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Abstract
Controlling and simulating the sound radiating from complex structures is of
importance in many engineering applications. We calculate the radiated acous-
tic power from plates with diffuse bending vibrations. We characterise the dif-
fuse field by a two-point correlation function (CF) of normal velocities. Given
the relation between field–field CFs and ray-dynamical phase space densities,
the approach taken here offers a basis for coupling structure borne ray-tracing
techniques with acoustic radiation. At the same time, it caters for stochastic,
noisy driving of such systems. The results for the radiation efficiency of a plate
are presented in an asymptotic form analogous to the Weyl formula for the den-
sity of states. Leading contributions from the plate interior and its boundary are
derived, with corner corrections also being given for particular boundary condi-
tions and right-angled corners. A notable feature of this analysis is that the bulk
contribution vanishes below a critical frequency, and the asymptotic estimate of
radiated power then leads with a boundary contribution. This is shown to agree
well with a more traditional calculation based on modal analysis in the special
case of a rectangular plate.

Keywords: acoustic radiation, radiation efficiency, diffuse field excitation, ran-
dom waves, correlation function
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1. Introduction

This paper treats the radiation of sound from plates excited by random vibrational wave
fields. Detailed results are given for the case of vibrational fields that are isotropically and
homogeneously diffuse. The approach taken can also be applied when the vibrational field
is non-uniform or non-diffuse as obtained numerically by structure borne ray-tracing simula-
tions such as the dynamical energy analysis [1]. We concentrate on radiation efficiency as a
measure of how successfully the vibrating structure couples acoustically to the surrounding
air. While this quantity can be defined for arbitrary structures, the standard definitions often
assume single-frequency excitation and planar structures of arbitrary shape [2], which is the
case treated here.

A particularly notable result is that, below a critical frequency, where the wavelength of
vibrational waves is shorter than the wavelength of sound in air, the radiated power can be
approximated simply as a boundary integral, which depends at leading order on the boundary
conditions imposed. Here the radiated acoustic field from the interior of the plate is evanes-
cent and does not carry power to the farfield: any radiated power is instead generated by the
diffractive, sharp cut-off at the plate’s edge. We express this radiated power analytically as a
boundary integral that explicitly incorporates boundary conditions on the plate. This asymp-
totic result is part of a series for the radiated power that is analogous to the Weyl formula for
the density of states of a cavity problem [3–5]. Above the critical frequency the leading term
in this series is proportional to the area of the plate and the boundary contribution represents
a small correction to this, which we do not compute explicitly. Below the critical frequency,
however, the term proportional to area in fact vanishes, and then the boundary correction is the
leading term.

Our approach to calculating (leading) contributions to this series is analogous to historical
approaches to derivation of the Weyl series [3–5]. The bulk term proportional to the area is
obtained by characterising the correlation function (CF) in the plate’s interior using a free-space
model that neglects the effect of the boundary itself. The boundary contribution is obtained by
adding corrections using the method of images, and approximating the boundary locally in the
contributing layer by a straight line. One can in principle extend this development to higher
order terms in the series controlled by boundary curvature and corners. We do not perform this
analysis in detail, but do provide such a correction in the special case of right-angled corners
below the critical frequency (which turns out to vanish, like the bulk term).

Characterising and simulating sound radiation from structures has a long history. Analytical
expressions for sound radiation from finite planar surfaces have, for example, been provided
by Junger and Feit [6], Fahy [2] and Cremer et al [7] for the farfield and by Cremer et al [7]
for the nearfield. Studying sound radiation from vibrating plate-like structures serves as a first
step in understanding and manipulating sound radiated from more complex structures.

