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a b s t r a c t

We calculate the eigenvalues of an integral operator associated
with Prolate Spheroidal Wave Functions (or Slepian functions)
by interpreting them as tunnelling probabilities in an analogous
quantum problem. Doing so allows us to extend a well-known
approximation due to Slepian so that it applies outside an impor-
tant transition region where these eigenvalues pass from being
near unity to being near zero. Study of the eigenvalues has tradi-
tionally been associated with problems arising in signal analysis
and optics but have more recently found relevance in quantify-
ing the channel strengths available to Multiple-In Multiple-Out
(MIMO) radio communication. The approach presented promises
easier generalisation to the broader range of geometries possible
in the latter context.

© 2022 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The eigenvalue problem of the integral operator K̂ defined by

K̂ψ(x) =

∫ 1

−1

sin k(x − x′)
π (x − x′)

ψ(x′)dx′, (1)

where k is a nonnegative real constant, has been extensively studied in the context of signal analysis,
rooted particularly in the pioneering work of the Bell Labs group in [1–8] (see also [9–11] for
overviews from a more recent perspective). There it arises out of a problem of optimising the
extent to which signals that are band-limited in frequency can also be localised within a fixed time
interval. A physically distinct motivation has come from its relevance to the problem of localising
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modes within open optical resonators and to diffraction-limited imaging [4,7,12–15]. Related to
this second context particularly, this problem has gained new relevance as it, and variations of
it, are also central to understanding fundamental aspects of wireless communications by MIMO
(Multiple-Input-Multiple-Output) arrays [14,16–19]. In this paper we argue that the problem can
usefully be studied in the form of an analogue problem of finding tunnelling probabilities for a
particular Hamiltonian in quantum mechanics. This quantum-mechanical perspective allows easy
generalisation of the solutions to deformed integral operators that are more pertinent to radio
communication and also leads to approximations for the eigenvalues of K̂ that significantly extend
lassical results in the literature.
We argue in particular that the eigenvalues of K̂ can be interpreted as tunnelling probabilities

f an associated one-degree-of-freedom quantum Hamiltonian Ĥ and, from this viewpoint, a range
f approximate results become available using the properties of both real and complex orbits of
he classical analogue H(x, p) [20,21]. These approximations arise in a semiclassical limit where we
dentify h̄ = 1/k → 0. In fact, we can exploit standard uniform approximations of tunnelling near
yperbolic fixed points in phase space [22,23] to reproduce in detail an important transition where
he eigenvalues of K̂ go from being near unity to being near zero. This provides an estimate of the
unnelling probability in terms of the imaginary action of a complex periodic orbit of H(x, p). By
pproximating this action as a linear expansion in energy around a critical value, we can reproduce
well known result due to Slepian [6] . Moreover, by using the imaginary action without further
pproximation, we arrive at a description that is valid over a wider range of parameters than
lepian’s, but reduces to Slepian’s approximation near the transition itself. In this way we can by a
ingle calculation bridge the gap between an approximation by Fuchs [24] that is valid for lower-
rder eigenvalues near unity, across the transition treated by Slepian, to an approximation due to
idom [25] of higher-order eigenvalues as they approach zero (and see [26] for a more recent

mprovement of this).
Furthermore, the quantum analogue problem offers a promising route to generalising some

f the geometrical characteristics of the treated integral operator. In the quantum mechanical
ontext, the operator defined by (1) can be interpreted as an operator projecting onto a square
atch on phase space, with the corresponding classical symbol being at leading order a function
hat takes the value 1 inside the square and 0 outside it. Projection onto the square is achieved
y first projecting onto an interval of the position coordinates and then onto an interval of the
omentum coordinate. In the context of MIMO communication, we are interested in projection
long more general curvilinear coordinate lines in phase space. The approach taken here points
o a generalisation of the accompanying differential operator used to characterise eigenfunctions,
nd therefore to a generalisation of the tunnelling approximation used to approximate eigenvalues.
ote that this generalisation is distinct from the one offered by Daubechies in [27], which is also
ased around an interpretation of the integral operator as projection onto a region of phase space.
here one generalises by specifying the accompanying differential operator, but here the differential
perator is derived from the geometry, which, in taking the form of successive projections along
oordinate intervals, is closer to the context needed for MIMO communication.
The methodology that we introduce, and the results that we achieve, are important in the

merging field of electromagnetic communication theory (EIT), where communications are carried
ut by continuous-aperture MIMO (CAP-MIMO) systems [28], including reconfigurable intelligent
urfaces (RIS) [29] as well as holographic antennas [30–32]. In this context, it is important to
uantify the degrees of freedom for channel diversity [33], as well as to determine optimal
atterns for excitation of the surfaces while operating within a specific environment. It is foreseen
hat surface technologies constitute important enablers for beyond-5G/6G mobile communication
etworks [34], where the complexity of the propagation environment is embraced and transformed
nto a resource/service [35].

We conclude this introduction by providing an outline of the paper. In Section 2 we summarise
he essential elements of MIMO communication that motivate study of the integral operator (1).
n Section 3 we review the essential properties of Slepian functions needed later to derive the
pproximation based on tunnelling and discuss also how these properties, and particularly the
ccompanying differential operator, can be deformed towards the skewed geometries pertinent
2
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Fig. 1. A schematic illustration of the geometry motivating the study of (1) in this paper. On the left we suppose
transmitting and receiving antennae respectively filling surface patches ΩT and ΩR . Communication between them may
e either Line-of-Sight or by scattering from obstacles. In a corresponding phase-space representation, illustrated in part
b), each topologically distinct path in a far-field scenario defines a patch whose shape is approximately a parallelogram.
ommunication channels can be defined using a suitable generalisation of (1) to the geometry of these intersections.

o MIMO applications. In Section 4 this differential operator is recast as a quantum analogue
roblem and a treatment of it within semiclassical approximation (corresponding to the limit
→ ∞) is provided in Section 5. In Section 6 this semiclassical approach is exploited to provide
n approximation of the eigenvalues of (1) and to interpret them as tunnelling probabilities. This
pproximation is evaluated for a model MIMO geometry in Section 7 and compared both with exact
esults and with limiting approximations from the classical literature. Finally we conclude the paper
n Section 8.

. Motivation for the integral equation and its generalisations from MIMO communication

We are motivated to study the integral operator (1) by its relevance to the problem of calculating
ommunication rates between large arrays of transmitting and receiving antennae in a Multiple-
nput-Multiple-Output (MIMO) set up. We focus on a holographic analysis here, where we suppose
hat antennae are sufficiently densely packed that a continuum model of the resulting surface
urrents can be used to determine optimal communication channels and their signal strengths for
given physical environment. The problems of bounding communication rates then becomes one

hat is tackled by assessing related volumes or areas in phase space.

.1. Essentials of communication

Standard models of communication [18] are based on a relation of the form

y = Hx + n,

etween transmitting antenna signals x = (x1, . . . , xNT )
T and receiving antenna signals y =

(y1, . . . , yNR )
T , where NT and NR are respectively the numbers of transmitting and receiving an-

tennae, the components of n = (n1, . . . , nNR )
T are the noise levels experienced by the receiving

antennae and H is an NR × NT transfer matrix. The signal vectors here are characterised by a
correlation matrix, denoted

RT =
1
P

⟨
xx†⟩ , (2)

here P is a suitably scaled signal power. It is furthermore commonly assumed that the noise is
ormally distributed according to

n ∼ N (0, C)
3
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and the correlation matrix C defines a matrix

RR = σ 2C−1

complementing RT at the receiving end, where σ denotes a noise strength and P/σ 2 is a signal-to-
oise ratio.
We can assess achievable communication data-rates in this scenario by optimising the mutual

nformation [36, Eq. (12)]

I = log2 det
(
I +

P
σ 2HRTH†RR

)
with respect to RT to yield a channel capacity C (measured in units of bits/Hz/sec). In particular, we
can associate individual channels and their strengths as corresponding respectively to eigenvectors
and eigenvalues of the matrix

M = HRTH†RR. (3)

Denoting the eigenvalues of M by λn we can write

C =

NR∑
n=1

log2

(
1 +

P
σ 2 λn

)
(M is similar to the Hermitian matrix

√
RRHRTH†√RR and so its eigenvalues λn are real). Although

ore general formulations are possible, a common special case is that the matrices RT ,R are identity
atrices of appropriate rank:

RT = INT×NT and RR = INR×NR . (4)

hen the eigenvalues λn are simply squares of the singular values of the transfer matrix H and its
ank determines the number of communication channels available to the system.

.2. The holographic model: towards a continuum picture

As MIMO systems evolve towards increasingly dense antenna arrays, a holographic picture,
n which we suppose we can control surface currents with unlimited spatial resolution rather
han assuming discrete antennae, is increasingly relevant: that is, the transmit/receive array is
pproximated as a continuous (holographic) surface [33]. It is important to understand the effective
egrees of freedom of such dense surfaces, as this constitutes a fundamental limit for field
ampling [37,38]. For such dense/continuous surfaces, the matrix M defined in (3) is replaced by an
ntegral operator very similar in form to (1), as we now outline. We first present the more general
icture in broad outline and then write down more concretely in Section 2.3, albeit in a much
implified and restricted setting, an idealised problem which aims to capture the essential features
equired for a generalisation of (1) towards this broader problem.

