQFT

(

C[W−1]) describes AQFTs that satisfy the strict time-slice
axiom.

3 Strictification theorem for reflective localizations

In this section we consider a special class of orthogonal localizations that are reflective
in the sense of Definition 3.1. In this context we shall prove that the homotopy time-
slice axiom is equivalent (in a suitable sense) to the strict time-slice axiom. The precise
statement is our Theorem 3.6 below.
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The following definition is an adaption of the concept of reflective localizations
from ordinary category theory.

Definition 3.1 A localization of orthogonal categories L : C → C[W−1] is called
reflective if the orthogonal functor L admits a right adjoint ι : C[W−1] → C in the
2-category Cat⊥ whose underlying functor ι : C[W−1] → C is fully faithful.

Remark 3.2 From this definition, it follows that the orthogonality relation ⊥C[W−1]
agreeswith the pullback along ι of⊥C, i.e.⊥C[W−1] = ι∗(⊥C). The inclusion⊥C[W−1]
⊆ ι∗(⊥C) is a consequence of ι being an orthogonal functor and the inclusion⊥C[W−1]
⊇ ι∗(⊥C) is proven by using that ι is fully faithful. Indeed, given any (g1, g2)∈ ι∗(⊥C),
we have by definition of the pullback orthogonality relation that (ι(g1), ι(g2)) ∈⊥C,
hence (Lι(g1), Lι(g2)) ∈⊥C[W−1] because L is an orthogonal functor. Using that
⊥C[W−1] is composition stable and that the adjunction counit ε : Lι → idC[W−1] is a
natural isomorphism, it follows that (g1, g2) ∈⊥C[W−1].

The following result is useful to detect reflective localizations of orthogonal cate-
gories.

Proposition 3.3 Suppose that L : C → E is an orthogonal functor that admits a fully
faithful right adjoint j : E → C in the 2-category Cat⊥. Then L : C → E is a
reflective localization of the orthogonal category C at the set of morphisms W :=
L−1(IsoE) ⊆ MorC that are sent via L to isomorphisms in E.

Proof It is a basic exercise in category theory to prove that the underlying functor
L : C → E is a localization of the category C at W = L−1(IsoE) ⊆ MorC. The
hypothesis that L : C → E is an orthogonal functor implies that L∗(⊥C) ⊆⊥E, so
it remains to prove the inclusion ⊥E ⊆ L∗(⊥C). Given any g1 ⊥E g2, it follows that
j(g1) ⊥C j(g2) and also L j(g1) ⊥E L j(g2) because j and L are orthogonal functors.
Note that

(

L j(g1), L j(g2)
) ∈ L∗(⊥C) ⊆⊥E defines an element of the pushforward

orthogonality relation.Using that L∗(⊥C) is composition stable and that the adjunction
counit ε : L j → idE is a natural isomorphism, it follows that (g1, g2) ∈ L∗(⊥C). �
Example 3.4 Of particular interest for AQFT is the case where C is some category
of globally hyperbolic Lorentzian manifolds, with orthogonality relation determined
by causal disjointness, and W ⊆ MorC is the subset of all Cauchy morphisms. See
e.g. [12, 18] and also [9, Section 3.5] for the relevant context and terminology. The
following examples of reflective localizations have been established in the literature:

• In [5, Proposition 3.3], it is shown that the localization at all Cauchy morphisms
of the orthogonal category RM of causally convex open subsets of a fixed glob-
ally hyperbolic Lorentzian manifold M (with or without time-like boundary) is
reflective. This family of examples covers Haag–Kastler-type AQFTs.

