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13

14 Aims

15 The aim of this research was to analyze the Quorum sensing (QS) and Quorum quenching (QQ) 

16 mechanisms based on N-acyl-L-homoserine lactones (AHLs) in A. brasilense Az39, a strain with 

17 remarkable capacity to benefit a wide range of crops under agronomic conditions. 

18 Methods and Results

19 We performed an in silico and in vitro analysis of the quorum mechanisms in A. brasilense Az39.  

20 The results obtained in vitro by the use of the reporter strains C. violaceum and A. tumefaciens and 

21 Liquid Chromatography coupled to Mass-Mass Spectrometry (LC-MS/MS) analysis shown that 

22 although Az39 does not produce molecules AHL, it is capable of degrading them by at least two 

23 hypothetical enzymes identified by bioinformatics approach, associated to the bacterial cell. In 

24 Az39 inoculated cultures incubated with 500 nmol l-1 of the C3 unsubstituted AHLs (C4, C6, C8, 

25 C10, C12, C14), AHL levels were lower than non-inoculated LB media controls. Similar results 

26 were observed upon addition of AHLs with hydroxy (OH-) and keto (oxo-) substitutions  in carbon 

27 3. These results not only demonstrate the ability of Az39 to degrade AHLs, but the wide spectrum 

28 of molecules that can be degraded by this bacterium.

29 Conclusions
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30 A. brasilense Az39 is a silent bacterium unable to produce AHL signals, but with the ability to 

31 interrupt the communications between other bacteria and/or plants by a quorum quenching activity.

32 Significance and Impact of Study

33 This is the first report confirming by unequivocal methodology the ability of A. brasilense, one of 

34 the most agriculturally used benefic bacteria around the world, to degrade AHLs by a quorum 

35 quenching mechanism.

36

37 Journal keywords: Bioproducts, Mechanism of action, Microbial physiology, Quorum sensing, 

38 Genomics

39

40 1. Introduction

41 Microorganisms have the capacity to perceive population density by generating small signaling 

42 molecules named autoinducers (Nealson 1977). As a result, at gene level a hierarchical response is 

43 developed to coordinate social behavior. This process is called quorum sensing (QS) (Fuqua et al. 

44 1994). The most studied QS system is undoubtedly the one that involves N-acyl homoserine 

45 lactone or AHL-type signals, discovered for the first time in Vibrio fischeri, a seawater symbiont 

46 bacterium (Nealson and Hastings 1979). In this bacterium, QS consists of a modulatory protein or 

47 transcriptional regulator belonging to the LuxR family and its homologue LuxI, an enzyme that 

48 produces the signal AHL molecule. Although a large number of bacteria possess the canonical 

49 LuxR/LuxI QS system, it has been found almost exclusively in α, β and γ Proteobacteria (Williams 

50 2007). In general, AHLs are small molecules composed of fatty acyl chain linked to a lactonized 

51 homoserine through an amide bond. LuxI, more specifically, catalyzes the binding of S-

52 adenosylmethionine (SAM) to an acyl carrier protein (acyl-ACP). In other words, LuxI catalyzes 

53 the binding between a homoserine lactone group derived from the metabolism of amino acids, and 

54 an acyl lateral chain derived from fatty acid metabolism, which are the two structural components 

55 of the resulting AHL (Fuqua et al. 2001). For their part, LuxR-like proteins (with approximately 

56 250 amino acids) can be subdivided into two functional domains: the amino-terminal region that 

57 contains the AHL-binding domain and the carboxyl-terminal region that contains the helix-turn-

58 helix of DNA (Whitehead et al. 2001). Once in contact with the AHLs, LuxR joins a palindrome 20 
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59 bp sequence called the lux box, from the luxI promoter region, in the form of a LuxR-autoinducer 

60 complex. This leads to transcriptional activation or repression, thus expressing a particular 

61 phenotype.

62 On the other hand, some bacterial strains present quorum systems with a non-cognate LuxR protein 

63 (i.e. they lack LuxI) and they thus respond to other signal molecules. These systems are called 

64 LuxR orphans or LuxR solos (Patankar and Gonzalez 2009), and in some cases they act in concert 

65 with the LuxR/LuxI canonical system. The appearance of LuxR-solos regulators indicates that 

66 these protein families could be involved in intra-kingdom or inter-kingdom signaling systems 

67 through the detection of different compounds produced by other prokaryotes or eukaryotes 

68 organisms (Patankar and Gonzalez 2009, Patel et al. 2013).

69 In nature, there are also bacterial mechanisms that inactivate quorum signals called Quorum 

70 Quenching (QQ) (Zhang 2003). These can generally act both at the level of signal generation and 

71 reception. Although there are several QS mechanisms involving inhibitory proteins and/or AHL 

72 antagonist molecules, the mechanisms that involve enzymes are widespread in different 

73 environments. Three main enzymatic QQ mechanisms have been clearly described: (1) hydrolysis 

74 of the lactone ring (AHL lactonase activity), (2) hydrolysis of the amide bound (AHL acylase 

75 activity), and (3) modification of the acyl chain (AHL oxidase and reductase activity) (Uroz et al. 