In particular, we replace in the holographic formulation the correlation matrices RT and RR by
wo-point field-field correlation functions

RT ,R → ΓT ,R(x1, x2) =
⟨
ψ(x1)ψ∗(x2)

⟩
T ,R ,

n which functions ψ(x) of continuous boundary coordinates x replace the discrete signal levels x
nd y. We confine the transmitting and receiving antennae to surface patches denoted ΩT and ΩR
espectively (see the schematic illustration in Fig. 1), so that we constrain the correlation functions
T (x1, x2) and ΓR(x1, x2) to be supported on these sets.
Let d denote the dimension of these boundary sets. We should clearly set d = 2 to fully model a

hysical, 3D MIMO system, but in the following we examine simplified calculations in which d = 1,
hich is also the setting of (1). A particularly important special case is where these correlation

unctions take the form of spatially white noise, of the forms

Γ (x , x ) = δ(x − x )χ (x ), (5)
T ,R 1 2 1 2 T ,R 1

4
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where χT (x) and χR(x) respectively denote the characteristic functions of the patches ΩT and ΩR.
n fact, these provide integral kernels for corresponding operators defined by multiplication

Γ̂T ,R : ψ(x) ↦→ χT ,R(x)ψ(x).

These special cases provide the continuum analogues of the correlation matrices in (4), up to a
scaling factor.

We suppose that the signal amplitude ψR(x) arriving at ΩR after emission from source ψT (x) in
ΩT can be expressed in the form

ψR = T̂ψT

where T̂ is a transfer operator

ψR(x) =

∫
ΩT

T (x, x′)ψT (x′)dx′,

with a kernel T (x, x′) that is commonly approximated semiclassically as a sum over ray paths from
ΩT to ΩR. The detailed form given for T (x, x′) depends on the physical formalism used to model
transmitted and received signals. A common physical description uses surface currents for ψT (x)
and potentials for ψR(x): in this case T (x, x′) is simply a Green function, whose approximation in
terms of ray paths is well established [39]. An alternative that is particularly convenient for our
analysis is to locally scale transmitted and received signals so that they are on an equal footing,
and connected by a transfer operator of the kind described semiclassically by the formalism in [40].
The transfer operator T̂ is the continuum analogue of the transfer matrix H. Then the holographic
analogue of (3) is the operator

ϱ̂ = T̂ Γ̂T T̂ †Γ̂R. (6)

We now argue that the action of ϱ̂ generalises (1) (up to a cyclic permutation of operators).
In the corresponding ray-dynamical phase space, in which boundary coordinates x are aug-

mented by momentum coordinates p determining the direction cosines of the corresponding ray, we
use an abuse of notation to let the symbols ΩR,T also denote the vertical strips defined by x ∈ ΩR,T .
Let ϕ denote the mapping in phase-space coordinates (x, p) from the part of the boundary containing
ΩT to the part containing ΩR. Then the geometry of the intersections

ΩRT = ΩR ∩ ϕΩT and ΩTR = ϕ−1ΩRT = ϕ−1ΩR ∩ΩT

are key to understanding the operator in (6). Note that in a typical multipath scenario, each of
these intersections may be composed of discrete components Ωα

RT (or alternatively Ωα
TR) defined

by topologically distinct paths α as illustrated in Fig. 1. The detailed connection between ϱ̂ and
the patches Ωα

RT is made by approximating T̂ in the high-frequency limit as a sum over paths α
connecting ΩT to ΩR [39,40], so that ϱ̂ becomes in turn a double sum over such paths. Diagonal
contributions, in which the path connecting ΩR to ΩT by T̂ † is a reversal of the path α connecting
ΩT to ΩR by T̂ , are associated with the intersection patches Ωα

RT . Establishing this connection in
detail is an interesting topic for future work but is complicated by aspects such as the control of
errors and the effect of interference arising from nondiagonal contributions to the double sum over
paths. We put these issues aside in the next section by restricting our attention to a very simplified
model which we hope nevertheless captures the essential elements of the more general scenario.

2.3. An idealised holographic model

The operator in (6) is a significantly more complicated object in its full generality than the
operator in (1). We consider an idealised model which simplifies (6) in two important respects.

First, ϱ̂ should act on patches of dimension d = 2 in a completely physical model, while the
operator K̂ acts on patches of dimension d = 1. While extensive investigations have been made that
generalise (1) to higher dimensions, we choose to focus in this paper on generalisation in a different

direction and confine our attention to scalar wave models for which d = 1. Our focus is instead on

5
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Fig. 2. The integral operator in (1) corresponds to the picture in part (a), in which one sequentially projects vertically and
then horizontally in phase space. The local intersections in Fig. 1(b), which correspond to the operator in (6), motivate
us to consider a skewed version of this shown in part (b) in which the horizontal projection is replaced by one along a
general coordinate Q .

differences arising from the fact that T̂ acts more complicatedly than the simple frequency filtering
nderlying K̂ , leading us to generalisations of (1) which have received relatively less attention until
ow.
The second idealisation is made to avoid complications arising from the fact that T̂ is typically

used as a semiclassical, small-wavelength approximation. The lengths of the paths α are typically
much larger than the width of either ΩT or ΩR so that the corresponding intersections in phase
space are deformed parallelograms. A treatment of the fully deformed geometry leads to approx-
imate treatments arising from the nonlinear nature of the ray dynamics. We instead restrict our
attention to idealised transfer operators whose ray-dynamical analogue is a linear transformation
of coordinates (x, p), and for which the intersection ΩRT is a simple parallelogram with straight
edges. The resulting geometry is illustrated in Fig. 2 and the details of the correspondingly-defined
integral operator are set out in the next section.

More precisely, we suppose an operator of the form given in (6) in which T̂ΓT T̂ † corresponds in
phase space to a patch formed by projection along a coordinate

Q = ax + bp, (7)

where a and b are real constants. This model is achieved if T̂ effectively quantises a linear
transformation from (x, p) to new coordinates (Q , P) with Q as given above. The details of this are
set out in Section 3.4 and note that in the special case (Q , P) = (p,−x) then T̂ becomes a simple
Fourier transform and we recover (a scaled, translated version of) (1).

3. Slepian functions: properties and generalisation

We now summarise the most important properties of the eigensolutions of K̂ . These are available
from a wide range of references (see [10] for example) and we do not give detailed derivations here,
but the tunnelling analogue in later sections will provide explanations for key aspects of these.

3.1. A commuting differential operator

The eigenvalue equation

K̂ψn(x) = λnψn(x) (8)

is solved in the literature by observing that K̂ commutes with the differential operator

Ĥ = −
1 d

(1 − x2)
d

+ x2, (9)

k2 dx dx

6
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subject to boundary conditions that the solution is differentiable everywhere on the real line, and
in particular at the regular singular points1 x = ±1 of the corresponding differential equation [10].

Since these operators commute, they have the same eigenfunctions (but different eigenvalues).
e denote the eigenvalues of Ĥ by En, so that the eigenfunctions ψn(x) are then also solutions of

he differential equation

−
1
k2

d
dx

(1 − x2)
dψn

dx
+ x2ψn(x) = Enψn(x). (10)

The solutions of this equation are Slepian functions, or prolate spheroidal wave functions (PSWFs),
for which there is an extensive literature [10,41]. The original problem is therefore in large part
‘‘solved’’ by the observation of compatibility of K̂ with Ĥ . However, although WKB approaches
hen provide immediate approximation of the eigenfunctions ψn(x) and the eigenvalues En of Ĥ ,
he eigenvalues λn of K̂ are less directly available and approximations for them are harder to find.
he tunnelling calculations in later sections of this paper help to bridge that gap.
Finally, we note that the detailed calculations in this section are presented for a conventional

pecial case where filtering is on the square patch (x, p) ∈ (−1, 1) × (−1, 1), which has an area in
hase space of A = 4. More generally, we are interested of course in the case of rectangular patches
f arbitrary area A, centre and aspect ratio. Solutions for the most general case can be obtained from
hose of the conventional case by scaling and translation operations, and in particular the scaling
→ kA/4 of the constant k. A similar comment applies to generalisation of these calculations to

he skewed case implied by (7). We will assume projection onto a particular interval Q ∈ (−1, 1)
nd rely on scaling and translation operations to generalise the derived relationships at the end.

.2. Fourier transforms of the eigenfunctions

We now select key properties of the PSWFs under Fourier transformation, which will be used
ater to justify the approximation of λn as a tunnelling probability.

Let the Fourier transform operator F̂ be defined by

[F̂ψ](p) ≡ ϕ(p) =

√
k
2π

∫
∞

−∞

e−ikxpψ(x)dx. (11)

hen

F̂ : ψn(x) ↦→ ϕn(p) =
in

√
λn
χ (p)ψn(p), (12)

where

χ (p) =

{
1 −1 < p < 1
0 otherwise

(13)

is the characteristic function of the interval (−1, 1). That is, the Fourier transform ϕn of ψn is a
scaled, band-limited version of ψn: they have the complementary properties of being respectively
compactly supported and analytic on the real line.

We do not prove this property here, but a discussion can be found in [10,11], for example.
This is the key relationship we will use to motivate tunnelling-probability interpretations for the
eigenvalues λn in later sections.

3.3. Projection operators and the integral equation

Define an operator L̂ which projects onto the interval −1 < x < 1 as follows

L̂ψ(x) = χ (x)ψ(x),

1 The term singular point is used here according to the terminology of differential equations to denote values of x where
the coefficient of the second derivative vanishes and where the corresponding differential equation admits solutions that
are singular.
7
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where the characteristic function χ (x) of the interval (−1, 1) has been defined in (13). A second
rojection operator M̂ is defined by the action

M̂ : ϕ(p) → χ (p)ϕ(p)

n Fourier representation, which is equivalent in direct representation to

M̂ = F̂ †L̂F̂ . (14)

hen the integral operator K̂ defined in (1) can be written

K̂ = M̂L̂. (15)

valuating the action of this operator explicitly in direct representation leads to (1).