• In [6, Section 3], it is shown that the localization at all Cauchy morphisms of
the orthogonal category CLoc2 of oriented and time-oriented connected globally
hyperbolic conformal Lorentzian 2-manifolds is reflective. This example covers
locally covariant conformal AQFTs, in the sense of [31], in two spacetime dimen-
sions.
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Another example is the localization of the orthogonal category Loc1 of oriented
and time-oriented connected globally hyperbolic Lorentzian 1-manifolds at all Cauchy
morphisms. As this example has not been recorded in the literature yet, we include a
proof in Appendix A. On the other hand, it is presently unclear to us whether or not
the localization at all Cauchy morphisms of the orthogonal category Locm of oriented
and time-oriented connected globally hyperbolic Lorentzianm-manifolds is reflective
for dimension m ≥ 2.

Counterexample 3.5 This counterexample is inspired by topological field theories.
Denote by Disk(Rm) the category whose objects are open m-disks U ⊆ R

m and
morphisms are subset inclusions.We endow this categorywith the disjointness orthog-
onality relation, i.e. (U1 ⊆ V ) ⊥ (U2 ⊆ V ) if and only ifU1 ∩U2 = ∅. Let us takeW
to be the isotopy equivalences, which are all morphisms inDisk(Rm). The localization
L : Disk(Rm) → Disk(Rm)[W−1] = {∗} of the underlying category is a singleton,
i.e. a category with only one object ∗ and its identity morphism id∗. The induced
orthogonality relation is given by L∗(⊥) = {(id∗, id∗)}, i.e. the identity id∗ is orthog-
onal to itself. At the level of the underlying categories, this localization is reflective
with right adjoint ι : {∗} → Disk(Rm) defined by ι(∗) = R

m . However, the functor
ι is not orthogonal because R

m ∩ R
m �= ∅ are not disjoint. This provides a simple

example of an orthogonal localization L : Disk(Rm) → {∗} that is not reflective in
the sense of Definition 3.1, even though the underlying localization of categories is
reflective.

Given any reflective localization of orthogonal categories L : C � C[W−1] : ι,
we obtain from the 2-functor (2.11) an adjunction

ι∗ : AQFT(C) AQFT
(

C[W−1]) : L∗ (3.1)

between the associated AQFT categories. From the uniqueness (up to natural isomor-
phism) of adjoint functors, it then follows that ι∗ is a model for the left Quillen functor
L ! in Proposition 2.24. This is the key observation to prove the following strictification
theorem.

Theorem 3.6 Let L : C � C[W−1] : ι be a reflective localization of orthogonal
categories. Then the Quillen adjunction

L ! = ι∗ : L
̂WAQFT(C) AQFT

(

C[W−1]) : L∗ (3.2)

from Proposition 2.24 is a Quillen equivalence.

Proof Let us fix any cofibrant replacement (Q, q) for the projective model structure
on AQFT(C), which by [28, Definition 3.3.1] determines a cofibrant replacement for
the left Bousfield localized model categoryL

̂WAQFT(C). Let us also recall that every
object in the projective model category AQFT

(

C[W−1]) is fibrant. We then may take
RL∗ := L∗ and Lι∗ := ι∗ Q as models for the derived functors.

To show that the derived unit is a natural weak equivalence, it suffices to consider
its components on those objectsA ∈ L

̂WAQFT(C) that are both fibrant and cofibrant.
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The question then reduces to proving that the associated components ηA : A →
L∗ι∗(A) of the ordinary unit are weak equivalences in L

̂WAQFT(C), or equivalently
projective weak equivalences because both A and L∗ι∗(A) are fibrant objects, see
e.g. [28, Theorem 3.2.13]. Recalling that the adjunction (3.1) is obtained through the
AQFT 2-functor (2.11), we have that ηA = AO

η⊥ : A → L∗ι∗(A) = AOιL where

η⊥ is the unit for the adjunction L : C � C[W−1] : ι inCat⊥. By Proposition 3.3, we
may assume without loss of generality that W = L−1(IsoC[W−1]), which combined
with the triangle identities for the adjunction L � ι implies that all components of η⊥
are morphisms inW . It then follows that ηA is a projective weak equivalence because
A satisfies the homotopy time-slice axiom as it is by hypothesis a fibrant object, see
Theorem 2.21(b).