76 2009), but they have not been studied in depth in soil bacteria. As occurs in the QS system, QQ 

77 mechanisms can serve in particular environments to modulate the interaction between a bacterial 

78 community and eukaryotic organisms (Tait et al. 2009). 

79 Soil bacteria living in the rhizosphere, or rhizobacteria, have the ability to associate with numerous 

80 plant species. If this association is beneficial for plant growth or development, they are called Plant 

81 Growth Promoting Rhizobacteria or PGPR (Kloepper et al. 1989). Among the most successful 

82 associations and therefore the most studied in nature, are those related to the genus Azospirillum sp. 

83 The ability of these rhizobacteria to promote plant growth depends mainly on the presence of one 

84 or more mechanisms that might act individually or in synch on the physiology or metabolism of the 

85 colonized plant (Bashan and de-Bashan 2010)

86 A. brasilense Az39 was isolated in 1982 from surface-sterilized wheat seedlings in Marcos Juarez, 

87 Córdoba, Argentina, evaluated under agronomic conditions and selected based on its ability to 
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88 increase crop yields of maize and wheat under agronomic conditions (Díaz-Zorita and Canigia 

89 2009). A. brasilense Az39 has been widely used in agriculture in America during the last 40 years 

90 (Cassán and Díaz Zorita 2016). The potential mechanisms responsible for growth promotion in this 

91 strain have been partially unraveled (Perrig et al. 2007, Cassán et al. 2009). Despite its agro-

92 economic importance and the fact that several genomes from this genus have been sequenced, such 

93 as those belonging to Azospirillum sp. B510, A. lipoferum 4B, A. brasilense Sp245, CBG497 and 

94 Az39 (Kaneko et al. 2010, Wisniewski-Dyé et al. 2011, Wisniewski-Dyé et al. 2012, Rivera et al. 

95 2014), there are few reports related to bacterial capacity to produce AHL-like molecules and/or 

96 other phenomena associated with quorum mechanisms. Therefore, there is little understanding 

97 about the Azospirillum-Azospirillum, Azospirillum-bacteria and Azospirrillum-plant interactions 

98 mediated by quorum mechanisms, highlighting the need for a more exhaustive genomic-functional 

99 analysis of these bacteria due their agricultural and economic interest.  Considering this 

100 background, the main objective of this work was to analyze both in silico and in vitro the quorum 

101 sensing and quorum quenching phenomenon mediated by AHLs in the model strain A. brasilense 

102 Az39.

103

104 2. Material and Methods

105 2.1. Bacterial strains and growth conditions

106 A. brasilense Az39 was obtained from the Bacterial Culture Collection at the INTA-IMYZA, 

107 Castelar, Buenos Aires, Argentina (WDCM31). Pure cultures of A. brasilense Az39 were obtained 

108 in Petri dishes containing Luria-Bertani medium (Miller 1972) modified by the addition of 15 ml l-1 

109 Congo Red (LB-RC) or MMAB minimal medium (Vanstockem et al. 1987). Typical colonies from 

110 such media were used to inoculate LB liquid medium in 100 ml flasks and cultured at 37°C with 

111 240 rpm shaking until late exponential growth phase was reached. Chromobacterium violaceum 

112 CV026 (McClean et al. 1997) grew in LB medium supplemented with 25 μg ml-1 kanamycin (Km). 

113 Agrobacterium tumefaciens NTL4/pZLR4 (Cha et al. 1998) was cultured in AT medium (Morton 

114 and Fuqua, 2013) supplemented with 50 μg ml-1 gentamicin (Gm). These two strains were used as 

115 reporter strains in the bioassays described below.

116
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117 2.2. In silico analysis of quorum mechanisms in A. brasilense Az39

118 We determined the presence of coding sequences for proteins involved in quorum sensing 

119 mechanisms in the genome of A. brasilense Az39, and compared it with available sequences from 

120 other strains belonging to the genus Azospirillum. For the analysis, the comparative tools KEGG 

121 (Kanehisa et al. 2012), RAST (Aziz et al. 2008) and MaGe (Vallenet et al. 2006) were used, as 

122 well as the bio-informatic tools UniProt (Apweiler et al. 2004) and InterPro (Mulder et al. 2005). 

123 Our work focused on the identification of coding sequences related with: (1) enzymes and 

124 transcriptional regulators involved in QS detection/response, (2) AHL synthases homologues, (3) 

125 homologous LuxR-type regulatory proteins, (4) LuxR orphans or LuxR solos and (5) enzymes and 

126 transcriptional regulators involved in QQ detection/response, including lactonases, acylases and 

127 oxidoreductases. In order to predict sub cellular localization of a protein  specific for Gram-

128 negative bacteria CELLO Web server (http://cello.life.nctu.edu.tw.) was used.

129

130 2.3. In vitro analysis of quorum mechanisms in A. brasilense Az39

131 2.3.1. Quorum sensing

132 2.3.1.1. Evaluation of production of AHLs by bioassays 

133 The presence of AHLs in Az39 cultures was validated by the use of the reporter strains C. 

134 violaceum CV026 and A. tumefaciens NTL4/pZLR4 which are specific for AHLs with a short and 

135 long acylic chains, respectively. A 500 µl aliquot of a A. tumefaciens NTL4/pZLR4 or C. 