Earlier studies of sound radiation efficiency have dealt mostly with simple rectangular plates
or strips. Maidanik [8] suggested a statistical approach estimating the structural vibration of
ribbed panels in response to acoustic excitation and studied the effects of different boundary
conditions theoretically and experimentally. Wallace [9, 10] proposed numerical integration
methods for finding approximate solutions for the single-mode radiation efficiency of a baffled
beam and rectangular plates. In terms of the acoustic power radiated into the far-field, the
radiation resistance corresponding to individual modes is computed. Gomperts [11] tested the
acoustic radiation efficiency of a baffled rectangular plate and showed that implementation
of edge restrictions may not always increase radiated acoustic waves into the far-field. He
additionally found that the radiation efficiencies of two-dimensional vibrating structures vary
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rather impressively from those for one-dimensional vibrating structures. By using a Fourier
transform method in wavenumber space, Heckl [12] studied the radiation patterns of planar
sources. A series of asymptotic formulas were published by Loppington et al [13] to estimate
the radiation efficiency of different plates, in particular for large structural wavenumbers and
near-critical frequencies. In order to analyse the sound power originating from planar sources,
Williams [14] suggested an expansion in the powers of the structural wavenumber. The Fourier
transformation of surface velocities along with its corresponding derivatives is used to derive a
mathematical model for estimating acoustic power radiating of a rectangular baffled thin plate
under different boundary conditions at low frequencies. The Fourier domain has been used
in [15] as a basis for understanding the radiation from wave-chaotic membranes, which have
characteristics related to the random-wave scenario of this paper, and is a significant motivation
for the analysis of section 4 in particular.

The boundary conditions of a vibrating plate for frequencies below the critical frequency,
are known to effect its sound radiation. In calculations, simply supported boundaries are often
used because this assumption simplifies the calculations. Several authors have reviewed other
boundary conditions for the baffled case [16–19]. For frequencies up to half the critical fre-
quency, Maidanik [16] observed that the radiation efficiency of a clamped plate is 3 dB higher
than that of a plate which is simply supported. Leppington et al [17] have also proposed that
below the critical frequency, the calculation of a simply supported plate should be adjusted to
approximately 3 dB for a clamped plate. An extended model for five different kinds of edge
conditions, ranging from free to restrained edges has been suggested by Gomperts [18]. Sim-
ple approximations were given in this paper for the low-frequency range. Edge-constrained
plates are shown to often not have greater radiation efficiencies than those that are less edge-
constrained. It was found that a guided plate has a lower radiation efficiency than that of a
simply supported plate below the first resonance frequency [18]. A plate with a mixture of
simply supported and clamped edges was also found to have about the same radiation effi-
ciency (difference<1 dB) as a plate that is simply supported. Berry et al [19] have suggested a
formulation for general boundary conditions. By choosing a family of trial functions matching
the geometry of the boundary conditions, a Rayleigh–Ritz technique was used. For a single
forcing location, the radiation efficiency of multi-modal responses was measured. In the aver-
age sense, apart from the antisymmetric resonances occurring for particular cases, the radiation
efficiency for clamped and simply supported plates was found to be almost equal. In the case
of guided-guided and free-free edges, the same phenomenon was noted. Below the critical fre-
quency and when the modal density is low, Berry et al [19] studied the influence of boundary
conditions on sound radiation. It is well established that the radiation of sound through a given
mode, excited below its modal critical frequency, is due to the edges and corners of the plate
for a finite, simply supported, baffled plate [10]. While in free and guided cases the radiation
efficiency is almost the same in low order modes, in higher modes the radiation efficiency is
considerably larger than in the guided case [20].

In nature, sound radiation from complex structures with wave chaotic vibrational fields is
often difficult to estimate using conventional deterministic methods and a stochastic approach
may be favourable. In this context, a two-point CF provides the natural characterisation of the
structural vibration problem [21]. In the physics and optics literature, CFs have been intensively
studied. Berry’s conjecture [22] states that the CF is universal in the presence of ray chaos and
is equivalent to correlations of a Gaussian random field [23, 24]. After sufficient averaging,
non-universal corrections can be obtained by making a connection between the imaginary part
of the Green function of the system and the CF, see [25] for an overview. The CF can in turn
be related to ray- and energy-density distributions on the structure based on a structure-borne
ray-tracing analysis [1, 26] using Wigner transformation techniques [21].
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The focus of this paper is to reinterpret the radiation efficiency for plate-like structures in
terms of an integral over a two-point CF for the distribution of vibrational velocities, see also
[27]. We will use this formulation to investigate the effect of boundary conditions on sound
radiation below the critical frequency in detail. We will do this for a random wave excitation
for a planar structure set into an infinite baffle modified near edges to account for boundary
conditions. Such diffuse fields are naturally characterised by a two-point CF having the form of
a sum over Bessel functions. We consider here extensions of Dirichlet or Neumann boundary
conditions to the fourth-order plate equations, which serve as simplified models representing
simply supported or guided boundary conditions for bending modes in plates.