Concerning the derived counit, let us consider its component

ι∗ Q L∗(B)
ι∗qL∗(B)

ι∗ L∗(B)
εB

B (3.3)

on an arbitrary objectB ∈ AQFT
(

C[W−1]). By our choice of cofibrant replacement,
qL∗(B)

is a projectiveweak equivalence and hence the first arrow is aweak equivalence
since ι∗ preserves projectiveweak equivalences. It thus remains to show that the second
arrow is a weak equivalence too. For this we recall once more that the adjunction (3.1)
is obtained through the AQFT 2-functor (2.11), hence εB = BO

ε⊥ : BOLι =
ι∗ L∗(B) → B. The claim then follows from the fact that the counit ε⊥ for the
adjunction L : C � C[W−1] : ι in Cat⊥ is a natural isomorphism since the right
adjoint ι is fully faithful. �

A direct consequence of Theorem 3.6 is that each A ∈ AQFT(C) that satisfies the
homotopy time-slice axiom for W is projectively weakly equivalent to some Ast ∈
AQFT(C) that satisfies the strict time-slice axiom for W . Such an object can be
constructed very explicitly in the present case using only underived functors, i.e. there
is no need to develop models for derived functors. This important and useful fact is
summarized in the following

Corollary 3.7 Let A ∈ AQFT(C) be any AQFT that satisfies the homotopy time-slice
axiom for W. Then the corresponding component ηA : A → L∗ι∗(A) of the underived
unit is a projective weak equivalence, i.e. a weak equivalence in the usual projective
model structure from Theorem 2.17. In particular, Ast := L∗ι∗(A) defines an AQFT
that satisfies the strict time-slice axiom and is projectively weakly equivalent to A.

Proof It suffices to repeat the second paragraph of the proof of Theorem 3.6 (note that
the cofibrancy assumption plays no role there). �
Example 3.8 Recalling our list of reflective orthogonal localizations fromExample 3.4
andAppendixA,wewould like to emphasize that ourTheorem3.6,which strictifies the
homotopy time-slice axiom, covers the following important cases: (i) Haag–Kastler-
type AQFTs on a fixed globally hyperbolic Lorentzianmanifold (with or without time-
like boundary), (ii) locally covariant conformal AQFTs in two spacetime dimensions,
and (iii) locally covariant AQFTs in one spacetime dimension.
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4 Strictification criteria for empty orthogonality relations

In this section we consider the case of an orthogonal category C = (C,∅) that carries
an empty orthogonality relation and establish criteria under which there exists a stricti-
fication theorem for the associated homotopy time-slice axiom. This case is motivated
by its relevance for describing the relative Cauchy evolution (RCE) for ChK-valued
AQFTs, see [11] for earlier results that we will generalize in Example 4.4 below.

The main simplification that arises in the case of an empty orthogonality relation is
that the category of ChK-valued AQFTs from Theorem 2.17 can be presented as the
category

AQFT(C,∅) ∼= Fun
(

C,AlgAs(ChK)
)

(4.1)

of functors fromC to associative and unital differential graded algebras. The projective
model structure on AQFT(C,∅) from Theorem 2.17 then gets identified with the
projective model structure on Fun

(

C,AlgAs(ChK)
)

.
Using Proposition 2.11, we obtain that the orthogonal localization L : (C,∅) →

(C[W−1],∅) of C = (C,∅) at any set of morphisms W ⊆ MorC is given by the
usual categorical localization L and that the target category carries an empty orthog-
onality relation L∗(∅) = ∅ too. The key tool that we will use in order to simplify the
strictification problem of AQFTs is the following square of Quillen adjunctions

L
̂WAQFT(C,∅)

i∗

L !
AQFT

(

C[W−1],∅)

L∗

j∗

L
˜WFun(C,ChK)

i!
LanL

Fun
(

C[W−1],ChK
)

L∗

j!