136 violaceum CV026 exponential cultures were individually transferred into a 10 ml capacity glass 

137 tubes containing 4500 µl of semisolid AT medium 0.7 % (w/v agar), modified by addition of 50 µg 

138 ml-1 X-gal at 45°C. The mixes were plated out on Petri dishes and solidified under aseptic 

139 conditions. In both cases, small holes were made in the Petri dish containing AT or LB solidified 

140 culture medium, using a 5 mm cylindrical punch. A 10 μl aliquot of filtered supernatants obtained 

141 from 50 ml LB culture medium at 6, 12, 24 and 48 hours after inoculation with 50 μl of Az39 were 

142 placed individually in one of the holes and evaluated. The plates were incubated at 30°C for 24 h to 

143 reveal the presence of AHL by a colorimetric reaction. In addition, some experimental conditions 

144 such as incubation temperature, pH and AHL concentration were previously evaluated to analyze 
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145 the reproducibility of the methodology and the stability of the AHL molecules in the Petri dish 

146 during incubation. Experiments were carried out in triplicate.  

147

148 2.3.1.2. Evaluation of production of AHLs by Az39 using Liquid Chromatography coupled to 

149 Mass-Mass Spectrometry (LC-MS/MS) analysis

150 2.3.1.2.1. Extraction of AHLs from Az39 cultures

151 Typically, A. brasilense AZ39 colonies grown on LBRC medium were used to inoculate 250 ml of 

152 LB medium and incubated at 37°C, with shaking (200 rpm) until stationary growth phase had been 

153 reached. Aliquots (100 ml) of centrifuged (5 min at 10000 rpm), and sterile filtered supernatant 

154 (0.22 µm, Millipore Express PLUS) were acidified to pH 2 with the addition of HCl. Supernatant 

155 samples were extracted three times by liquid-liquid extraction using an equal volume of acidified 

156 ethyl acetate (1% (v/v) AcOH in EtOAc). Combined extracts were dried under vacuum and stored 

157 at -80° C prior to analysis.

158

159 2.3.1.2.2. LC-MS/MS analysis 

160 The LC-MS/MS analysis of extracted samples was conducted as previously described (Ortori et al. 

161 2011) with minor modification. Dried extracts were re-dissolved in 50 µl of 0.1% (v/v) formic acid 

162 in MeOH. The chromatography column used was a Phenomenex Gemini C18 (3.0 µm, 150 x 3.0 

163 mm), and the mobile phases used were 0.1 % (v/v) formic acid and 0.1% (v/v) formic acid in 

164 methanol. The analysis was conducted with the MS operating in multiple reaction monitoring 

165 (MRM) mode, simultaneously screening the LC eluent for all specific AHLs, comparing the 

166 retention time of detected analytes with authentic synthetic standards. For each detected 

167 chromatographic peak a mean peak area was calculated from three biological replicates.

168

169 2.3.2. Quorum quenching

170 2.3.2.1. Evaluation of degradation of AHLs by Az39 by LC-MS/MS analysis 

171 A set of 9 glass flasks of 50 ml capacity containing 20 ml of LB medium was prepared. Only 6 

172 were inoculated with 20 μl of Az39 culture obtained from liquid LB medium in late exponential 
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173 growth phase (OD595 1.0), and 3 remained without inoculation (controls). The 9 flasks were then 

174 incubated overnight at 37°C with 200 rpm orbital shaking. After a 12 h incubation, the tubes 

175 containing the Az39 cultures and the non-inoculated control tubes were modified by the exogenous 

176 addition of 100 μl of a methanolic solution containing C4, C6, C8, C10, C12, C14, Oxo-C4, Oxo -

177 C6, Oxo-C8, Oxo-C10, Oxo-C12, Oxo-C14, OH-C4, OH-C6, OH-C8, OH-C10, OH-C12 and OH-

178 C14, each in a concentration of 100 µmol l-1, which rendered a final concentration of 500 nmol l-1 

179 for each individually added AHL. A 100 μl methanol control treatment was used to evaluate 

180 bacterial growth inhibition. The glass flasks were incubated for 6 h, and at 1, 3 and 6 h intervals 1 

181 ml samples were taken and kept at -20° C until processing, extraction of the AHL and analysis by 

182 liquid chromatography, mass spectrometry, as described above. The degradation of each AHL 

183 across three timepoints was indicated by a significantly reduced chromatographic peak area from 

184 cultures of Az39 with endogenously added AHLs compared with uninoculated control samples.

185

186 2.3.2.2. Enzymatic activity associated with the AHLs degradation 

187 A 50 μl aliquot of A. brasilense Az39 exponential growth culture (OD595 1.0) obtained in liquid LB 

188 medium was used to inoculate 100 ml capacity glass flask containing 50 ml of MMAB medium. 