.4. A skewed integral operator

We generalise these solutions to account for the skewed geometry illustrated in Fig. 2 by
eplacing the Fourier transform operator F̂ by the following metaplectic operator (see [42] for
xample)

[T̂ψ](Q ) ≡ ϕ(Q ) =

√
k
2π

∫
∞

−∞

⏐⏐⏐⏐ ∂2F∂Q∂x

⏐⏐⏐⏐1/2 eikF (Q ,x)ψ(x)dx, (16)

here

F (Q , x) =
1
2b

(
dQ 2

− 2Qx + ax2
)

is a generating function satisfying the conditions
∂F
∂Q

= P and
∂F
∂x

= −p

or the linear change of coordinates (x, p) → (Q , P) given by(
Q
P

)
=

(
a b
c d

)(
x
p

)
, (17)

n which ad−bc = 1 is assumed so that the transformation is symplectic (area-preserving). Note that
he inverse transformation is formed by replacing F (Q , x) with F (x,Q ) = −F (Q , x). The operator
(16) has been written for a general linear symplectic transformation (x, p) → (Q , P) and is useful
in this form for later discussion: it can also be used as a basis for generalising the results in this paper
to projection onto an arbitrary parallelogram, whose boundaries are defined by constant values of Q
and P . In applications to MIMO communication, however, it is always the case that the parallelogram
of interest has vertical sides, defined by setting x to constant values. For much of this discussion it
then suffices to choose

d = 0 and c = −
1
b

(18)

so that P = −x/b and sides of constant P are also sides of constant x. For this purpose we may also
assume without loss of generality in the following that b > 0 and let

kb =
k
b

(19)

define a correspondingly scaled wavenumber.
We continue with the properties of T̂ in the more general case, as this can be done at little extra

cost. Denote corresponding operators

Q̂ = ax̂ + bp̂ = ax +
b
ik

d
dx

P̂ = cx̂ + dp̂ = cx +
d d

. (20)

ik dx

8
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Then the relations

T̂ [Q̂ψ(x)] = Qϕ(Q )

T̂ [P̂ψ(x)] =
1
ik
ϕ′(Q )

are easily derived from (16) and generalise corresponding derivative relations of the standard
Fourier transform. The relation

T̂ [xψ(x)] = dQϕ(Q ) −
b
ik
ϕ′(Q ) (21)

is obtained from these by inverting the associated linear transformation of operators. Note that this
reduces to

T̂ [xψ(x)] = −
1
ikb
ϕ′(Q ) (22)

n the special case noted in (18), which mirrors more closely the corresponding identity for
onventional Fourier transforms.
Then we generalise the discussion in Section 3.3 by once again defining an integral operator by

15) except that now the operator M̂ is defined by the action

M̂ : ϕ(Q ) → χ (Q )ϕ(Q )

on the transform ϕ(Q ) of ψ(x) and is written in direct representation as

M̂ = T̂ †L̂T̂ . (23)

Working this out explicitly leads to the generalisation

K̂ψ(x) = e−ikbax2/2
∫ 1

−1
eikbax

′2/2 sin
(
kb(x − x′)

)
π (x − x′)

ψ(x′)dx′, (24)

of (1), reverting back to it in the special case T̂ = F̂ , for which a = 0 and b = 1. This more
general problem also reverts to (1) after making a gauge transformation ψ(x) → e−ikax2/2ψ(x)
and then rescaling k → kb. In other words, in order to understand the eigensolutions of (24), it
suffices to solve the original problem (1) and perform a simple transformation at the end. Note that
this deformation of phase space by a gauge transformation of quadratic phase is also an important
element in existing applications of (1) to the study of modes of open optical resonators [12]: We
study (24) as a special case of more general metaplectic transformations, however, because it leads
more directly to treatments of nonlinear transformations and geometries as follows.

The form given in (16) can be extended to nonlinear changes of coordinate (x, p) → (Q , P),
generated by functions F (Q , x) that are higher-order than quadratic and correspond to replacing
the simple parallelograms in Fig. 2 with projection along more general curvilinear coordinate lines,
at the expense of letting the transformation (16) be stated approximately (see [39,43] for more in-
depth discussion of such so-called Van Vleck approximations). In particular, we can let Q represent
the initial position coordinate of a ray leaving ΩT and F (Q , x) represent the length of the ray
arriving at position x in ΩR in the more general case. Thus we expect the approach taken here
to be applicable to more general problems although we simplify the presentation in this paper by
restricting to the linear case.

4. An analogue problem in quantum and classical mechanics

The integral and differential equations of the previous section are converted into analogue

quantum problems by making the identification k → 1/h̄.

9



S.C. Creagh and G. Gradoni Annals of Physics 449 (2023) 169204
4.1. An analogue quantum Hamiltonian

The generalised integral operator (24) commutes with the differential operator

Ĥ = Q̂ (1 − x2)Q̂ + x2 = x̂2 + Q̂ 2
− Q̂ x̂2Q̂ , (25)

where Q̂ is defined in (20), subject to the conditions that the solution should be differentiable at
the singular points x = ±1 of the corresponding differential equation. The eigenfunctions ψn(x) of
(24) can then be presented as stationary states of a time-independent Schrödinger equation

Ĥψn = Enψn.

This Hamiltonian can also be written in the forms

Ĥ = x̂(1 − Q̂ 2)x̂ + Q̂ 2
= x̂2 + Q̂ 2

− x̂Q̂ 2x̂, (26)

which can be shown using the standard commutation relations between x̂ and p̂ set out in
Appendix A. Even though these expressions are formally symmetrical with respect to exchange
of x̂ and Q̂ , the imposed boundary conditions (that ψn(x) is differentiable at x = ±1) breaks
that symmetry. Thus, for example, we find that the integral transform operator T̂ defined by (16)
does not preserve Ĥ: the eigenfunction ψn(x) and its transform ϕn(Q ) are distinct. The boundary
conditions also explain why the spectrum of Ĥ is discrete, even though its classical analogue
described below is unbounded and can be used to define a scattering problem.

Although the commutation of Ĥ with K̂ has been a standard feature of the treatment of (1) since
the early work by the Bell group in [1–5] (and a detailed derivation is provided in [10] for example),
we revisit the justification for it in the remainder of this section. We do so first because the necessity
of the imposed boundary conditions at x = ±1 is often taken for granted in the established literature
but is not immediately evident in the context of the analogue quantum problems: a more detailed
discussion is then useful for the semiclassical treatment coming in Sections 5 and 6. Second, by
formulating the boundary conditions as a no-flux condition across appropriate lines in phase space
(see Appendix A), we provide a platform for extending the outcome in future to the more general
setting outlined at the end of Section 3.4, simply by allowing these bounding lines to become
curves. Lastly, although well-established technically, the commutation of Ĥ with K̂ is often not
well-motivated in the literature: discussions frequently cite Slepian’s characterisation of it as a
‘‘lucky accident’’ [8], for example. The simple physical intuition offered by the quantum analogue
is therefore appealing.

4.2. An analogue classical hamiltonian

In understanding the nature of these stationary states, and in order later to use WKB methods
to approximate them, it is helpful to define the corresponding classical Hamiltonian

H(x, p) = x2 + Q (x, p)2 − x2Q (x, p)2. (27)

The phase portrait defined by level curves H(x, p) = E of this Hamiltonian is shown in Fig. 3, for
both the conventional case Q = p on the left and for a more generic case on the right. Note that
the level curves corresponding to E = 1 are lines defined by Q = ±1 and x = ±1 respectively. This
observation provides a simple explanation of the classical analogue of the commutation of K̂ and
Ĥ .

Define classical observables

L(x, p) = χ (x)

and

M(x, p) = χ (Q ),

projecting onto the interval (−1, 1) on the x and Q coordinates respectively, and note that

K (x, p) = M(x, p)L(x, p) = χ (x)χ (Q ),
10
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c

Fig. 3. Phase portrait of the classical Hamiltonian H(x, p), for the conventional square case in part (a) and for a skewed
ase (in which a = −1/2 and b = 1) in part (b). The energy contours for E = 1 are shown as heavy green lines in each
case. Contours for 0 < E < 1 are shown in blue and contours for E > 1 are shown in red.

is the characteristic function of the parallelogram defined by −1 < x < 1 and −1 < Q < 1. We
can interpret K (x, p) as a classical symbol for the integral operator K̂ . Then, because the supports
of L(x, p), M(x, p) and K (x, p) are bounded by the straight lines x = ±1 and Q = ±1, which are also
the energy contours H(x, p) = E with E = 1, these functions are invariant under the dynamics of
H(x, p). That is,

L̇ = {L,H} = 0 (28)

and similarly

{M,H} = 0 = {K ,H}, (29)

where {·, ·} denotes a Poisson bracket. That is, the classical symbols of K̂ and Ĥ Poisson-commute,
which allows us to hope that the operators themselves commute. However, the quantum analogue
demands a closer inspection of the boundary conditions imposed.

4.3. Boundary conditions

The commutation of operator K̂ with Ĥ is established as a consequence of the commutation of
Ĥ with L̂. We argue first in the conventional case Q = p, for which the integral transform T̂ reduces
to the conventional Fourier transform F̂ , and use that the more general case is obtained from this
following a gauge transformation at the end to extend the conclusions. Details are demonstrated
in Appendix A and here we set out the main requirement for this commutation property, which is
that boundary conditions are placed on the wavefunction ψ(x) that eliminate singular solutions of
the differential Eq. (10). In fact, any eigenfunction of K̂ , being the (inverse) Fourier transform of a
bandlimited function of p according to (14) and (15), must be analytic on the real line, according
to the Paley–Wiener theorem. Such smoothness conditions are therefore natural in the context of
solving the corresponding integral equation and are taken for granted in the established literature.