The paper is structured as follows. In section 2, we give a short introduction into sound radi-
ation from plates and diffuse waves fields and combine these concepts in an integral expression
for the radiation efficiency of finite size plates including boundary conditions. In section 3, we
argue that the radiation efficiency has a series expansion similar to the Weyl expansion contain-
ing a bulk term and boundary corrections. We give asymptotic results for the boundary term,
which is the leading term below the critical frequency. These results are then derived in detail
in section 4 based on Fourier representation techniques. We also discuss corner corrections
for right angled corners and give explicit results for rectangular plates followed by concluding
remarks in section 5.

2. Sound radiation from diffuse field excitation

In the following, we will consider a plate set in an infinite baffle and subject to harmonic
excitation of the form e−iωt (which is implied throughout the paper) radiating into an air-filled
half-space. We present a computation of the sound-radiated power output of a flat structure
in terms of the CF of the surface velocities; these CFs appear naturally when considering, for
example, the radiation efficiency or radiated power of a structure, but allow for a treatment of
stochastic and in particular fully diffuse field excitation.

2.1. Sound power and radiation efficiency

The radiated sound power can be obtained by integrating the acoustic intensity over the surface
of the vibrating structure. This surface, denoted Ω, is finite for baffled radiators, covering only
the non-baffled field. With dx = dxdy, we can write the total radiated power in the form

Π =
1
2

Re

{∫
Ω

p(x)w∗(x) dx
}

, (1)

where Re{} denotes the real part of the expression in brackets, w(x) is the surface velocity at
a location x = (x, y) on the structure, ∗ denotes complex conjugation and p(x) is the acoustic
pressure just above the plate.

We use as a basis for our calculation the Kirchoff–Helmholtz equation for irregularly shaped
vibrating bodies, which can be further simplified, for planar structures, to the well-known
Rayleigh integral [28]. Here the pressure p radiated by a vibrating plate set in an infinite rigid
baffle, is at any point (x, z) = (x, y, z) off-plane given by

p(x, z) = − iωρ0

2π

∫
Ω

w(x′)
eikAR

R
dx′, (2)

where R =
√

(x − x′)2 + (y − y′)2 + z2, c0 is the speed of sound in the surrounding medium,ρ0

is the fluid (air) density and kA = ω/c0 denotes the acoustic wavenumber. On taking the limit
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z → 0 to find the sound pressure next to the plate itself, we can express (1) using surface
velocities alone [29, 30]. That is,

Π = ωρ0

∫
Ω

∫
Ω

g
(
|x − x′|

)
w(x)w∗(x′) dxdx′, (3)

where

g
(
|x − x′|

)
=

sin
(
kA|x − x′|

)
4π|x − x′| = Im G

(
x, x′), (4)

in which

G
(
x, x′) = e−ikA|x−x′|

4π|x − x′|

denotes the free-space acoustic Green function in 3D.
The radiation efficiency [2, 7, 8, 10, 29] is defined as the ratio

σ =
Π

Π0
(5)

between the radiated power and an equivalent power

Π0 =
1
2
ρ0c0

∫
Ω

|w(x)|2 dx (6)

radiated by a large oscillating piston occupying the surface area A =
∫
Ω dx and moving with

the RMS velocity of the original problem.
In the following sections it will be convenient to work instead with the following scaled

powers

Π′ =
Π

1
2ρ0c0

and Π′
0 =

Π0
1
2ρ0c0

.

Scaled powers, and quantities derived from them that are similarly scaled, will be denoted
using a prime.