189 When the cultures reached OD595 0.8-1.0, corresponding to exponential growth phase, they were 

190 fractionated into 5 ml portions, placed in sterile 10 ml tubes, and treated individually with 10 µmol 

191 l-1 C6-HSL, hexanoyl-homoserine lactone or 10 µmol l-1 C10-HSL, decanoyl-homoserine lactone 

192 (University of Nottingham, UK). Then, tubes were incubated for 12 h at 37°C with 240 rpm 

193 shaking. After incubation, the presence of AHLs in the culture medium was evaluated by bioassays 

194 using the reporter strains as described in section 2.3.1.1. In a second experiment under similar 

195 conditions, a 1 ml aliquot of the AHL-treated Az39 culture was transferred to sterile micro-tubes 

196 and heated at 100°C for 10 min with the aim of inactivating the bacterial cells and denaturing the 

197 proteins in the culture. An additional tube without heat treatment was used as non-denaturing 

198 control. Once heating finished, 10 µmol l-1 of C6-AHL or C10-AHL were individually added and 

199 the tubes were incubated at 37°C with 240 rpm orbital shaking. After different incubation times 

200 (0.5, 1, 3, 6, 12 and 24 h), 30 μl samples were taken to be analyzed in bioassays as described above. 

201 To check the cellular localization of the putative enzyme (or enzymes) involved in this activity we 
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202 performed a second analysis considering an induction stage according to Uroz et al. (2007). For 

203 that, Az39 grew in MMAB medium supplemented by the exogenous addition of 10 µmol l-1 

204 individual AHL (C6-AHL or C10-AHL), and this was defined as a pre-induced Az39 culture 

205 (Az39-pi). All the treatments performed after induction are detailed at follow: T1: Non-inoculated 

206 LB supplemented with 10 µmol l-1 AHL (control); T2: Filtered supernatant of Az39-pi + 10 µmol l-

207 1 AHL; T3: Heated and filtered supernatant of Az39-pi + 10 µmol l-1 AHL; T4: Culture of Az39-pi 

208 + 10 µmol l-1 AHL and T5: Heated culture of Az39-pi + 10 µmol l-1 AHL. The addition of 

209 individual AHL to each treatment depended on the reporter strain used: C6-AHL for C. violaceum 

210 and C10-AHL for A. tumefaciens. 

211

212 3. Results 

213 3.1. In silico analysis

214 3.1.1. Quorum sensing

215 Different bioinformatic tools were used to identify putative proteins related to canonical and non-

216 canonical QS systems in these bacteria. When the genome of several strains belonging to the genus 

217 Azospirillum was analyzed, the presence of a coding sequence for an AHL synthase (LuxI) (EC 

218 2.3.1.184) could be confirmed in only 3 of them: A. lipoferum TVV3, Azospirillum sp. B510 and 

219 Azospirillum sp. RU38E. This protein is formed by 2 typical domains defined as IPR001690 

220 (autoinducer synthase) and IPR018311 (autoinducer synthesis, conserved site) according to Venturi 

221 et al. (2018). The genes encoding the AHL synthases in these Azospirillum strains have been 

222 annotated in the UniProt database as alpI, AZL_a05890, luxI AZA_90644, 

223 SAMN05880556_102381 and SAMN05880556_11440 for A. lipoferum TVV3 (Q19U13_AZOLI), 

224 Azospirillum sp. B510 (D3P0E1_AZOS), the only strain containing the domain IPR018311 and 

225 Azospirillum sp. RU38E (A0A239I230) respectively. For A. brasilense Az39, no homologues of 

226 LuxI or another AHL synthase (LuxS, CqsA , HdtS and LuxM) involved in QS were identified. 

227

228 3.1.2. Quorum quenching 

229 Although N-acyl-homoserine lactonases (EC: 3.1.1.81) were not found in the genome of the 

230 Azospirillum strains analyzed, there are several N-acyl-homoserine lactone acylases (EC: 3.5.1.97) 
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231 annotated for this bacterial genus in the UniProt database: A. brasilense Sp7 (AMK58_19595), A. 

232 brasilense Sp245 (AZOBR_p1130068), Azospirillum sp. B510 (AZL_013430), A. lipoferum 4B 

233 (AZOLI_p40482) and A. thiophilum DSM 21654 (VY88_13715), and in particular for A. 

234 brasilense Az39 (ABAZ39_22635). In the RAST server, a protein annotated as penicillin acylase 

235 (fig 192.31.peg.4511) was identified in plasmid 1 of the Az39 genome (Figure S4, Supplementary 

236 material). Its sequence has 100% identity and homology with the sequence identified through the 

237 UniProt database. In addition to penicillin acylase, an aliphatic amidase AmiE (EC. 3.5.1.4) was 

238 found in the genome of Az39 (fig 192.31.peg.3259) and both enzymes have been described as 

239 AHL-acylases in some databases and literature (Ochiai et al. 2014). Results found through 

240 BRENDA (http://www.brenda-enzymes.org) depended on the organism studied. In the case of 

241 AmiE, there are 13 recorded entries, distributed in 4 cellular locations (cytoplasmic, extracellular, 

242 lysosomal and in the membrane). On the other hand, 23 entries were registered for penicillin 

243 acylase, associated with 5 cellular locations in different bacteria (cytosolic, extracellular, 

