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Abstract—Constrained type-2 fuzzy sets have been proposed as
a tool to model type-2 fuzzy sets starting from a type-1 generator
set with uncertainty. This constrained representation only defines
as acceptable the embedded sets that have the same shape as the
generator set in order to process only membership functions that
are considered “meaningful” when using fuzzy operators such as
centroid defuzzification. However, the idea of “meaningfulness”
has never been clearly defined; at the same time there are some
contexts in which a given concept (e.g. medium height) can be
reasonably represented by multiple shapes, such as triangular
and Gaussian. The aim of this paper is both to formally define
the idea of meaningfulness of shapes and to extend the formal
definitions of constrained interval type-2 fuzzy sets in order
to allow the presence of multiple shapes among the acceptable
embedded sets.

Index Terms—constrained type-2, type-2 fuzzy sets, embedded
sets, meaningful membership function

I. INTRODUCTION

Since their introduction, type-2 fuzzy sets (T2 FS) [1] have
been widely used due to their inherent capability of modeling
uncertainty with membership functions. Some of the most
widely used fuzzy operators, such as Karnik-Mendel (KM)
centroid defuzzification [2], make of use of the concept of
embedded sets (ES). They can be intuitively seen as a path
along the T2 surface of the FS they belong to; additionally, it
has been proven [1] that any T2 FS can be represented as the
union of all its ESs (representation theorem).

In the past few years, however, some research papers [3]–[5]
argued that in some contexts (e.g. human reasoning) the current
formal definition of T2 FSs gives too much “mathematical
freedom” in the identification of the boundaries of the footprint
of uncertainty (FOU) and its ESs. As a result, the semantic
relation between the T2 FS and the concept it should model
is lost.

For this reason constrained type-2 fuzzy sets (CT2 FSs)
were introduced [6]. They identify a subset of T2 FSs that can
be represented by the use of only “meaningful” membership
functions (MF), constraining both the possible shapes of the
ESs and the FOU boundaries. The main idea behind them, is
to represent T2 FSs as T1 FSs with uncertainty on their exact
location on the x-axis. Therefore, the ESs that are considered
acceptable (acceptable embedded sets, AES) are obtained by

the translation on the x-axis of the generator set (GS) while
the FOU is obtained as the union of all the AES.

So far, however, no clear definition has been given of what a
“meaningful” shape is in the context of CIT2 FSs. At the same
time, it has been analyzed in [7] that operations on CT2 may
produce T2 FSs that formally are not CT2 FSs, i.e. it is not
possible to find a GS that would fully cover their FOU. That is
because all the AESs obtained from the fuzzy operators have
different shapes, regardless of the fact that they could all be
reasonable for the operation result they represent. The aim of
this paper is to both clarify the concept of “meaningfulness”
in CIT2 FSs and to extend the original CT2 definitions, in
order to include different and more general constraints that go
behind the requirement of having ESs with the same shape.
By doing this, we will provide a more powerful modeling tool
which can be useful in all the cases where different shapes
(e.g. both triangular and Gaussian) are considered acceptable
for the representation of a given concept.

II. PRELIMINARY DEFINITIONS

This section will be focused on basic fuzzy logic definitions
that will be used in the rest of the paper. They are taken or
rephrased from [1], [6], [8].

Definition 1. A type-1 fuzzy set (T1 FS), denoted A, is char-
acterized by a T1 membership function (MF) µA : X 7→ [0, 1],
i.e.,

A = {(x, µA(x)) |x ∈ X} (1)

with X being the universe of discourse (UOD).

Definition 2. A type-2 fuzzy set (T2 FS), denoted Ã, is
characterized by a T2 MF µÃ : X × Jx 7→ [0, 1], where
Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), µÃ(x, u)) |x ∈ X,u ∈ Jx ⊆ [0, 1]} (2)

in which X is the UOD. Ã can also be expressed as:

Ã =

∫
x∈X

∫
u∈Jx

µÃ(x, u)/(x, u) Jx ⊆ [0, 1] (3)

Definition 3. An interval type-2 fuzzy set (IT2 FS), denoted
Ã, is characterized by an IT2 MF µÃ : X × Jx 7→ {0, 1},



where Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), µÃ(x, u)) |x ∈ X,u ∈ Jx ⊆ [0, 1]} (4)

in which X is the UOD. Ã can also be expressed as:

Ã =

∫
x∈X

∫
u∈Jx

1/(x, u) Jx ⊆ [0, 1] (5)

Definition 4. Give a T2 FS Ã, its footprint of uncertainty
(FOU) [9] is the set of points (x,u) for which µÃ(x, u) > 0:

FOU(Ã) = {(x, u) | (x, u) ∈ X × [0, 1], µÃ(x, u) > 0} (6)

Definition 5. At each value of x, say x = x′, the 2-D plane
whose axes are u and µÃ(x′, u) is called a vertical slice of
µÃ(x′, u). A secondary MF is a vertical slice of µÃ(x, u). It
is µÃ(x = x′, u) for x ∈ X and ∀u ∈ Jx′ ⊆ [0, 1], i.e.,

µÃ(x = x′, u) ≡ µÃ(x′) =

∫
u∈Jx′

fx′(u)/u Jx′ ⊆ [0, 1]

(7)

Definition 6. The domain of a secondary MF is called the
primary membership of x. In (2), Jx is the primary membership
of x.

Definition 7. A type-2 embedded set (T2 ES), denoted ÃE ,
is a path along the T2 set it belongs to. It contains only one
primary degree ux for each x, with its associated secondary
grade vx:

µÃE
(x, ux) = vx x ∈ X,ux ∈ Jx (8)

Definition 8. A type-1 embedded set (T1 ES), denoted AE
represents a projection of a T2 ES, i.e. its secondary degree
has been dropped. Therefore it contains one primary degree
ux for each x:

µAE
(x) = ux; µAE

(x, ux) = vx x ∈ X,ux ∈ Jx (9)

III. CONSTRAINED INTERVAL TYPE-2: CURRENT FORMAL
DEFINITIONS

In the remainder of the paper, for simplicity, we will focus
on constrained interval type-2 (CIT2) FSs rather than the more
general CT2 representation. CIT2 FSs are defined starting from
a T1 FS, called generator set (GS), which is the underlying
T1 MF with uncertainty modeling a given concept. To obtain
the AESs of a CIT2 FS, we translate our GS along the x-axis
using a set of real values. This set is called the displacement
set:

Definition 9. A displacement set (DS), denoted D, is a closed
set of real numbers such that:

D ⊆ R, 0 ∈ D (10)

With the DS and the GS, we can generate the set of AESs
that share the same shape:

Definition 10. A collection of T1 acceptable embedded sets
(CAES), is a set of T1 FSs obtained from the shifting of a T1

GS G. Formally, each of the acceptable embedded sets (AES)
S in a CAES can be expressed as:

S = {(x, µS(x)) |x ∈ X} (11)

where

µS : X 7→ [0, 1], ∃c ∈ D : µS(x) = µG(x−c),∀x ∈ X (12)

given a UOD X, a DS D, a T1 GS G.

The CAES is then used to define a CIT2 FS:

Definition 11. A constrained interval type-2 fuzzy set (CIT2
FS) Ă, is characterized by an IT2 MF µĂ with Jx =⋃
S∈CAESĂ

µS(x):

Ă = {((x, u), (µĂ(x, u))) |x ∈ X, u ∈
⋃

S∈CAESĂ

µS(x)}

(13)
with CAESĂ being a CAES. Ă can also be expressed as:

Ă =

∫
x∈X

∫
u∈Jx

1

/
(x, u)

=

∫
x∈X

∫
u∈

⋃
S∈CAES

Ă

µS(x)

1

/
(x, u)

(14)

As a result of these definitions, the CIT2 FSs are all and only
the IT2 FS with a FOU that is obtainable as the union of ESs
sharing the same shape (i.e. the one determined by the GS).
By doing this, we make sure that all the fuzzy operators (e.g.
centroid defuzzification) only process ESs with a “meaningful”
shape.

The specific meaning of “meaningfulness”, however, has not
been defined clearly and the identification of the correct shape
for the GS and the AESs is left to the fuzzy system designer.
Additionally, Def. 10 poses a restriction that can be excessive
in contexts in which more than one shape is reasonable to
model a given concept, as will be analysed in the next section.

IV. CIT2 LIMITATIONS: TWO CASE STUDIES

Even though the idea behind CT2 FSs was to provide a
representation that keeps a “meaningful” relation between T2
FSs and the concept they model, there are some cases in which
the restriction of having only AESs sharing the same shape
is too limiting. We will support this claim by providing two
practical example of CIT2 application in which the use of
different shapes is needed to obtain an accurate representation
of the modeled scenario.

A. Modeling Words

In this thought experiment, our goal is to obtain a CIT2 FS
for the concept of medium height. To do that, we start from
a Gaussian T1 as our GS (Fig. 1) to which we want to add
uncertainty.