However, from the viewpoint of finding stationary states of a Hamiltonian Ĥ in the quantum
mechanical context, these conditions are less obvious. For example, singular solutions are perfectly
physical in closely-related normal-form treatment of quadratic scattering problems [22,23]. Fur-
thermore, these boundary conditions play a central role in breaking the symmetry with respect
to interchange of operators x̂ and p̂ and in leading to a discrete spectrum {En}, even though the
Hamiltonian (25) defines an unbound scattering problem for which we might heuristically expect
a continuous spectrum in the quantum-mechanical context.
11
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It is shown in Appendix A that the condition

[L̂, Ĥ]ψ(x) = 0

leads to a requirement that ψ(x) be differentiable at x = ±1. An analysis of the differential Eq. (10)
around each of its singular points x = ±1 using the Frobenius method reveals the independent
solutions to be of the forms

F (x) and F (x) log |x ∓ 1| + G(x) (30)

respectively, where F (x) and G(x) are analytic there. Imposition of conditions of differentiability
therefore eliminates the second of these solutions at each of the two singular points, and explains
the resulting discrete spectrum. From the Paley–Wiener theorem, the differentiability condition
must in any case hold if ψ(x) is an eigenfunction of K̂ , so it is natural from the point of view
solely of the integral equation. However, note that the corresponding solution ϕ(p) in momentum
epresentation does not satisfy the corresponding differentiability condition around p = ±1: the
Paley–Wiener theorem asserts instead that ϕ(p) is bandlimited. Thus the boundary condition breaks
the symmetry of interchange of x and p.

The conditions of differentiability at x = ±1 are inconvenient to apply to WKB treatments of
the solutions, which are at the heart of the discussion in Section 5. This is because a singularity of a
WKB approximation does not convert simply to a corresponding singularity of the exact solution. For
example, primitive WKB approximations of the conventional Schrödinger equation that are singular
near generic turning points are replaced there by smooth, uniform treatments to approximate
the correspondingly smooth, exact solutions. For this reason we impose an alternative boundary
condition

lim
p→±∞

pϕ(p) → 0 (31)

on the Fourier transform ϕ(p) of ψ(x), suggested as a variant of the Riemann–Lebesgue lemma
applied to ψ ′(x), which avoids this problem. We argue in Section 5.3 that this boundary condition
(or its generalised form given in (33) below) must also be satisfied by WKB approximations. This
alternative offers a simpler way to impose boundary conditions on the graph model in Section 5 in
particular.

We have established conditions for [L̂, Ĥ] = 0, but have not yet concluded that [K̂ , Ĥ] = 0. For
the latter, use the derivation identity

[K̂ , Ĥ] = [M̂L̂, Ĥ] = M̂[L̂, Ĥ] + [M̂, Ĥ]L̂. (32)

Now, the image of the operator L̂, being compactly supported in x, consists in momentum represen-
tation of analytic functions of p, by the Paley–Wiener theorem. By repeating the argument above,
but in momentum representation, and using the formal symmetry of Ĥ with respect to interchange
of the operators x̂ and p̂, we can therefore deduce that

[M̂, Ĥ]L̂ψ(x) = 0,

regardless of the boundary conditions imposed on ψ(x). We deduce therefore that [K̂ , Ĥ] as
expressed in (32) vanishes on the domain of differentiable functions ψ(x).

We finally argue that the previous discussion can be extended to the skewed representation
ϕ(Q ) resulting simply in

lim
Q→±∞

Qϕ(Q ) → 0 (33)

replacing (31). This can be achieved by recalling that the skewed problem is obtained by a
gauge transformation of the conventional one in order to generalise the parts of the argument
invoking Fourier-transform (such as Paley–Wiener and Riemann–Lebesgue) theorems. Furthermore,
a physical interpretation of this boundary condition is provided in Appendix C in terms of flux
crossing coordinate lines in phase space. Although the details of the preceding discussion do
not easily generalise to the case where these lines become more general curves, this physical
interpretation does, so we assert that these boundary conditions have a clear generalisation to the
curvilinear case so that the graph-scattering picture in Section 5 remains qualitatively similar.
12
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5. Semiclassical approximation of eigenfunctions and eigenvalues

With boundary conditions in place, we are now in a position to summarise how eigenfunctions
n(x) may be approximated semiclassically, along with the corresponding eigenvalues En (in this
ection) and λn (in the next section). These approximations are based on a description of the classical
rbits in phase space, including complex solutions so that we can account for coupling by tunnelling
etween local solutions inside the interval −1 < x < 1 and those outside it. For the Hamiltonian
27) these classical solutions can be expressed explicitly in terms of elliptic functions, with details
et out in Appendix B, but here in the main text we just summarise the main features.

.1. Classical solutions and local WKB approximations

Using H(x, p) = E to eliminate

Q (x, E) = ax + bp(x, E) = ±

√
E − x2

1 − x2

in Hamilton’s equations gives

ẋ ≡
dx
dt

=
∂H
∂p

=
2
b
Q (1 − x2) = ±

2
b

√
(E − x2)(1 − x2). (34)

These classical solutions can be used to define local WKB solutions of the form

ψWKB(x) =

√
2

b|ẋ|
e±ikbS(x;E)−ikbax2/2 =

e±ikbS(x,E)−ikbax2/2

[(x2 − E)(x2 − 1)]1/4
, (35)

here the factor of 2/b is put in the prefactor simply to ease presentation, the scaled wavenumber
b has been introduced in (19) and the action function S(x, E) is defined

S(x, E) =

∫ x

x0

√
u2 − E
u2 − 1

du =

∫ x

x0

√
E − u2

1 − u2 du (36)

for some appropriately chosen reference point x0. These local solutions are valid away from the
turning points x = ±

√
E and the singular points x = ±1. The eigenfunctions are obtained by

using connection formulae across these singular and turning points to find a single well-defined
global solution, and an associated quantisation condition for associated eigenvalues [44–46]. These
connection formulae are obtained from established asymptotic methods but the connection across
the singular points x = ±1 is a less standard problem and treatment in direct representation
conceals important physical interpretations of the boundary conditions. For this reason we take
an approach that emphasises the possibility of writing these local WKB solutions in alternative
representations.

Each local solution of the form (35) is defined, up to a phase factor, by (a branch of) a contour
of H = E and a density on it, whose square root provides the amplitude [43]. For (35) this density
is ρ(x) = 2/(b|ẋ|). Transformation to a new representation, such as ϕ(Q ), can be shown within
eading semiclassical approximation to be achieved by rewriting the density as projection onto the
lternative coordinate Q and replacing the exponent by the alternative action integral∫ x

x0

pdx →

∫ Q

Q0

PdQ .

For the most general transformation in (17), these alternative representations of the local WKB
solutions in (35) are found to be of the form

ϕWKB(Q ) =
e∓ikbS(Q ,E)+ikbdx2/2

, (37)

[(Q 2 − E)(Q 2 − 1)]1/4

13
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Fig. 4. The real and complex orbits used to construct local WKB solutions, are illustrated for E < 1 in part (a) and for
> 1 in part (b).

here S(Q , E) is as defined in (36) except for a possible relabelling of the reference point. Swapping
etween alternative representations provides a simpler means of treating connection formulae
cross the singular points x = ±1 particularly. A detailed discussion requires us to enumerate all
f the local branches forming the single global solution, which we describe next.

.2. Real and complex orbits

We now enumerate and label the classical solutions of (27), real and complex, which are needed
o build a single-valued, global eigenfunction. These solutions can be written explicitly in terms of
lliptic functions as set out in Appendix B, but here in the main text we confine our attention to
abelling the main topologically distinct orbits.

Let us begin with the case 0 < E < 1. Then there is a periodic orbit, which we denote γR, that is
onfined within the parallelogram (x,Q ) ∈ (−1, 1) × (−1, 1): see Fig. 4(a). Denote the period and
ction of γR by

TR =

∮
γR

dt and SR(E) =

∮
γR

pdx = 4S0(E)

espectively, where the last equality defines S0(E). There are four further real orbits, which we
enote γ1 · · · γ4, lying outside the parallelogram, one in each quadrant. In fact, with a deformation
f the integration contour in the complex time plane to avoid poles, these form segments of a single
eriodic orbit – see Appendix B – and in fact can be deformed into γR. In particular, although these
rbits escape to infinity, they have finite times of flight, given by∫

γ1

dt = · · ·

∫
γ4

dt =
TR
4
.

n particular, these finite times of flight mean that corresponding WKB solutions are normalisable
nd can be part of a normalisable global solution, even though the classical motion is unbound. The
orresponding local WKB solutions are then normalised so that∫

γi

|ψWKB(x)|2 dx =
1
4

∫
γR

|ψWKB(x)|2 dx

=
1
4

∫
γR

|ϕWKB(Q )|2 dQ =

∫
γi

|ϕWKB(Q )|2 dQ (38)

for i = 1 · · · 4.
Coupling between the WKB solutions localised on γR and those localised on γ1 · · · γ4 is mediated

by tunnelling across a complex periodic orbit which we denote γI. Let the corresponding (imaginary)
period and action be denoted

TI = −iτI and SI(E) =

∮
pdx = 2iS1(E),
γI

14
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where the last equality defines S1(E). Starting on γR, evolution in imaginary time ends after a half-
eriod TI/2 on one of the orbits γ1 · · · γ4, which one depending on where on γR the initial condition
s chosen. The relevant parameters TI and SI are independent of this choice and we use γI to denote
the complex periodic orbit regardless of which initial condition is used.