244 intracellular, periplasmic and in the membrane). While it is evident that there are AHL-acylase 

245 enzymes with different substrate specificities, there are records of an aculeacin-A acylase, a 

246 putative N-acyl-homoserine lactone acylase with quorum-quenching activity (EC: 3.5.1.-) from the 

247 Gram negative Ralstonia solanacearum with the same ability to Az39 to degrade AHLs (Chen et 

248 al. 2009). A more detailed analysis of the aculeacin-A acylase using both UniProt and InterPro 

249 revealed a structural organization of 786 amino acids distributed in 6 protein regions: signal 

250 peptide, propeptide, aculeacin-A acylase itself, the small subunit of aculeacin-A acylase, peptide 

251 spacer, and the large subunit of aculeacin-A acylase (Inokoshi et al. 1992). Subsequently, a 

252 BLASTP analysis was made in block with these sequences against the Az39 genome, to determine 

253 if all these regions were present. Interestingly, the absent region in Az39 is the signal peptide 

254 responsible for releasing the enzyme into the extracellular space, in agreement with the analysis by 

255 CELLO (http://cello.life.nctu.edu.tw/), which probabilistically locates this enzyme in the cytoplasm 

256 or associated to the internal membrane and periplasmic space rather than to the extracellular space 

257 or external membranes.

258

259 3.1.3. Lux R transcriptional regulators
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260 A total of 28 LuxR transcriptional regulators were found in A. brasilense Az39 genome (Table 1). 

261 These sequences belong to the superfamily of LuxR regulators and share between them the InterPro 

262 IPR000792, helix-turn-helix (HTH) binding to the DNA C-terminal domain that is characteristic of 

263 this large superfamily. Although these proteins are annotated as LuxR regulators in A. brasilense 

264 Az39, only one of them corresponds to a typical LuxR with an N-terminal domain binding to the 

265 autoinducer and could be a putative LuxR solo since it lacks an AHL synthase cognate enzyme. It 

266 is annotated as an uncharacterized protein ABAZ39_30865 under accession UniProtKB-

267 A0A060DZQ2 and as an autoinducer-binding transcriptional regulator of the LuxR family (fig 

268 192.31.peg.6164) in the UniProt database and RAST server, respectively. A. brasilense Az39 

269 genome contains also coding sequences associated with the biosynthesis of 8 GroEL/ES-type 

270 chaperone proteins, which are fundamental for folding and stability in this type of receptors. Table 

271 1 summarizes the findings of the in silico analysis of LuxR-type regulators from several strains 

272 belonging to the genus Azospirillum. 

273

274 3.2. In vitro analysis

275 3.2.1. Evaluation of the biosynthesis of AHLs by Az39 using reporter strains

276 The presence of AHL molecules in filtered supernatants of A. brasilense Az39 was evaluated in 

277 bioassays using C. violaceum CV026 and A. tumefaciens NTL4/pZLR4, reporters for short- and 

278 long-chain AHLs, respectively is summarized in Figure 1. The evaluation was performed at 

279 different time points in the typical growth curve using two liquid culture media and synthetic AHLs 

280 as control. According to the absence of an AHL synthase in the genome of Az39 renders the 

281 bacteria unable to biosynthesize this type of molecules, something that was clearly evidenced in the 

282 bioassays using C. violaceum CV026 (Fig. 1A) and A. tumefaciens NTL4/pZLR4 (Fig. 1B).  

283 Additional extractions with organic solvents were made from larger volumes of culture medium in 

284 order to increase the concentration of possible metabolites at different time points in the growth 

285 curve. None of the analyzed samples presented reporter activity due to the presence of AHL-type 

286 molecules (Figure S1, Supplementary material). 

287

288 3.2.2. Evaluation of AHL degradation by Az39 using reporter strains
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289 The degradation of exogenous AHLs in cultures of A. brasilense Az39 was evaluated using the 

290 bioassays system as described before. The evaluation was performed at different time points of the 

291 typical growth curve using uninoculated liquid culture media modified by addition of synthetic 

292 AHLs as control (Figures 2A and C). To determine whether the inactivation by Az39 was of 

293 enzymatic origin, a simple experiment of induction and denaturation was carried out. Figures 2B 

294 and D clearly shows that degradation of AHLs by Az39 has an enzymatic origin, because the 

295 denaturation of the supernatant at 100°C revealed the presence of both short-chain and long-chain 

296 AHLs in the supernatants respectively.

297

298 3.2.3. Evaluation of AHL degradation by LC-MS/MS analysis

299 In order to validate the results obtained by the use of reporter strains regarding the ability of A. 

300 brasilense Az39 to produce or degrade AHLs (4 to 14 carbon atoms), a confirmation procedure was 

301 performed by the use of Liquid Chromatography coupled to Mass-Mass Spectrometry (LC-

302 MS/MS). As seen in Figure 3, no AHLs were detected in the samples obtained from Az39 cultures 

303 (Az39-AHL). In samples of Az39 cultures pre-incubated with unsubstituted AHLs in C3 (Az39 + 

304 AHL), AHL levels were lower than in non-inoculated LB incubated with 500 nmol l-1 of each AHL 

305 (LB + AHL) under similar experimental conditions. A similar behavior was observed in 

306 experiments by addition of AHLs substituted with the hydroxy and keto (oxo-) groups in carbon 3 

307 (Figure S2 and S3, Supplementary material). These results not only demonstrate the ability of Az39 

308 to degrade AHLs, but the wide spectrum of molecules that can be degraded by this bacterium, 

309 making this strain a putative regulator of bacterial quorum activity in the rhizosphere of higher 

310 plants.