(4.2)

The top horizontal adjunction is the one controlling the strictification problem for
AQFTs, see Proposition 2.24. The bottom horizontal adjunction is its analogue for
ChK-valued functors, where LanL denotes the left Kan extension along the underlying
functor L : C → C[W−1]. The left Bousfield localizationL

˜WFun(C,ChK) is defined
in analogy to Remark 2.22 with the set of maps ˜W given by y( f )[r ], for all ( f :
M → N ) ∈ W and all integers r ∈ Z, i.e. without applying the functor i!. The
right adjoints i∗ and j∗ of the vertical adjunctions are the functors that forget the
multiplications and units of an AQFT. Their left adjoints i! and j! are, in the present
case of empty orthogonality relations (see (4.1)), simply the functors that take object-
wise free algebras. For later use, we would like to record the following commutativity
properties

i∗ L∗ = L∗ j∗, L ! i! ∼= j! LanL , i! L∗ = L∗ j! (4.3)
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of the functors in the square of adjunctions (4.2). Note that the last property follows
from the fact that i! and j! form object-wise free algebras, which commutes with
pullback functors, hence it is special to the case of empty orthogonality relations.

The following result reduces the strictification problem for the homotopy time-slice
axiom of AQFTs with empty orthogonality relation to a simpler, but still non-trivial,
strictification problem for ChK-valued functors.

Theorem 4.1 Let C = (C,∅) be an orthogonal category with empty orthogonality
relation and W ⊆ MorC a subset. Suppose that the Quillen adjunction

LanL : L
˜WFun(C,ChK) Fun

(

C[W−1],ChK
) : L∗ (4.4)

for ChK-valued functors is a Quillen equivalence. Then the Quillen adjunction

L ! : L
̂WAQFT(C,∅) AQFT

(

C[W−1],∅) : L∗ (4.5)

from Proposition 2.24 is a Quillen equivalence too.

Proof To describe the derived functors, we pick a cofibrant replacement (Q, q) for
L

̂WAQFT(C,∅) and a cofibrant replacement (Z , z) for L
˜WFun(C,ChK), such that

q and z are natural projective weak equivalences. We have to prove the following two
statements:

1. For all locally fibrant objects A ∈ L
̂WAQFT(C,∅), i.e. A satisfies the homo-

topy time-slice axiom, the derived unit ηQ(A)
: Q(A) → L∗ L ! Q(A) is a local

weak equivalence, or equivalently a projective weak equivalence by [28, Theorem
3.2.13] because Q(A) and L∗ L ! Q(A) are locally fibrant objects.

2. For all objects B ∈ AQFT
(

C[W−1],∅)

, the derived counit

L ! Q L∗(B)
L !qL∗(B)

L ! L∗(B)
εB

B (4.6)

is a projective weak equivalence.

Our proof strategy is to use suitable cotriple resolutions [22, Chapter 13.3] to
reduce this problem to objects of the form A = i!(F) and B = j!(G), where
F ∈ L

˜WFun(C,ChK) is any locally fibrant object and G ∈ Fun
(

C[W−1],ChK
)

is any object. Leveraging the square of adjunctions (4.2), and in particular the com-
mutativity properties (4.3), then allows us to deduce, from the hypothesis that (4.4) is
a Quillen equivalence, that these components of the derived unit/counit are projective
weak equivalences.