The periodic orbits γR and γI can be extended to E > 1, defining continuous extensions of the
actions SR(E) and SI(E). The complex orbit γI is extended straightforwardly, for example by starting
at any real initial condition in x ∈ (−1, 1) and letting time evolve in the imaginary direction in the
omplex plane. There is no single closed orbit equivalent to γR for E > 1, which is replaced by partial
raversal of the open orbits γ5 · · · γ8 illustrated in Fig. 4(b). Evolution from a real initial condition in
x ∈ (−1, 1) and in real time defines an orbit which encounters poles in the Q coordinate, passing
from γ5 to γ7 and then back to γ5 again. From this representation we find that∫

γ5

dt = · · ·

∫
γ8

dt =
TR
2
.

or i = 5 · · · 8.
Alternatively, diversion of the time contour into the complex plane allows one to avoid these

poles at the expense of allowing γR to incorporate complex segments (whose imaginary contribu-
ions to SR(E) cancel). In the illustration of Fig. 4(b), this representation follows γ5 partially before
rossing to γ6 along half a representation of γI and then passing similarly to γ7 to γ8 and back
o γ5 using complex orbits for the transitions complex orbits. If the crossings of complex orbits
lternate in sign of the imaginary period τI, then the result is an orbit of real period and action
qual to the first construction. The former approach is computationally simpler (see Appendix B),
ut less appealing in terms of physical intuition than the latter, which is illustrated in Fig. 4(b).
ither picture defines the same action SR(E) as long as the integration contours in the complex

time plane are topologically equivalent in their route between poles.

5.3. Asymptotics and boundary conditions

We now impose the boundary condition (33) on the relevant local WKB approximations. To
justify this, we note that the WKB approximations set out in this section are asymptotic to exact
solutions, not only as k → ∞, but also for fixed k as |Q | → ∞ (for ϕWKB(Q )). Therefore, (33)
cannot hold for the exact solution unless it is also satisfied by the relevant local branches of the
WKB approximations.

The local solutions on the orbits γ1 · · · γ4 (for E < 1) or γ5 · · · γ8 (for E > 1) give the asymptotic
decays

|ψWKB(x)| ∼
1
|x|

f the direct representation as x → ±∞, and we can similarly characterise the solution along the
ertical asymptotes x = ±1 of γ1 · · · γ4 or γ5 · · · γ8 using the asymptotic decay

|ϕWKB(Q )| ∼
1

|Q |

of the alternative representation as Q → ±∞.
Since this latter condition implies that

lim
Q→±∞

Q |ϕWKB(Q )| ̸= 0,

then boundary conditions (33) are violated if such local branches survive in the full solution. That
is, there cannot in the global eigenfunction be any components corresponding to vertical segments
of γ1 · · · γ4 (for E < 1) or γ5 · · · γ8 (for E > 1). Note that there can be components corresponding
to the nonvertical asymptotes of γ1 · · · γ4 or γ5 · · · γ8 — as long as these are switched on and off
by the Stokes phenomenon as the solution is continued past the neighbourhoods of the equilibria
(x,Q ) = (±1,±1). This imposes an important quantisation condition as discussed in Section 5.4.
15
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Fig. 5. Schematic representation of scattering graphs, drawn in the (x,Q ) plane in part (a) and in the rotated representation
f the (X,Π ) plane, defined by (39), in part (b).

5.4. Quantisation

It remains to discuss how the local WKB solutions can be patched together to form a single-
valued global solution consistent with connection formulae around the equilibria (x,Q ) = (±1,±1)
and satisfying boundary conditions (33).

A complete solution is complicated by the fact that in each of the two natural representations
ψ(x) and ϕ(Q ) discussed so far, the orbits γ1 · · · γ4 or γ5 · · · γ8 have asymptotes that lead to
singularities in the WKB solutions. One can patch these solutions by swapping between represen-
tations ψ(x) and ϕ(Q ) following an asymptotic evaluation of the action of (16) (and its inverse)
on them. Alternatively one can transform to a completely new representation in which none
of the asymptotes have singular projections. A particularly convenient choice is to replace the
transformation in (17) with (x, p) → (X,Π ), where(

X
Π

)
=

1
√
2b

(
1 − a −b
1 + a b

)(
x
p

)
, (39)

hich is achieved by choosing a generating function

F (X, x) = −
1
2
X2

+

√
2
b
Xx +

a − 1
2b

x2

to replace F (Q , x) in (16). The resulting representation produces a rotated network illustrated in
Fig. 5(b) which is symmetrical with respect to rotations of angle π/2 in the (X,Π ) plane — for
example the equilibria at (x,Q ) = (±1,±1) are moved to the axis points (X,Π ) =

√
2/b(±1, 0)

and (X,Π ) =
√
2/b(0,±1). In particular, the asymptotes of γ1 · · · γ4 or γ5 · · · γ8 are not vertical. The

ourfold symmetry of the network in Fig. 5(b) also simplifies the detailed treatment of the scattering
roblem in this section and in Appendix C.
The phase relationships between these various representations are somewhat complicated, while

ot being needed in detail to determine the eigenvalues λn, which are the primary focus of this
aper. We therefore pursue a summary calculation which bypasses explicit calculation of these
hases. Regardless of whether E < 1 or E > 1, the local WKB solutions form a network of
he form illustrated in Fig. 5(a), with the picture obtained following the rotation (39) illustrated
n Fig. 5(b). We denote the amplitudes of each of the corresponding local WKB solutions by
−, a+, b−, b+, . . . , h−, h+ as shown in Fig. 5. Amplitudes with subscript "-" describe local solutions
pproaching neighbourhoods of equilibria, which form nodes of the network, and amplitudes with
16
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subscript "+" describe local solutions pointing away from them in the classical flow. The phases of
hese amplitudes depend on the representation being used, but the absolute values do not, as long
s we normalise ψWKB(x) and ϕWKB(Q ) consistently (so that (38) holds, for example).
We take advantage of a global symmetry of the problem with respect to the parity operation

x, p) → (−x,−p) to seek solutions that are either even or odd and so for which(
a+

b+

)
= ±

(
c+
d+

)
and

(
e+

f+

)
= ±

(
g+

h+

)
(40)

and similarly for incoming amplitudes a−, b−, . . . , h−). We use

σ = ±1

o label the corresponding symmetry classes and beware the difference between the ± arising in
his context and the ± used to label incoming and outgoing amplitudes.

Denote

ψ± =

(
a±

b±

)
,

epresenting the amplitudes on branches of the network extending to infinity in either x or Q . Then
t is shown in Appendix C that the amplitudes (e±, f±) on the inner, finite branches of the network
an be eliminated from an imposition of consistency with respect to connection formulae at nodes
o give a scattering relation of the form

ψ+ = V (E)ψ−, (41)

here V (E) is a 2 × 2 scattering matrix depending on actions of real and complex orbits defined
n Section 5.2 (and therefore depending on E). This scattering problem does not in isolation lead
to quantisation of E. Quantisation only emerges once we impose the boundary conditions in (33),
which in turn impose the following conditions on the scattering amplitudes:

a− = b+ = d+ = c− = 0. (42)

These conditions require that the diagonal entries in V (E) should vanish, which provides a quan-
tisation condition for E. That is, scattering should be transparent at quantisation with respect to
conversion between left–right and up–down branches of the network shown in Fig. 5(a).

A detailed calculation of the scattering matrix V (E) is provided in Appendix C for the rotated
presentation illustrated in Fig. 5(b) (so that a single representation suffices to define nonsingular
local WKB solutions along all 8 asymptotes of the network). It is shown there that the imposed
boundary conditions lead to the quantisation condition

kSR(E) = 4kbS0(E) = 2π
(
n +

1
2

)
+ 4δ(E), n = 0, 1, 2, . . . , (43)

with symmetry classes

σ = (−1)n

and where

δ =
Θ

π
log
⏐⏐⏐⏐ Θπe

⏐⏐⏐⏐+ arg
(
Γ

(
1
2

− i
Θ

π

))
(44)

and

Θ = kbS1(E) (45)

is half the imaginary action of the complex periodic orbit γI defined in Section 5.2, scaled by kb.
Note that our conventions are such that Θ > 0 when 0 < E < 1 and Θ < 0 when E > 1, while δ
is an odd function of Θ .

The quantisation condition (43) is well established for the conventional problem with Q = p
and has been derived in detail in [44], for example. It approaches a standard Bohr-Sommerfeld
17
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condition [39] for 0 < E < E0 as k → ∞, where E0 is any constant such that E0 < 1, for which
→ 0. In fact, the complete quantisation condition with δ-correction is very close to quantisation

conditions that arise in quantum-tunnelling problems near transitional energies (analogous to
E → 1 in the current problem) [47–51]. The Bohr–Sommerfeld-like quantisation condition then
superficially suggests interpretation as a resonance condition of the scattering problem defined by
V (E). This interpretation would be misleading however, especially as E crosses the critical value

= 1 into the regime E > 1, where any resonances of the scattering problem are short-lived and
o not define real energy levels even approximately. By contrast, even for E > 1, the quantisation
ondition (43) gives sharply-defined real solutions E = En that are consequences of the boundary
onditions (33) and not automatic features of the analogue quantum scattering problem.