311

312 3.2.4. Quorum quenching activity is associated with Az39 cells 

313 As seen in Figure 4, activity of reporter strain C. violaceum CV026 and synthetic short-chain AHLs 

314 confirmed the influence of the denaturation process (100 °C) on the loss of degradation activity in 

315 Az39 cultures. This phenomenon was visualized as a strong decrease in violacein production at 

316 increasing incubation times (Fig 4. Treatment 5). Because the inactivation of AHLs was not 

317 observed in the denaturized supernatants of Az39, we assume that quenching activity must be 
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318 associated with the bacterial cell. In other words, the enzyme/s responsible/s for AHL degradation 

319 is/are not secreted into the culture medium by A. brasilense Az39. Similar results were obtained in 

320 the case of long-chain AHLs and A. tumefacines (data not shown). In summary, these results 

321 support the notion that AHL degradation by Az39 is of enzymatic character and limited to a 

322 specific cellular compartment, since the enzymes do not seem to be released into the external 

323 environment, which suggests that the activity could be linked to the plasma membrane or 

324 periplasm.

325

326 4. Discussion 

327 Despite genomic information currently available about the genus Azospirillum, little is known 

328 about the molecular mechanisms related to bacterium-bacterium and bacterium-plant 

329 communication. Interestingly, some reports about mechanisms based on quorum sensing in some 

330 strains of the genus Azospirillum agree with the in silico analysis presented in this paper. Vial et al. 

331 (2006) used two biosensor strains to test AHL production in 40 strains belonging to six species of 

332 Azospirillum, obtained or isolated from different geographic locations. They found that only 3 

333 strains of A. lipoferum (TVV3, B52, B518) and a related strain (B510) were able to produce this 

334 signal molecule. We also found that the genome of Azospirillum sp. RU38E presents two luxI 

335 genes that are cognate to their respective luxRs. In the case of A. brasilense, other authors recently 

336 investigated QS mechanisms in Ab-V5 and Ab-V6, the strains most commonly used for inoculant 

337 formulation in Brazil (Fukami et al. 2017). They found no genes associated with an AHL synthase 

338 but multiple LuxR solos in the genome, although their publication does not include a detailed 

339 analysis. Similarly, in the case of A. brasilense Az39, there is no luxI gene associated with the 

340 production of AHLs, something which was subsequently confirmed in silico and in vitro by both 

341 the use of reporter strains C. violaceum CV026 and A. tumefaciens NTL4/pZLR4, and the LC- 

342 MS/MS analysis. Several genes encoding putative proteins related to QS systems were identified in 

343 this paper, but the absence of LuxI in all A. brasilense strains suggests that AHL production may 

344 not be related to this bacteria species. 

345 On the other hand, A. brasilense Az39 contains a luxR orphan or solo. An analysis of multiple 

346 sequence alignment of this  LuxR compared with LuxR cognates and LuxR solos already described 
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347 in the literature allowed to show that some amino acid residues characteristic of the N-terminal 

348 domain of binding to the autoinductor remain conserved, which classified them outside the family 

349 of typical LuxR regulators (Data not shown). The conservation of amino acid residues present in 

350 the LuxR of Az39 is a fact that could be associated with LuxRs that respond to exogenous AHLs 

351 (by "eavesdropping") from bacteria with which they share niche and/or other molecules chemically 

352 similar from their host plants (Patel et al., 2013, Venturi et al., 2018).

353 Signaling mediated by quorum sensing in bacteria can be interrupted by a wide variety of 

354 phenomena collectively known as quorum quenching. The coding sequence for a N-acyl-

355 homoserine lactone acylase (EC: 3.5.1.97) was found in A. brasilense Az39, A. brasilense Sp7; A. 

356 brasilense Sp245, Azospirillum sp. B510, A. lipoferum 4B and A. thiophilum. These findings 

357 suggest that mechanisms of quorum signal interception prevail in different species of the genus, 

358 regardless of whether they produce such molecules or not. In addition, the appearance of such 

359 mechanisms in these strains, and especially in A. brasilense Az39, points towards the important 

360 role this kind of regulation fulfils, not only in selecting the ecological niche and exchanging signals 

361 with the host plant, but also in adapting to a lifestyle in the rhizospheric environment. We also 

362 demonstrated, through the use of reporter strains, that the inactivation of synthetic AHLs by Az39 

363 was related to an enzyme activity. In this sense, the capacity of this strain to degrade AHL was 

364 confirmed in vitro and justified by the presence of two coding sequences for two putative AHL-

365 acylases. Considering the results, we obtained in this paper using reporter strains, the tentative 

366 location of the putative AHL-acylase activity would be a cellular compartment, likely the plasmatic 

367 membrane or the periplasmic space. 