Our cotriple resolutions are determined by the vertical adjunctions in (4.2).
Let us consider first the left vertical adjunction. The endofunctor T := i! i∗ on
L

̂WAQFT(C,∅) defines a comonad with coproduct i!ηi i∗ : T = i! i∗ → i! i∗ i! i∗ =
T 2 given by the adjunction unit and counit εi : T = i! i∗ → id given by the adjunction
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counit. This allows us to define a simplicial resolution

Res(A) :=
(

T (A) T 2(A) · · ·
)

∈ L
̂WAQFT(C,∅)

op
(4.7)

and an augmentation map Res(A) → A. Since both i! and i∗ act object-wise on the
underlying categoryC, so does Res. In fact, recalling (4.1), the resolutionRes is simply
an object-wise free resolution of dg-algebra valued functors. Using the normalized
totalization functor Tot⊕ : AlgAs(ChK)

op → AlgAs(ChK), which is a homotopy
colimit functor for simplicial diagrams of dg-algebras [24], the result in [22, Lemma
13.3.3] implies that

Tot⊕Res(A)
∼

A (4.8)

is a projective weak equivalence. The same holds true for the right vertical adjunction
in (4.2) by using instead of T the comonad T ′ := j! j∗ on AQFT

(

C[W−1],∅)

.
An important feature of these resolutions is that Tot⊕ commutes (up to weak equiv-

alence) with both the derived right adjoint L∗ and the derived left adjoint L ! Q of the
top horizontal adjunction in (4.2). The former is a consequence of the fact that L∗
is a pullback functor and Tot⊕ acts by post-composition on functors, while the latter
follows from the fact that derived left adjoints L ! Q commute with homotopy colimits.
Using also the explicit formof the simplicial resolution (4.7), this implies that the ques-
tion of whether the derived unit ηQ(A)

: Q(A) → L∗ L ! Q(A) is a projective weak
equivalence for all locally fibrant A ∈ L

̂WAQFT(C,∅) can be reduced to objects of
the form A = T (A′) = i! i∗(A′), for all locally fibrant A′ ∈ L

̂WAQFT(C,∅). Using
that i! and i∗ both preserve and detect local fibrancy (i.e. the homotopy time-slice
axiom), one can equivalently consider objects of the form A = i!(F), for all locally
fibrant F ∈ L

˜WFun(C,ChK). Applying the same arguments to the derived counit,
one obtains that it is sufficient to consider its components on objects of the form
B = j!(G), for all G ∈ Fun

(

C[W−1],ChK
)

.
Usingnow the commutativity properties (4.3), one obtains the commutative diagram

Q i!(F)

ηQi!(F)

Q i! Z(F)∼
Qi!zF

ηQi!Z(F)

∼
qi!Z(F)

i! Z(F)

ηi!Z(F)

i!ηFunZ(F)

L∗ L ! Q i!(F) L∗ L ! Q i! Z(F)
∼

L∗L !Qi!zF

∼
L∗L !qi!Z(F)

L∗ L ! i! Z(F) ∼= i! L∗ LanL Z(F)

(4.9)

that relates the derived units of the top and the bottom horizontal adjunction in (4.2).
Recall that (Z , z) denotes a projective cofibrant replacement for L

˜WFun(C,ChK)

and that projective weak equivalences are indicated by ∼. Since by hypothesis the
derived unit ηFunZ(F)

associated to LanL � L∗ is a projective weak equivalence and
since i! preserves projective weak equivalences, it follows that ηQi!(F)

is a projective
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weak equivalence too. Using again (4.3), one obtains the commutative diagram

L ! Q L∗ j!(G)

L !qL∗ j!(G)

L ! Q i! L∗(G)

L !qi!L∗(G)

∼=
L ! Q i! Z L∗(G)

L !qi!ZL∗(G)∼

L !Qi!zL∗(G)

∼

L ! L∗ j!(G)

ε j!(G)

L ! i! L∗(G)
∼=

∼=

L ! i! Z L∗(G)
L !i!zL∗(G)

∼=

j!(G) j! LanL L∗(G)
j!εFunG

j! LanL Z L∗(G)
j! LanL zL∗(G)