. Eigenvalues λn as tunnelling probabilities

In the previous section we have discussed semiclassical approximation of the eigenfunctions
n(x) and given quantisation conditions to approximate the eigenvalues En of the differential
perator Ĥ . We now discuss corresponding approximation of the eigenvalues λn of the integral
perator K̂ . We show that they take the form of a transition probability between branches of the
etwork shown in Fig. 5, which becomes a tunnelling probability when En > 1. These tunnelling
robabilities reproduce previously established approximations of λn in the transition region En ≈ 1,
ut extend them to apply universally, regardless of the value of En.

.1. The main result

The basis for our derivation is a generalisation of (12) to the skewed analogue

T̂ : ψn(x) ↦→ ϕn(Q ) =
in

√
λn
χ (Q )ψn(Q ), (46)

and can be derived from it by letting ψn(x) be an appropriate gauge transformation of the PSWFs
used in the conventional case, for example. In the network scattering picture of Fig. 5, this requires
in particular that

λn ≈

⏐⏐⏐⏐ e+

f+

⏐⏐⏐⏐2 =

⏐⏐⏐⏐ e+

h+

⏐⏐⏐⏐2 =

⏐⏐⏐⏐ e+

e−

⏐⏐⏐⏐2 . (47)

n contrast to the interpretation of eigenvalues En of Ĥ in simple physical terms as the values of
the function H(x, p) on quantised level sets, the use of (46) and (47) to evaluate eigenvalues λn
f K̂ is rather technical: the interpretation offered below is for now presented as a mathematical
quivalence rather than one with a clear intuitive motivation.
By writing the relationship (47) using absolute values of the amplitudes of WKB states, it

ecomes true regardless of the representation used for the network scattering problem, as long as
he WKB states are normalised consistently, and so in particular applies to the amplitudes calculated
n Appendix C. The rightmost equality also allows us to interpret λn as a transition probability for
aves approaching a node of the network along a finite bond approaching it (with amplitude e−)
nd scattering into a finite bond leaving it (with amplitude e+). When En > 1, this is a tunnelling
robability for a classically forbidden process for which we can use well-established semiclassical
pproximations [22,23,47].
As illustrated in Fig. 6, this local scattering problem is equivalent to a problem of reflection of

wave from a generic potential barrier in quantum mechanics, with En < 1 corresponding to the
ase of below-barrier reflection and En > 1 to above-barrier reflection. The resulting approximation

λn ≈ λTUNNELn ≡
1

1 + e−2Θ(En)
, (48)

whereΘ(E) has been defined in (45), emerges explicitly from the detailed calculation in Appendix C.
The interpretation as a simple transition probability, coming from the rightmost equality in (47),
18
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l
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Fig. 6. The local scattering problem about a single node of the network in phase space illustrated in part (a) is analogous
to the barrier-crossing problem in quantum mechanics illustrated in part (b).

allows us to make a condensed argument for the result, however, which we present in the main
text.

Here we isolate the subproblem of a wave component corresponding to amplitude e− scattering
from a node it approaches and into the outgoing component e+, and present it as a simple barrier-
penetration problem in quantum mechanics: see Fig. 6. When the condition a− = 0 is satisfied
(which is the case at E = En), then it corresponds in the quantum analogue to scattering of a
wave being incident from the right (with no component incident from the left). The reflection and
transmission coefficients for such an incident wave, as discussed in more detail in Appendix C, are
in WKB approximation [22,47,49,50]

r =
−ie−iδ

√
1 + e−2Θ

and t =
e−iδe−Θ

√
1 + e−2Θ

. (49)

Then according to the rightmost equality in (47) we have

λTUNNELn = |r(E = En)|2,

which gives (48). When En < 1 the reflection and transmission coefficients correspond to a below-
barrier quantum tunnelling problem, with incoming amplitudes being predominantly reflected and
with comparatively weak transmission across the barrier (t ≈ 0). When En > 1 the problem
transitions into an above-barrier quantum tunnelling problem, in which transmission dominates
and there is comparatively weak reflection (r ≈ 0).

6.2. Comparison with classical results

Eq. (48) generalises an established approximation [6]

λn ≈ λSLEPIANn ≡
1

1 + eπk(En−1)/2 (50)

that applies around the transition at En ≈ 1, extending it to apply for arbitrary En (in a semiclassical
imit k → ∞ and assuming n is large enough that WKB approximation of the eigenfunctions is
appropriate). This is obtained by substituting the approximation

Θ(E) = kS1(E) =
πk
4

(1 − E) + O
(
(E − 1)2

)
n the exponent in (48) for the case b = 1 (which is assumed throughout this section).

It has been shown by Widom [25] that, for fixed k and as n → ∞ (so in particular En ≫ 1),

λn ≃ λWIDOM
n ≡

(
ek

)2n+1

,

2(2n + 1)

19
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while Fuchs has shown [24], for fixed n and as k → ∞ (so in particular En ≪ 1), that

1 − λn ≃ 1 − λFUCHSn ≡
4
√
π23nkn+1/2e−2k

n!
.

he Widom approximation has more recently been improved by Bonami and Karoui [26]. We note
hat these approximations are restricted to particular ranges of the variable E (E < 1 for λFUCHSn ,

≈ 1 for λSLEPIANn and E > 1 for λWIDOM
n ), whereas the result in (48) spans all three regimes.

ts physical interpretation as a tunnelling probability is also advantageous in making it simple
o evaluate and in promising generalisation to problems such as those arising from deformed
arallelograms.
We obtain the Widom approximation directly from (48) by noting that in the limit En → ∞ the

quantisation condition (43) yields (recall that δ → 0 in this limit)

2n + 1 ≃
4k
π

S0(En) ≃ 2k
√
En

which uses the asymptotic form S0(E) ≃ π
√
E/2 of the integral defining S0(E) for the case E > 1

in Appendix B), so that

−
1
2k

log
(
λWIDOM
n

)
≃

√
En log

(
4
√
En

e

)
.

his is seen to be consistent with

−
1
2k

log
(
λTUNNELn

)
≃ −

1
k
Θ = −S1(En)

n substitution of

S1(E) ≃ −
√
E log

(
4
√
E

e

)
,

which can be obtained from approximation of the explicit integral form of S1(E) given for E > 1 in
ppendix B.
From (48) we can also reproduce a version of the Fuchs approximation in which the following

odification of Stirling’s approximation

n! ≃
√
2π
(
n +

1
2

)n+1/2

e−(n+1/2)

s substituted in it, leading to

−
1
2k

log
(
1 − λFUCHSn

)
≃ 1 +

(
n + 1/2

2k

)
log
(
n + 1/2

8ke

)
≃ 1 +

1
π
S0(En) log

(
S0(En)
4πe

)
,

where the second line is obtained on using the quantisation condition (43). This approximation is
reproduced by (48), which can be written

−
1
2k

log
(
1 − λTUNNELn

)
=

1
k
Θ(En) = S1(En)

on substituting the following approximations of the actions

S0(E) ≃
πE
4

and S1(E) ≃ 1 +
E
4
log
(

E
16e

)
,

hich can be derived from the explicit integrals in Appendix B on taking the limit E → 0. We
eiterate that (48) deviates from the Fuchs approximation most significantly for small n due to the
eplacement of n! by the Stirling approximation. This deviation is to be expected because WKB
20
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Fig. 7. In part (a) we illustrate the 2D MIMO model used as a basis for the numerical calculations in this section. In
art (b) is shown the corresponding patch defined in the phase plane of the receiving boundary, with the full nonlinear
ynamics shown as red curves, the strip defined by the receiving region ΩR shaded purple and the parallelogram defined

by the linearised dynamics shaded green: here we choose LT = LR = L = z/5.

approximation of the inner part of the eigenfunction assumes n is large (although the quantisation
condition (43) is valid even for small n). It is known how to correct tunnelling rates to account for
the form of the eigenfunction with low quantum numbers [52]: such calculations can, for example,
account for the relative factor of

√
π/e in the comparison above that arises from replacing n! by its

tirling approximation when n = 0. A more complete connection between (48) is therefore certainly
ossible but we do not pursue that calculation here.

. Application to MIMO systems

We now provide a numerical illustration of the results derived in this paper, using an idealised
odel of MIMO communication as motivation.

.1. A model holographic surface problem

Consider the idealised model of MIMO communication illustrated in Fig. 7(a). In this 2D model
e suppose dense arrays of transmitting and receiving antennae distributed along intervals ΩT =

−LT/2 < x′ < LT/2} and ΩR = {−LR/2 < x < LR/2}, of lengths LT and LR respectively, and directly
opposed at a distance z apart. A ray leaving a point x′ in ΩT with momentum p = sinα arrives at
ΩR at position

x = x′
+ z tanα = x′

+
zp√

1 − p2
.

Then the image ϕΩT of the transmitting interval ΩT is bounded in the phase plane of the receiving
line by the curves

x = ±
LT
2

+
zp√

1 − p2
, (51)

which are illustrated in red in Fig. 7(b). The patch ΩRT is the region bounded by these two curves
and the bounds x = ±LR/2 of the receiving interval.

An interesting future generalisation of this work will be to calculate the analogues of Slepian
eigenvalues defined by the region ΩRT = ΩR ∩ ϕΩT , while accounting for the nonlinear nature of
the bounds in (51). Here we consider a simpler calculation in which the nonlinear bounds (51) are
replaced by the linearised versions

x = ±
LT

+ zp.