368 The ability of A. brasilense Az39 to degrade AHLs of different lengths (4 to 14 C) was confirmed 

369 by the use of LC-MS/MS. According to the treatments proposed, the AHL levels in pure Az39 

370 cultures incubated with unsubstituted AHLs and substituted at C3 were lower than in non-

371 inoculated LB medium. These results unequivocally indicate that although A. brasilense Az39 does 

372 not produce AHLs, it is capable of degrading them in liquid culture conditions. 

373 We compared the penicillin acylase (AHL-acylase) coding sequence in the genome of Az39 with 

374 the in silico and in vitro characterization by Mukherji et al. (2014) of a Penicillin-G-acylase from 

375 Kluyvera citrophila, an enzyme that also has the ability to cleave AHLs, and found them to have 
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376 high similarity. This is an important biotechnological approach that represents a new positioning in 

377 the large-scale production of biofunctional enzymes that govern the flow of chemical information 

378 in the rhizosphere, where complex bacterial communication networks take place. In this sense, 

379 several experiments have shown how plants respond to QS signals such as the AHLs produced by 

380 Gram negative bacteria (Bauer and Mathesius, 2004, Von Rad et al. 2008). It is currently known 

381 that plants, in addition to responding to AHLs, produce molecules that can mimic such QS signals 

382 by somehow manipulating behavioral mechanisms associated with bacteria in the rhizosphere 

383 (Teplitski et al. 2000; Corral-Lugo et al. 2016). On the other hand, Palmer et al. (2014) showed that 

384 plants can produce AHL-acylase enzymes using L-homoserine for their own benefit. The 

385 accumulation of L-homoserine has several effects on plant growth: it increases transpiration which 

386 favors nutrient uptake by the roots, promotes defense responses mediated by Ca2+, stimulates the 

387 production of ethylene and promotes the synthesis of auxins. This last effect is correlated in the 

388 rhizosphere with the capacity of A. brasilense Az39 to produce several phytohormones, auxins 

389 among them (Cassán and Diaz Zorita 2016). This, coupled with its AHL quorum quenching 

390 capacity, enhances the synergy of the interaction between Az39 and the plant.

391 The results obtained in this paper suggest that under the prevailing conditions in the rhizosphere, 

392 Az39 is mute in the sense that it cannot speak the language mediated by AHLs, but it can to 

393 interrupt conversations between other bacteria and plants by a quorum quenching mechanism. This 

394 mechanism could regulate the capacity of the microbial populations interacting with plants and this 

395 should be investigated in further experiments.

396
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524 Table Headers

525 Table 1. Details of the regulatory LuxR/I proteins present in the different Azospirillum strains

526

527 Figure Legends

528 Figure 1. Evaluation of violacein production and β-galactosidase activity induced by the presence 

529 of AHLs in cultures of Az39. A: Bioassay using C. violaceum CV026. C (control): 10 µmol l-1 C6-

530 AHL. Treatments 1, 3, 4 and 5: filtered supernatants obtained from LB culture medium at 6 (OD595 

531 0.546); 12 (OD595 1.186); 24 (OD595 1.514) and 48 (OD595 2.161) h after inoculation with Az39, 

532 respectively. Treatment 2: non inoculated LB culture medium modified by addition of C6-AHL. B: 

533 Bioassay using A. tumefaciens NTL4/pZLR4; C (control): 10 µmol l-1 C10-AHL. Treatments 2, 3, 

534 4 and 5: filtered supernatants obtained from LB culture medium at 6 (OD595 0.543); 12 (OD595 

535 0.923); 24 (OD595 1.529) and 48 (OD595 2.187) h after inoculation with Az39, respectively. 

536 Treatment 1: non inoculated LB culture medium modified by addition of C10-AHL. The OD595 

537 values were obtained from average of 3 biological samples.

538

539 Figure 2. Evaluation of violacein production and β-galactosidase activity induced by the presence 

540 of AHLs in cultures of Az39 using C. violaceum CV026 and A. tumefaciens NTL4/pZLR4 as 

541 reporter strains. A. Left: Induction bioassay. Treatment 1: LB + 10 µmol l-1 of C6-HSL. Treatments 

542 2 and 3: Az39 + 10 µmol l-1 of C6-AHL. A. Right: Denaturation bioassay. Treatment 1: LB + 10 

543 µmol l-1 of C6-AHL. Treatments 2, 3, 4 and 5: Az39 + 10 µmol l-1 of C6-AHL after 30 min, 1, 3 

544 and 6 h of incubation respectively. C (control): 10 µmol l-1 C6-AHL. B. Left: Induction bioassay. 