In order to obtain our CAES, we asked different people
to place our T1 GS on the x-axis (similar approaches can
be found in [10], [11]). Since the concept of medium height



Fig. 1. T1 GS modeling medium height (picture from [6])

varies slightly from person to person, it is likely that we would
obtain something similar to what is shown in Fig. 2.

Fig. 2. AES obtained from the medium height experiment (picture from [6])

By using the approach described above, we are making sure
that only the ESs with a “meaningful” shape are included
in the AES and then processed by fuzzy operators such as
KM centroid defuzzification. Specifically, all the AES keep a
semantic relation with the concept of medium height they are
modeling.

B. Analysis - I

We can see how the idea of imposing the use of one
specific Gaussian for the generation of the CAES is very
limiting in this case. For example, one could imagine that
some of the participants would want to change the spread of
the Gaussian or would want to use triangular shapes instead
of Gaussian ones. This would be unacceptable by the current
CIT2 definitions since a CAES with different shapes would
not satisfy Def. 10. Nevertheless, in this example there are
multiple shapes that can be considered “meaningful”, in the
sense that they keep the semantic relation with the concept
they model. In this case, we can see that the concept of

“meaningfulness” is not kept by one specific shape but it
is rather the result of the satisfaction of a set of constraints
that we implicitly impose on words in human reasoning. For
example, one could imagine that in the case of “medium
height”, the meaningfulness and the semantic relation is kept
by all the symmetric shapes that are monotonically increasing
up to a plateau and then monotonically decreasing.

The analysis of this experiment suggests that the idea of
imposing one shape to all the ESs is only one of the possible
constraints that a designer would want to use for a T2 FS
and that the concept of “meaningfulness” is not related to one
specific shape but is rather the result of the satisfaction of a set
of implicit constraints that are related to the concept we are
working with. Furthermore, even non-convexity and normality,
which are usually described as “desirable properties” for MFs
[3], [5], [6], can be “non-meaningful” in some contexts, as
shown in the next subsection.

C. Fuzzy system outputs: non-normal and convex membership
functions

To show that non-normal and/or convex MFs can still be
meaningful, we will analyze the problem that was described
in [7] in relation to fuzzy outputs of CIT2 fuzzy rules, i.e.
fuzzy rules in which all the antecedent and consequent FSs
involved are CIT2 FSs. Consider the following CIT2 fuzzy
rule R:

R: IF x1 is Ă AND x2 is B̆ THEN y is C̆

The consequent FS C̆ is shown in Fig. 3. It is obtained using
a triangular MF as a GS and a discrete DS to generate the
AESs.

Fig. 3. Consequent CIT2 FS C̆ used in the rule R (FOU in light blue)

To carry out the inference in a rule, we will use the process
described in [7]: the CIT2 fuzzy rule is expanded in a set of
T1 fuzzy rule; each one of them is obtained by substituting the
CIT2 FSs involved in the rule with one of their T1 AESs. The
goal of the process is to obtain the AESs of the FS resulting
from the rule evaluation.

The fuzzy rule output shown in Fig. 4 has been obtained
using the process described above, with the minimum function
for the conjunction (and) and implication operator.



Fig. 4. CIT2 output from the inference of a CIT2 rule in which all the sets
involved are fixed-shape CIT2 sets (FOU in light blue)

D. Analysis - II

It is clear that the collection of T1 ES in Fig.4 is not a
CAES as defined in Def. 10: since they have been obtained
from the same triangular shape truncated at different height,
it is not possible to identify a valid T1 GS. In other words, it
is not possible to choose one of the T1 FS in Fig. 4 as a GS,
so that the other AESs could be obtained from the translation
along the x-axis of the GS. Furthermore, these AESs are non-
normal. Therefore, we can conclude that the fuzzy result of a
CIT2 fuzzy rule is not a CIT2 FS, according to Def. 14. This
seems to suggest that the collection of T1 FSs in Fig. 4 is not
“meaningful” in our context.

Fig. 5. Examples of two AES obtainable from a CIT2 Mamdani fuzzy system

However, each of those T1 FSs represents a plausible T1
fuzzy rule output since they have been obtained as results of
T1 fuzzy rules by picking one of the AESs of each CIT2 FSs
involved in the CIT2 rule. Intuitively, the T1 FSs in Fig. 4
represent possible T1 fuzzy rule outputs when the uncertainty
modeled around the T1 GS is removed and the CIT2 FS
collapses to one of its AESs, i.e. when the one of the possible
locations of each T1 GS on the x-axis is chosen. Therefore,
the collection of T1 FSs in Fig. 4 represents all the possible
T1 fuzzy outputs that can be obtained by taking into account
the uncertainty on the T1 GSs of all the CIT2 FSs involved
in the rule.