2
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If z is significantly larger than LT ,R these limits define a parallelogram that approximates the exact
region ΩRT , as illustrated by patch shaded green in Fig. 7(b) for an example in which z/LT = z/LR =

. This linearised setting places us in the context of the calculations in this paper.
To complete the connection, we define a coordinate

Q = −x + zp,

on the phase plane of the receiving antennae. Note that −Q is the coordinate x′ of a ray as it leaves
T on its way to (x, p): the sign is chosen so that the parameter b = z defined in the notation
f Section 3.4 is positive, so that we conform to the conventions set out there. Then the results of
ection 6 apply on replacing

k → keff ≡
∆Q∆xkb

4
=

kLT LR
4z

o account for scaling of the intersection region from the conventional special case ∆Q = ∆x = 2
see the discussion at the end of Section 3.1).

.2. Numerical illustration

We now apply the approximations of Section 6 to the geometry illustrated in Fig. 7 (in which
= 5LT = 5LR). To compare the various approximations of λn with numerical results, we are
otivated by (43) to define the function of energy

n(E) =
1
2π

(keffSR(E) − 4δ(E))−
1
2
,

hich should take approximately integer values n(En) ≈ n when En is an eigenvalue of Ĥ . We also
enote the value at the critical energy E = 1 by

Nmax = n(1) =
2keff
π

−
1
2

(note that SR(1) = 4 and δ(1) = 0). For the purposes of comparison we also define the quantity

∆λn =

{
1 − λn En < 1
λn En > 1,

which is small except in the transition region En ≈ 1.
We plot each of the various approximations for λn as parametrised curves (n(E), λAPPROX(E))

for keff = 5π/2 in Fig. 8, where APPROX is one of TUNNEL, SLEPIAN, FUCHS or WIDOM (the
integer n in the Fuchs approximation is replaced by n(E) here in order to present it as a continuous
curve). We also show numerically calculated values of λn (obtained using the expansion in Legendre
Polynomials described in [11]), plotted against n for the values n = 0, 2, 4 · · ·. Although the
chosen value of keff is not particularly large (it corresponds to Nmax = 9/2), these eigenvalues λn
lie approximately on the curves for the various approximations within their domains of validity.
Furthermore, the result (48) applies across all these regimes, successfully interpolating between the
domains of validity of Fuchs to Slepian to Widom. The relative sizes of the various approximations
and the numerical evaluation are further exemplified in Fig. 9, where the ratio ∆λn/∆λTUNNELn is
plotted, with the parameter values of Fig. 8 being shown in part (a) and a separate calculation for
the larger values keff = 5π and Nmax = 19/2 being shown in part (b). The use of a linear scale helps
o highlight the greater overall accuracy of (48). Except for the first eigenvalue, we find in these
xamples that the tunnelling model performs at least as well as, and often considerably better than,
ach of the classical approximations: the better accuracy of the Fuchs approximation for the lowest
igenvalues is expected, as discussed at the end of Section 6.2.
The exponential approach of eigenvalues λn to 1 or 0 outside of the window where the Slepian

pproximation is valid means that in practice the wider validity of our tunnelling model will be of
imited importance to global measures of communication rates such as the channel capacity defined
n Section 2.1. We note, however, that there is additional information available in the more complete
esults, for example, the fall-off in individual channel strengths outside of the set supported inside
he patch Ω .
RT
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Fig. 8. In part (a) we show in red the curve defined by (n(E), λTUNNEL(E)) (parametrised by E) along with the first few
values of (n, λn), shown as crossed circles, computed numerically for even values of n with keff = 5π/2 (so Nmax = 9/2).
his agrees well with the approximation (50), presented as a green-dashed curve which applies over the transition region.
n part (b) we compare numerically-computed values of ∆λn with corresponding approximations by Fuchs (for En < 1),
y Slepian (for En ≈ 1) by Widom (for En > 1) and by (48) (for all En). Here we see that (50) in particular deviates
ignificantly outside of the transition region, whereas (48) does not.

Fig. 9. The ratios of ∆λn to the values ∆λTUNNELn predicted by (48) are shown on a linear scale. The plot in part (a) uses
the same parameters as in Fig. 8 (so in particular keff = 5π/2 and Nmax = 9/2). We add an equivalent comparison in part
(b) for the larger values keff = 5π and Nmax = 19/2. Of course, the red curves corresponding to the tunnelling model are
trivial in these plots but are included to ease comparison. After the first couple of eigenvalues, where the differences are
visually apparent, the relative error of the tunnelling model falls to about a percent in part (a) and about half a percent
in part (b). Note that to achieve this accuracy, we use the semiclassical approximation of En when evaluating (48) to scale
the numerically calculated eigenvalues: the errors are significantly larger if this is evaluated using the exact value of En .

8. Conclusion

We have expressed the eigenvalues of the integral operator in (1) as transition probabilities in an
analogue quantum problem. This allows us to approximate the eigenvalues using well-established
approaches to quantum tunnelling using real and complex orbits of a corresponding classical
Hamiltonian. These approximations extend the range of validity of a well-known approximation
of the eigenvalues given by Slepian previously, approaching it in the transition region where the
eigenvalues pass from being near unity to near zero. This single result uniformly extends Slepian’s
approximation so that it interpolates between regimes where distinct approximations have been
provided by Fuchs and Widom.

The integral operator (1) has been studied primarily for its role in signal processing but is
developing a new relevance in the context of radio communication by MIMO arrays. Here however,
more general forms are relevant where filtering in the Fourier domain is by more general windows
than in the signal processing context. The tunnelling picture presented in this paper is promising
as an approach in this more general setting, and has been explicitly applied to skewed geometries
where the relevant phase space region is a parallelogram rather than a rectangle. It also points to
23
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a generalisation to more general regions defined by curvilinear boundaries, albeit at the expense of
replacing previously exact symmetries (commutation with the Hamiltonian Ĥ) with approximate
nes. We will show in a future publication that the eigenvalues in this more general case still lie
n the parametrised curves exemplified in Fig. 8, with the simple modification that the value of the
arameter keff = kA/4 is adjusted to account for the area A in phase space of the deformed patch.
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ppendix A. Boundary conditions for flux conservation

In this Appendix we motivate further the boundary conditions imposed on eigenfunctions in
ection 4.3. Let a prime signify the following scaled commutator

[Â, B̂]′ ≡ −ikb[Â, B̂]

f operators Â and B̂, where kb = k/b is the scaled wavenumber introduced in Section 3.4. Then

[x̂, Q̂ ]
′
= Î,

here Î is the identity operator and, furthermore,

[x̂, f (Q̂ )]′ = f ′(Q̂ ),

nd

[g(x̂), Q̂ ]
′
= g ′(x̂), (A.1)

re well-established identities in quantum mechanics, where g(x̂) denotes an operator defined by

g(x̂)ψ(x) = g(x)ψ(x)

for any function g(x), g ′(x) denotes its derivative and the operator f (Q̂ ) is defined analogously by
its action

f (Q̂ )ψ(x) = T̂−1 [f (Q )ϕ(Q )]

on the integral transform ϕ(Q ). Within this convention we can also denote

L̂ = χ (x̂) and M̂ = χ (Q̂ )
24
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and for convenience we will also interchangeably write

g(x̂) = g(x) = g(x)Î

here there is no risk of confusion. We will also make repeated use of the derivation identity

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ] (A.2)

n the following.
Let us first establish the conditions under which the identity

[L̂, Ĥ] = 0

holds. Since L̂ = χ (x̂) is a function of x̂, we trivially find

[L̂, x̂] = 0,

while

[L̂, Q̂ ]
′
= χ ′(x)

is a special case of (A.1). Note that χ ′(x) (and any further derivatives to be encountered below)
is distributionally concentrated on x = ±1, so the action of this last commutator (or whether its
action is defined in the first place) will depend on the boundary conditions imposed at these singular
points. By repeated application of (A.2) we can also establish that

[L̂, Q̂ 2
]
′
= χ ′(x)Q̂ + Q̂χ ′(x)
= 2χ ′(x)Q̂ + [Q̂ , χ ′(x)]

= 2χ ′(x)Q̂ −
i
kb
χ ′′(x)

nd by a similar calculation that

[L̂, x̂Q̂ 2x̂]′ = 2x2χ ′(x)p̂ − 2
i
kb

xχ ′(x) −
i
kb

x2χ ′′(x).

ombined with (26) this provides the formal identity

[L̂, Ĥ]
′
= 2(1 − x2)χ ′(x)Q̂ −

i
kb

[(1 − x2)χ ′(x)]′.

We must next determine boundary conditions on solutions ψ(x) so that

[L̂, Ĥ]
′ψ(x) = 0 (A.3)

s guaranteed.
From the identity

χ ′(x) = δ(x − 1) − δ(x + 1)

e find that

(1 − x2)χ ′(x) = 0

n the sense of distributions, and condition (A.3) is therefore automatically satisfied when ψ(x) is
aken from the usual spaces of (sufficiently smooth) test functions. However, for functions with
ogarithmic singularities such as the second case listed in (30), we find that

(1 − x2)Q̂ψ(x) ∼ constant as x → ±1

nd we conclude that (A.3) fails for them. The operations in (A.3) are well defined on the other
and for continuously differentiable functions ψ(x), which is the boundary condition imposed on
solutions of the integral equation and associated differential equation.
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Condition (A.3), and the resulting requirement to eliminate logarithmically divergent solutions,
an be given a simple physical interpretation in terms of flux crossing the lines defined by x = ±1,
hich can be written

Φ ∝ ⟨ψ |[L̂, Ĥ]
′
|ψ⟩,

p to a constant factor. In other words, boundary condition (A.3) makes this flux vanish, while this
s not automatically the case for arbitrary solutions of the differential equation defined by (26). Flux
onservation is nontrivial across x = ±1 for the Hamiltonian (26) because the classical analogue
as unstable manifolds along the corresponding vertical lines in phase space, which can act as
inks diverting flux that is incident from the left or right. Solutions which include the logarithmic
ingularities in (30) have nonzero flux in these vertical directions and a resulting nonconservation
f flux across x = ±1: this interpretation becomes more evident for the alternative form of the
oundary conditions in (33), which explicitly eliminate branches of the corresponding scattering
roblem carrying flux in these vertical directions. This interpretation of the boundary conditions in
erms of flux carried by the unstable manifold will be useful in generalising the present calculations
o the case of nonlinear coordinate changes as set out in Section 3.4.

ppendix B. Real and complex orbits as elliptic functions

We now further motivate the properties of real and complex orbits of H(x, p), discussed in
ection 5.2, by demonstrating them to be properties of explicit solutions derived in terms of elliptic
unctions and integrals [41]. As in the discussion provided in the main text, it is helpful to separate
hese solutions into the cases 0 < E < 1 and E > 1.

