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Abstract

Isotopes in diatoms are increasingly used in palaeoenvironmental studies in both lacustrine

and marine settings, enabling the reconstruction of a range of variables including temperature,

precipitation, salinity, glacial discharge, carbon dynamics and biogeochemical cycling. This

protocol details an optimised methodology for extracting diatoms for isotope analysis from sedi-

ment samples, using a range of chemical and density separation techniques that minimise

sample loss and avoids the need for expensive equipment. Whilst designed for the extraction

of diatoms for oxygen, silicon and carbon isotope analysis, additional stages are outlined for

the analysis of other isotopes that are of increasing interest to the palaeo community (e.g.,

boron and zinc). The protocol also includes procedures for assessing sample purity, to ensure

that analysed samples produce robust palaeoenvironmental reconstruction. Overall, the

method aims to improve the quality of palaeoenvironmental research derived from isotopes in

diatoms by maximising sample purity and the efficiency of the extraction process.

Introduction

Isotopes in diatoms (e.g., δ13C, δ15N, δ18O, δ30Si) provide a key source of palaeoenvironmental

information in marine and lacustrine environments where carbonates not readily preserved in

the sedimentary environment [1, 2]. Whilst the emergence of isotopes in diatoms as a palaeoenvir-

onmental proxy has occurred alongside the development of mass-spectrometry techniques for

their analysis [3–10], projects are often hindered by difficulties in extracting sufficient diatoms for

analysis without the presence of non-diatom contaminants. Here we describe a protocol, suitable

for Masters and PhD students, that has been used at the University of Nottingham for over a

decade to obtain pure diatom samples from a sediment matrix, before samples are analysed at the

National Environmental Isotope Facility (British Geological Survey) for δ13C, δ18O and δ30Si [6,

9]. Extensions/deviations to the core methodology are also outlined for samples that will be ana-

lysed for other/novel isotope systems that are of increasing interest to the palaeo community such

as δ11B [11] and δ66Zn [12]. This protocol is not fully compatible with accepted diatom protocols

for δ15N. Instead, samples for diatom δ15N should be prepared following [5, 13]. Caution should

also be exerted when applying this, or indeed any, protocol to living/cultured diatom frustules due

to the potential for post-mortem oxygen isotope exchange [14].

Typically, in our experience, only 50–70% of sediment samples can be sufficiently cleaned

to remove non-diatom contaminants and generate enough material for isotope analysis. This
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success rate varies between sites and different aged samples and is predominantly determined

by the amount of raw material available, the concentration of diatoms and the presence/abun-

dance of other types of biogenic silica (e.g., siliceous sponges and radiolaria) which can be

problematic to separate. The protocol presented here has been tested on a wide variety of dif-

ferent aged lacustrine and marine sediments (0–3.4 Ma) and optimised to minimise the risk of

sample loss. It also outlines stages for assessing and quantifying sample purity, as well as for

checking that the extracted diatoms are not contaminated by diagenesis, dissolution or other

processes that might have altered the isotopic signature.

Materials and methods

The protocol described in this peer-reviewed article is published on protocols.io, https://dx.doi.org/

10.17504/protocols.io.36wgq4knovk5/v2 and is included for printing as S1 File with this article.

Expected results

Using this protocol, we have been able to obtain pure diatom samples for isotope analysis with

minimal material loss (Fig 1). The procedure has been successfully used on raw sediment

Fig 1. Example of a purified diatom sample (under light microscope) following the use of this protocol. Sample

from Lake El’gygytgyn, Russia [15].

https://doi.org/10.1371/journal.pone.0281511.g001
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Fig 2. Example of a diatom sample (under light microscope) contaminated with aluminosilicates. Sample from

Lake El’gygytgyn, Russia [15].

https://doi.org/10.1371/journal.pone.0281511.g002

Fig 3. Example of a diatom sample (under light microscope) contaminated with aluminosilicates and sponge

spicules. Sample from the Southern Ocean [17].

https://doi.org/10.1371/journal.pone.0281511.g003
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samples as low as 0.5 g and 5–20% opal, with 6.5 mg of pure diatom needed for δ18O and δ30Si

analysis [15]. In contrast, larger raw sediment samples have enabled the recovery of>20 mg

pure diatoms and so permitted the analysis of δ13C [16], which typically requires larger

amounts of material. As outlined in the protocol it is also possible, using different sized sieves

and/or targeting laminated sediments, to obtain seasonal and/or intra-annual reconstructions

[17] or other forms of biogenic silica (e.g., siliceous sponges and radiolaria). Whilst some sedi-

ment samples will not be "cleanable" due to the low diatom content, small sample size or

inability to remove non-diatom contaminants (Figs 2 and 3), the use of contamination assess-

ment techniques in the protocol allows sample purity to be quantified and ensures that affected

samples are not inadvertently used in palaeoenvironmental reconstructions.

Supporting information

S1 File. Isotope sample preparation of diatoms for paleoenvironmental research, also

available on protocols.io. https://dx.doi.org/10.17504/protocols.io.36wgq4knovk5/v2. The

individual pictured in the S1 File has provided written informed consent (as outlined in PLOS

consent form) to publish their image alongside the manuscript.
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