This analysis supports the fact that the FSs in Fig. 4,
still carry a “meaningful” connection when it comes to the

representation of fuzzy rule outputs even though they do
not satisfy the definition of CAES as described in Def. 10
and are non-normal T1 FSs. In contrast, the standard IT2
representation would consider as acceptable all the ESs of a
given IT2 fuzzy rule output, regardless of the fact that they
could or could not represent an actual T1 rule output FS.

In addition to that, if we have a Mamdani fuzzy system with
multiple CIT2 fuzzy rules that we combine by the union oper-
ator, we can obtain a collection of T1 FSs which is non-convex
(Fig. 5). For the same reasons discussed above, however,
those FSs would still be “meaningful” for the representation
of a Mamdani system output since they represent plausible
T1 system outputs when an exact location for all the GSs is
chosen. We can therefore conclude that even non-convexity
and normality, in contrast to what has been initially stated
in the original definition of CIT2 FSs [6], can be acceptable
properties with a clear “meaning” (i.e. represent T1 fuzzy rule
outputs).

V. EXTENDING CONSTRAINED TYPE 2 FUZZY SETS

As a result of the analysis carried out in the previous
section, we believe that new formal definitions for CIT2 FSs
are needed. As already discussed, the original concept of
“meaningfulness” fulfilled by the use of a single shape for
all the ESs can be limiting in some contexts. Specifically, it
is only useful when the kind of uncertainty we are modeling
is restricted to the exact location of the T1 GS on the x-axis.
In addition to that, it is not clear when and why a shape is
considered to be meaningful in a given scenario. For these
reasons, we believe that a formalization of the concept of
meaningfulness is needed. Specifically, we propose a novel
representation of the CAES (Def. 10) based on the satisfaction
of a set of constraints. This approach both formalises the con-
cept of “meaningfulness” into the satisfaction of constraints
and provides a representation that makes ESs with different
shapes acceptable.

Definition 12. A collection of T1 acceptable embedded sets
(CAES), is a set of T1 FSs satisfying a set of n constraints
constraints C1, ..., Cn:

CAES = {S |µS : X 7→ [0, 1], C1(S) ? ... ? Cn(S)} (15)

with X being the UOD and each of the ? being either ∧ or ∨.

This new definition of CAES can then be used in Def. 11
to obtain our new CIT2 FSs. All the other definitions remain
unchanged.

In the context of human reasoning, those constraints are
implicitly imposed by people on the words they use. For
example, as discussed in Sec. IV, when using words such
as medium, one can expect the MF modeling this concept
to be monotonically increasing-decreasing, symmetric and
non-convex. In other scenarios, MFs are obtained from data
analysis, as in [4]. In this case, the constraints are given by
empirical or theoretical relations between the values of the
universe of discourse. The original idea of constraining the ESs



to share the same shape is only one of the possible constraints
we may want to impose on the T2 FS we are modeling.

To prove that this new formulation is more general than the
old one, we will show that any CAES that satisfies Def. 10,
can also be obtained by the use of constrains as in Def. 12.
Specifically, given a CAES A where all its T1 sets are obtained
from a T1 GS G and a DS D, A can also be expressed as:

A = {S |µS : X 7→ [0, 1], C1(S)} (16)

where:

C1(S) =

{
true if ∃ c ∈ D : µS(x) = µG(x− c),∀x ∈ X
false otherwise

A. Applications

To show a practical application of this new definition of
CIT2, we will analyze a case that is very similar to the one
presented in the first part of Sec. IV. Just like in the other
thought experiment, we want to model a CIT2 FS representing
medium height starting from T1 MFs obtained from a survey.
The difference is that, this time, each person can freely choose
the shape that he or she considers to be the most appropriate
for this context. A possible experimental result is shown in
Fig. 6. Since we would likely obtain different MFs (e.g.
triangular and Gaussian), this scenario couldn’t be modeled
with the old CIT2 definition. However, both triangles and
Gaussians are appropriate in this context.

Fig. 6. Possible T1 MFs modeling medium height

When the number of AES is finite and obtained from
surveys or data analysis, generating the constraints for our
CAES is trivial. One strategy would be to put these MFs in a
set named E and then define the following constraint C1:

C1(S) =

{
true S ∈ E
false otherwise

This constraint can then be used to build a CAES and a
CIT2 FS as in Def. 11.