B.1. The case 0 < E < 1

Integrating (34) with the initial condition x(0) = 0 and ẋ(0) > 0, one can show that

x(t) =
√
E sn(2t/b|E) and Q (t) =

√
E cd(2t/b|E), (B.1)

where sn and cd are Jacobi elliptic functions in the notation of [41]. Note that sn(u|E) has real and
imaginary periods 4K and 2iK′, where

K(E) =

∫ √
E

0

dx√
(E − x2)(1 − x2)

and K′(E) = K(1 − E)

denote complete elliptic integrals in the notation of [41] (we introduce a bold font to distinguish
them from the operator K̂ and its symbol K (x, p)). Corresponding to the real period, the solution
(B.1) therefore defines a real periodic orbit γR with real period TR = 2bK(E). This periodic orbit has
action

SR(E) =

∮
γR

pdx =
1
b

∮
γR

Qdx =
4
b
S0(E), (B.2)

here

S0(E) =

∫ √
E

0

√
E − x2

1 − x2
dx = E(E) − (1 − E)K(E)

and where E(E) denotes the complete elliptic integral of the second kind [41].
We can identify the complex periodic orbit γI with the imaginary period iK′(E) of sn(u|E) [41],

so that TI = ibK′(E). This has an imaginary action

SI(E) =

∮
pdx =

1
∮

Qdx =
2i

S1(E), (B.3)

γI b γI b
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where

S1(E) =

∫ 1

√
E

√
x2 − E
1 − x2

dx = E(1 − E) − EK(1 − E).

This imaginary action is the single most important property of the classical solutions for the
purposes of this paper.

Finally, it is useful to note how the complex orbit γI allows us to connect the real periodic orbit
γR to the four outer branches γ1 · · · γ4 of the energy contour. If we start the complex periodic orbit
γI at x(0) = 0, it runs into a pole at the half period t = TI/2, but this is avoided for almost all other
conditions. If (real) initial conditions other than those on the coordinate axes x = 0 and Q = 0 are
hosen, then after a half period t = TI/2 one returns to the real phase plane, on one of γ1 · · · γ4.
olutions on these outer contours can be written for appropriate initial conditions as

x(t) = ±ns(2t/b|E) and Q (t) = ±dc(2t/b|E),

where all four sign combinations arise, corresponding to each of the four branches.

B.2. The case E > 1

For E > 1 the solution (B.1) is more conveniently expressed, using reciprocal parameter relations
of the elliptic functions, as

x(t) = sn
(
2
√
Et/b|

1
E

)
and Q (t) =

√
Edc

(
2
√
Et/b|

1
E

)
. (B.4)

Although x(t) oscillates smoothly between −1 and 1 for real t in this solution, with period

TR =
2b
√
E
K
(
1
E

)
,

the coordinate Q (t) passes through poles at t = bTR/4 and t = 3bTR/4, switching sign each time.
We use this extended solution γR to define an action once again by (B.2), but now with

S0(E) =

∫ 1

0

√
E − x2

1 − x2
dx =

√
EE
(
1
E

)
.

The imaginary period

TI =
b

√
E
K
(
1 −

1
E

)
,

f this solution likewise defines a complex periodic orbit γI with imaginary action given once again
y (B.3) but now with

S1(E) = −

∫ √
E

1

√
E − x2

x2 − 1
dx =

√
EE
(
1 −

1
E

)
−

√
EK
(
1 −

1
E

)
.

We have defined the actions of the complex periodic orbit so that the imaginary part is positivewhen
0 < E < 1 and negative when E > 1. This convention is important for their use in approximation of
tunnelling probabilities in (48). It derives from a contour encircling the branch points x = ±1 and
x = ±

√
E of p(x, E) in the same sense whether E < 1 or E > 1.

Finally, as with the case 0 < E < 1, evolution for half an imaginary period maps the real solution
in (B.4) into a second real solution defined on separate branches of the level contour H(x, p) = E
outside the central square. These can be parametrised so that

x(t) =
√
Edc

(
2
√
Et/b|

1
E

)
and Q (t) = sn

(
2
√
Et/b|

1
E

)
.

nd are rotations of the solutions in (B.4) so that now Q (t) oscillates smoothly between −1 and 1
hile x(t) passes through a pole and changes sign every half period T /2.
R
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Fig. C.10. Illustration of the locally defined scattering coefficients in (C.1) (in part (a)) and (C.2) (in part (b)).

ppendix C. A scattering picture

In this appendix we find the scattering matrix V (E) defined by (41) and use it to derive the
uantisation condition given in (43).

.1. Local scattering matrices

Around each node of the graph illustrated in Fig. 5(b) we define local scattering matrices as
ollows. Connection formulae across the nodes centred on (x,Q ) = ±(−1, 1), obtained by matching
olutions to the problems of waves scattering from a quadratic potential, can be written so that at
eading order we have(

a+

e+

)
=

(
r t
t r

)(
a−

e−

)
and

(
c+
g+

)
=

(
r t
t r

)(
c−
g−

)
, (C.1)

here r and t have been defined in (49) and are illustrated in Fig. C.10(a).
The nodes centred on (x,Q ) = ±(1, 1) are treated similarly except that the roles of below- and

bove-barrier tunnelling are reversed. When 0 < E < 1 scattering is predominantly by transmission,
hereas when E > 1 it is predominantly by reflection. This is accounted for by changing the sign
f Θ in the expressions for reflection and transmission coefficients. However, there is also a time
eversal compared to conventional barrier scattering — the branch above the fixed point in phase
pace is right-to-left where as it is left-to-right in potential scattering. As a result we preserve the
ign of δ even while reversing the sign of the imaginary action. As a result we have,(

b+

f+

)
=

(
ρ τ

τ ρ

)(
b−

f−

)
and

(
d+

h+

)
=

(
ρ τ

τ ρ

)(
d−

h−

)
, (C.2)

here

ρ = ir and τ = it

re illustrated in Fig. C.10(b) and r and t are as defined in (49).
Finally, we can connect solutions along the inner branches of the graph using⎛⎜⎝e−

f−
g−

h−

⎞⎟⎠ =

⎛⎜⎝ 0 0 0 eiΦ

eiΦ 0 0 0
0 eiΦ 0 0
0 0 eiΦ 0

⎞⎟⎠
⎛⎜⎝e+

f+
g+

h+

⎞⎟⎠ ,
here

Φ = k S
b 1

28



S.C. Creagh and G. Gradoni Annals of Physics 449 (2023) 169204

C

r
g

w

T

T

w

C

T

a

W
a

is a quarter of the phase of the real periodic orbit γR. For the symmetry classes in (40) these can be
expressed in the reduced form(

e−

f−

)
=

(
0 σeiΦ

eiΦ 0

)(
e+

f+

)
.

.2. An exterior scattering matrix

Letting

ψ± =

(
a±

b±

)
and ϕ± =

(
e±

f±

)
,

epresent the amplitudes of the inner and outer branches of the graph respectively, the previously
iven local scattering relations can be written as

ψ+ = Rψ− + Tϕ−, ϕ+ = Tψ− + Rϕ−, ϕ− = Uϕ+, (C.3)

here

R =

(
r 0
0 ρ

)
, T =

(
t 0
0 τ

)
, U =

(
0 σeiΦ

eiΦ 0

)
.

he inner amplitudes ϕ± can then be eliminated to give (41) with [53]

V = R + TU
1

1 − RU
T .

his can be shown to be of the form

V =
1
∆

(
r(1 + σ ie2i(Φ−δ)) σ tτeiΦ

tτeiΦ ρ(1 + σ ie2i(Φ−δ))

)
,

here

∆ = det(I − RU) = 1 − σ ir2e2iΦ .

.3. Quantisation

The boundary conditions (42) hold if and only if the diagonal elements of V (E) vanish, so that

1 + σ ie2i(Φ−δ)
= 0.

his can be written in the form of the quantisation condition (43) given in the main text.
When this quantisation condition is satisfied, we find that

1
∆

= 1 + e2Θ

nd the outer scattering matrix reduces to the form

V = ine3π i/4−iδ
(
0 σ

1 0

)
.

e can therefore find a solution where the nonzero amplitudes on the outer branches of the graph
re

b− = σd− = 1, a+ = σ c+ = ine3π i/4−iδ.

The inner amplitudes can be found by solving (C.3) to give

ϕ+ =
1

Tψ−,
1 − RU
29
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W

which can be shown to reduce to

e+ = σg+ = σe−2iδeΘ , f+ = σh+ = ie−iδ
√
1 + e2Θ .

e note in particular that⏐⏐⏐⏐ e+

f+

⏐⏐⏐⏐2 =
1

1 + e−2Θ

as asserted in the main text.
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