(4.10)

that relates the derived counits of the top and the bottom horizontal adjunctions in
(4.2). The bottom horizontal composition is the application of the functor j! to the
derived counit associated to LanL � L∗. Since by hypothesis the latter is a projective
weak equivalence and since j! preserves projective weak equivalences, it follows that
the left vertical composition is a projective weak equivalence too. This completes the
proof. �
Remark 4.2 In analogy to Corollary 3.7, a direct consequence of Theorem 4.1 is
that each A ∈ AQFT(C,∅) that satisfies the homotopy time-slice axiom for W is
projectively weakly equivalent to some Ast ∈ AQFT(C,∅) that satisfies the strict
time-slice axiom for W . However, the construction of such an object is more compli-
cated in the present case because it requires derived functors: Fixing as in the proof of
Theorem 4.1 any cofibrant replacement (Q, q) for the projective model structure on
AQFT(C,∅) and recalling that every object inAQFT

(

C[W−1],∅)

is fibrant, we may
takeRL∗ := L∗ and LL ! := L ! Q as models for the derived functors. The component
at A ∈ AQFT(C,∅) of the derived unit of the Quillen adjunction L ! � L∗ is then
given by the zig-zag

A Q(A)
qA ηQ(A)

L∗ L ! Q(A) . (4.11)

The map qA is by construction a projective weak equivalence and, as explained in
the proof of Theorem 4.1, so is the map ηQ(A). This implies that setting Ast :=
L∗

LL !(A) = L∗ L ! Q(A) defines an AQFT that satisfies the strict time-slice axiom
and is equivalent toA via the zig-zag of projectiveweak equivalences (4.11). To obtain
a computablemodel forAst , one can use [22, Theorem17.2.7] to describe, up to further
projective weak equivalences,

Ast = L∗
LL !(A) � L∗ Tot⊕B

(O(C[W−1],∅),O(C,∅),A
)

(4.12)

in terms of an operadic cotriple resolution, which can be worked out fairly explicitly
using the definitions in [22, Chapter 13.3]. (Note that the normalized totalization
functor Tot⊕ is denoted by N∗ in this book.)
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Remark 4.3 A sufficient condition for the hypotheses of Theorem 4.1 to hold true is
that the ordinary localization functor L : C → C[W−1] exhibits C[W−1] as an ∞-
categorical localization ofC atW . This is a direct consequence ofHinich’s rectification
results [26, Theorem 4.1.1] for ∞-functors. The question of whether the ordinary
functor L is an ∞-categorical localization can be addressed by using the explicit
criteria established in [27, Key Lemma 1.3.6]. As a side-remark, we would like to note
that reflective localizations of categories are ∞-localizations, hence our strictification
theorem for locally covariant AQFTs in one spacetime dimension (see Example 3.8)
can be deduced alternatively from Theorem 4.1 and Appendix A.

Example 4.4 Given any globally hyperbolic Lorentzian manifoldM with a sufficiently
small and compactly supported metric perturbation h, one can form the RCE category

C :=

⎛

⎜

⎜

⎜

⎜

⎝

M+i+ j+

M Mh

M−
i− j−

⎞

⎟

⎟

⎟

⎟

⎠

(4.13)

which controls the relative Cauchy evolution indexed by the pair (M, h). Here Mh

denotes the perturbed spacetime and M± := M\J∓(supp(h)) is the subspacetime
with the causal past/future of the support of h removed. The arrows in (4.13) are
inclusions and, by construction, they are all Cauchy morphisms, i.e. W = MorC. It
is shown in [11, Lemma 2.2] that the functor

L : C −→ BZ,

M, M−, Mh, M+ �−→ ∗,

i− �−→ 1,

j−, j+, i+ �−→ 0, (4.14)

defines a localization of C at W . Furthermore, the result in [11, Theorem 4.2] implies
that (4.4) is a Quillen equivalence for the present example. (As a side-remark, we
would like to note that similar ‘universal covering’ techniques for the RCE category
as those initiated in [11, Equation (2.13)] can be used to check directly Hinich’s criteria
[27, Key Lemma 1.3.6], which by Remark 4.3 leads to an independent proof of this
theorem.) This means that the hypotheses of Theorem 4.1 hold true, hence we obtain
a Quillen equivalence