The idea of defining a CAES as T1 MFs satisfying a set
of constraints is more powerful when the number of shapes
that are acceptable is infinite. For example, we may want to
consider as acceptable for medium height all the Gaussians
having mean between 170 and 180 and having a standard

deviation between 1 and 1.5. This scenario can be easily
modeled by the following constraint:

CG(S) =


true ∃µ, σ : 170 ≤ µ ≤ 180, 1 ≤ σ ≤ 1.5

µS(x) = 1
σ
√

2π
e−(x−µ)2/2σ2

,∀x ∈ X
false otherwise

Even if all the MFs satisfying the constraints CG are
Gaussians, it would have not been possible to model this
scenario using the old CIT2 definition. That is because the
difference in their variance could not by modeled by Def. 10
since it considers only as acceptable Gaussians that differed for
their mean, i.e. Gaussians that be obtained as the translation
along the x-axis of a GS.

VI. DISCUSSION

The new CIT2 definition, based on constraints satisfaction,
allows us to model a broader set of scenarios, like the ones
described in Sec. IV, V. In addition to that, no property is
imposed a priori on our sets, not even normality or non-
convexity.

This represent a significant difference when compared to the
other constrained approach introduced by Wu in [3], where any
“well shaped” [5] IT2 FS is represented using only normal and
non-convex ESs.

In contrast, we believe that the imposition of normality and
non-convexity can be too restrictive in some cases and not
sufficient in others. For example, when working with fuzzy
outputs these properties are usually not necessary since these
sets keep their own interpretability regardless of their convex
o non-normal shape.

If, instead, we only want one or a limited set of specific
shapes to be acceptable for our ESs, normality and non-
convexity alone are not sufficient to guarantee that our T2
FSs will keep a semantic meaning with the concept they’re
modeling.

In addition to that, as already analyzed in [5], Wu’s approach
has the downside of being unusable in Mamdani systems
since there is no guarantee that its fuzzy output will maintain
the “well shaped” properties when rule outputs are combined
using the union operator.

Furthermore, Wu’s representation is a special case of the
CIT2 definition proposed in this paper. That is simply because
non-convexity and normality, can be expressed mathematically
in terms of constraints (as shown in [3]) that can then be used
to generate a CAES and therefore a CIT2 FS.

Finally, we would like to mention that it is possible to build
a CAES so that it includes all the ESs of an IT2 FS. In other
words, given any IT2 FS, it is always possible to generate a
CAES to obtain an equivalent CIT2 FS.

Specifically, given an IT2 FS Ã with the FOU delimited
by the upperbound and lowerbound MFs µÃ and µ

Ã
we

can generate the CAESĂ of the equivalent (i.e. with the
same FOU) CIT2 FS Ă by using the conjunction of the two
following constraints C1 and C2:



C1(S) =

{
true if µS(x) <= µÃ(x),∀x ∈ X
false otherwise

C2(S) =

{
true if µS(x) >= µ

Ã
(x),∀x ∈ X

false otherwise

However, this does not mean that there is an equivalence
between the IT2 and CIT2 representations. In fact, whenever
we prefer CIT2 to IT2 FSs, our goal is to work with a subset
of all the ES described in the representation theorem [1] in
order to keep a semantic meaning and/or consistency in data
representation with the concepts we are modeling.

VII. CONCLUSION

In this paper, we analysed the use of the concept of
meaningful shapes in CT2 FSs. We showed how the current
definition of CIT2 FSs that only considers as acceptable the
ESs with a given shape, is sometimes not necessary to maintain
a meaningful connection with the concept one is modeling,
even in contexts such as human reasoning. In addition to that,
the concept of meaningfulness itself has remained vague and
not formally defined. To overcome these limitations, we gave a
new, more general definition of CIT2 FSs based on the concept
of the satisfaction of mathematical constraints to identify the
shapes that are considered “meaningful” for our ESs. These
constraints can be extracted, for example, by analyzing the
properties that we implicitly desire when we use words (such
as medium) or they can be determined so that they keep
empirical or theoretical relations between the values of the
universe of discourse. We also showed how the old definition
can be considered as a special case of the new one and how,
given an IT2 FS, is it always possible to obtain its equivalent
(i.e. with the same FOU) CIT2 representation by using two
constraints. Finally, we discussed the differences between our
approach and the constrained approach proposed by Wu in [3],
which can be seen as a special case of our CIT2 FSs. In future
work, we will show how the new definitions presented in this
paper will make the CIT2 FSs more flexible and applicable
in real case scenarios which require the use of multiple (but
limited) shapes for the representation of data.
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