545 Treatment 1: LB + 10 µmol l-1 C10-AHL; treatment 2: Az39 + 10 µmol l-1 of C10-AHL. Right: 

546 Denaturation bioassay. Treatment 1: LB + 10 µmol l-1 of C10-AHL. Treatments 2, 3, 4 and 5: Az39 

547 + 10 µmol l-1 of C10-AHL after 30 min, 1, 3 and 6 h of incubation respectively. C (control): 10 

548 µmol l-1 C10-AHL.
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549

550 Figure 3. Identification and relative quantification of AHLs by liquid chromatography coupled to 

551 mass-mass spectrometry (LC-MS/MS). In the experiments AHLs of 4 to 14 unsubstituted carbon 

552 atoms were used at a final concentration of 500 nmol l-1. The bars represent a mean peak area 

553 calculated from three biological replicates of the following treatments: Az39 + AHLs,  Az39 - 

554 AHLs and non inoculated LB + AHLs after  1, 3 and 6 h of incubation time. Columns marked with 

555 a different letter of the same group of treatments differ significantly by Tukey post hoc test at p< 

556 0.05.

557

558 Figure 4. Evaluation of violacein production induced by the presence of AHLs in cultures of Az39 

559 using C. violaceum CV026. C (control): 10 µmol l-1 C6-AHL. Treatment 1: LB modified with 10 

560 µmol l-1 C6-AHL. Treatment 2: Filtered supernatant of Az39 (pi) + LB modified with 10 µmol l-1 

561 C6-AHL Treatment 3: Filtered supernatant of Az39 (pi) denaturized at 100°C + LB modified with 

562 10 µmol l-1 C6-AHL. Treatment 4: Culture of Az39 (pi) denaturized at 100°C + LB modified with 

563 10 µmol l-1 C6-AHL. Treatment 5: Culture of Az39 (pi) + LB modified with 10 µmol l-1 C6-AHL. 

564 The bioassays were performed at 0, 6 and 16 h after addition of AHLs.

565

566 Supplementary material

567 Figure S1.  Evaluation of violacein production and β-galactosidase activity induced by the 

568 presence of AHLs in cultures of Az39. Right: Bioassay using C. violaceum CV026. C (control): 10 

569 µmol l-1 C6-AHL. Treatments 2 and 3: filtered supernatants obtained from different stages of Az39 

570 growth curve at DO595 0.823 and 1.654, respectively. Treatment 1: non inoculated LB culture 

571 medium modified by addition of C6-AHL. Left: Bioassay using A. tumefaciens NTL4/pZLR4. C 

572 (control): 10 µmol l-1 C10-AHL. Treatments 2, 3, 4 and 5: filtered supernatants obtained from Az39 

573 growth curve at OD595 0.621, 1.054 and 1.872 respectively. Treatment 1: non inoculated LB culture 

574 medium modified by addition of C10-AHL.

575

576 Figure S2. Identification and relative quantification of AHLs by liquid chromatography coupled to 

577 mass-mass spectrometry (LC-MS/MS). In the experiments AHLs of 4 to 14 carbon atoms 
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578 substituted at C3 with a hydroxyl group (-OH) were used at a final concentration of 500 nmol l-1. 

579 The bars represent a mean peak area calculated from three biological replicates of the following 

580 treatments: Az39 + AHLs, Az39-AHLs and non inoculated LB + AHLs after 1, 3 and 6 h of 

581 incubation time. Columns marked with a different letter of the same group of treatments differ 

582 significantly by Tukey post hoc test at p< 0.05.

583

584 Figure S3. Identification and relative quantification of AHLs by liquid chromatography coupled to 

585 mass-mass spectrometry (LC-MS/MS). In the experiments AHLs of 4 to 14 carbon atoms 

586 substituted at C3 with an oxo group (-oxo) were used in a final concentration of 500 nmol l-1. The 

587 bars represent a mean peak area calculated from three biological replicates of the following 

588 treatments: Az39 + AHLs, Az39-AHLs and non inoculated LB + AHLs after 1, 3 and 6 h of 

589 incubation time. Columns marked with a different letter of the same group of treatments differ 

590 significantly by Tukey post hoc test at p< 0.05.

591

592 Figure S4.  Structural organization of the Az39 genome at the level of the putative Penicillin 

593 acylase. 
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Figure 4
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Table 1. 

       
 Bacterial Strains* P-LuxR P-LuxI LuxR-C LuxR-SP  
 Az39 28 - - 1  
 SgZ-5 2 - - 1  
 Sp245 25 - - -  
 B510 27 1 1 -  
 4B 27 - - -  
 TVV3 1 1 1 -  

RU38E 2 2 2 -
 DSM 21654 61 - - -  
 CAG:260 2 - - -  
 CAG:239 2 - - -  
 Cd 2 - - -  
       
*Az39, Sp245 y Cd (A. brasilense); B510, CAG:239, CAG:260 y RU38E (Azospirillum sp.); B4 
y TVV3 (A. lipoferum); SgZ-5 (A. humicireducens); DSM 21654 (A. thiophilum). P-LuxR: 
LuxR-type proteins; P-LuxI: LuxI-type proteins; LuxR-C: Cognate LuxR homologs; LuxR-SP: 
Putative-orphan LuxR homologs
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Figure S1
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Figure S2
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Figure S3
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0.5 Kb
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Flagellar motor rotation protein MotB

Protein containing domains DUF403

Protein containing domains DUF404, DUF407

Arginine-tRNA-protein transferase (EC 2.3.2.8)
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