L ! : L
̂WAQFT(C,∅) Fun

(

BZ,AlgAs(ChK)
) : L∗ . (4.15)

This provides a generalization of the strictification theorem in [11, Theorem 5.4] from
the case of linear homotopy AQFTs to all ChK-valued AQFTs on C that satisfy the
homotopy time-slice axiom. In particular, the strict Z-action carried by the object
LL !(A) ∈ Fun

(

BZ,AlgAs(ChK)
)

provides a strict realization of the RCE for a ChK-
valued AQFT A ∈ AQFT(C,∅) that satisfies the homotopy time-slice axiom.
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A Localization of Loc1 at Cauchymorphisms

In this appendix we present a very explicit model for the localization at all Cauchy
morphisms of the orthogonal category Loc1 of connected1 1-dimensional spacetimes.
The orthogonality relation in this case is empty ⊥Loc1

= ∅, and so will be the orthogo-
nality relation on the localized category. Up to equivalence of (orthogonal) categories,
we can present Loc1 as the category whose objects are pairs (M, e) consisting of a
1-manifold M ∼= R and a non-degenerate 1-form e ∈ �1(M) (the vielbein, encod-
ing the metric and time-orientation), and whose morphisms f : (M, e) → (M ′, e′)
are all embeddings f : M → M ′ such that f ∗(e′) = e. Note that each object
(M, e) ∈ Loc1 embeds via a Loc1-morphism into (R, dt), where by t we denote a
(time) coordinate on R. As a consequence, Loc1 is equivalent to its full subcategory
Locskl1 ⊆ Loc1 consisting of the objects ((a, b), dt) ∈ Loc1 determined by open inter-
vals (a, b) ⊆ R, with −∞ ≤ a < b ≤ +∞. (The superscript skl refers to the concept
of ‘skeletal models’ as introduced in [6].) The morphisms are given by translations
fξ : ((a, b), dt) → ((a′, b′), dt) , t �→ t + ξ , with ξ ∈ R satisfying the condition
a′ − a ≤ ξ ≤ b′ − b such that the interval (a, b) is mapped into the interval (a′, b′).

1 Restricting to connected manifolds simplifies the presentation of this appendix. Our proof below general-
izes in a fairly obvious way to non-connected manifolds by treating each connected component separately.
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Let us denote byBRδ the category consisting of a single object, say ∗, with Hom-set
the Abelian group R

δ := R (with no topology attached). The functor

j : BRδ −→ Locskl1 ,

∗ �−→ (R, dt),

ξ ∈ R
δ �−→ ( fξ : (R, dt) → (R, dt)) (A.1)

is fully faithful and it admits a left adjoint given by

L : Locskl1 −→ BRδ,

((a, b), dt) �−→ ∗,
(

fξ : ((a, b), dt) → ((a′, b′), dt)
) �−→ ξ ∈ R

δ. (A.2)

For completeness, let us mention that the adjunction unit η : id → j L is given by the
components η(a,b) := f0 : ((a, b), dt) → (R, dt) and that the counit ε : L j → id is
the identity natural isomorphism of L j = id. Equipping all these categories with the

empty orthogonality relation, we obtain from Proposition 3.3 that L : Locskl1 → BRδ

is a reflective localization at all morphisms. (Note that every morphism in Locskl1 is

Cauchy.) Choosing a quasi-inverse of the equivalence Locskl1
∼−→ Loc1 of orthog-

onal categories, we obtain a localization Loc1
∼−→ Locskl1

L−→ BRδ of Loc1 at all
(Cauchy) morphisms. Since equivalences in 2-categories can be upgraded to adjoint
equivalences, the latter localization is reflective too.
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