2.2. Stationary random fields and diffuse field excitation

Equations (3) and (6) can be generalised to stationary random fields by taking an ensemble
average over time intervals, frequency or local spatial averaging, and replacing

w(x)w∗(x′) → 〈w(x)w∗(x′)〉 ≡ ΓΩ(x, x′), (7)

whereΓΩ(x, x′) denotes the velocity CF. Note that ΓΩ(x, x′) vanishes if x or x′ are outside of Ω,
due to the baffled plate condition. The CF rather than the field amplitude provides a natural way
of characterising stationary stochastic fields. Substituting equation (7) into (3), the averaged
total radiated (scaled) power can be expressed as

Π′ = 2kA

∫
Ω

∫
Ω

g
(
|x − x′|

)
ΓΩ(x, x′) dxdx′ (8)
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for a diffuse field, while the denominator in (5) is replaced by

Π′
0 =

∫
Ω

ΓΩ(x, x) dx. (9)

Letting ĝ denote the integral operator

[ĝw](x) = 2kA

∫
R2

g(x − x′)w(x′)dx′, (10)

we can then express the scaled powers formally in terms of the following trace operations

Π′ = Tr ĝΓΩ and Π′
0 = TrΓΩ (11)

and the efficiency defined in (5) can be written as

σ =
Π′

Π′
0
=

Tr ĝΓΩ

TrΓΩ
. (12)

This more abstract form will be useful in switching to alternative representations (such as
obtained using Fourier transforms) of the solutions in later sections.

In both acoustics and elastodynamics, the concept of a diffuse wave field (or a Gaussian
random field) in irregularly formed reverberant bodies plays an important role [25, 31–34].
The statistical properties of diffuse field wave functions are characterised by a two-point CF
obtained from the superposition of randomly-oriented plane waves at fixed frequency—the
so-called random wave model. The bulk properties of a diffuse field far away from boundaries
are characterised by a two-point CF of the form [22]

Γ0(x, x′) = 〈w(x)w∗(x′)〉 = J0(kB|x − x′|), (13)

where J0 denotes the zero order Bessel function of the first kind, 〈.〉 frequency or spatial
averaging and kB the wavenumber for bending modes in the plate.

The model (13) must be modified for finite plates. To account for baffling outside the plate
we define

Γbulk
Ω (x, x′) = χΩ(x)Γ0(x, x′)χΩ(x′), (14)

where

χΩ(x) =

{
1 x ∈ Ω

0 x /∈ Ω
(15)

is the characteristic function of Ω. In figure 1, a numerical evaluation of the integrals in (12)
using the bulk CF (13) for a rectangular domain Ω is shown together with boundary corrections
discussed below.

2.3. The importance of boundary conditions

This CF (13) provides a reasonable model for the driving of acoustic radiation from the interior
of Ω, but does not adequately account for modifications due to the boundary conditions near
the plate edges. A central result of this paper is that these boundary conditions are a leading
order effect in acoustic radiation below a critical frequency. A full treatment of generic plate
boundary conditions, including common cases such as free edges, is rather complicated to
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Figure 1. The development of radiation efficiency across the critical frequency (corre-
sponding toα = 1) is illustrated for a baffled rectangular plate with Lx = Ly = 2, subject
to diffuse vibrational-field excitation and for Dirichlet and Neumann boundary condi-
tions. These results have been obtained from a numerical evaluation of the integrals in
(12), with CFs of the form given in (16) and with kB fixed so that kBLy = 42. Identical
results can be obtained using the Fourier-domain approach of section 4. The bulk contri-
bution is plotted in purple here, the red curve includes the boundary corresponds to the
Dirichlet case and the blue curve to the Neumann case. Note that the bulk contribution is
at leading order the arithmetic mean of the Dirichlet and Neumann cases (see section 4).

treat in this respect, however. We will instead use simplified boundary conditions as a proof-
of-principle demonstration of the importance of boundary conditions more generally, and defer
a full treatment of arbitrary boundary conditions to future work.

We will treat two particular sets of boundary conditions, which we label Dirichlet and
Neumann. We use this terminology because the eigenfunctions are the same as those in the
correspondingly labelled second-order problems of sound radiated by a vibrating membrane,
where Dirichlet and Neumann boundary conditions are obtained by setting the solution or its
derivative to zero. For the fourth-order plate vibration problem, we should include additional
conditions possibly involving the third and fourth derivatives of the wave field on the boundary.
The problems we label Dirichlet correspond more properly in the plate-vibration problem to
simply-supported boundary conditions, in which the solution and its second derivative vanish.
The problems we label Neumann represent guided boundary conditions in which we set the
first and third derivatives to zero. These boundary conditions are chosen because they allow
treatment by the method of images.

We separately impose a baffling condition outside the plate. This acoustics terminology
corresponds physically to enclosing the plate in a rigid, nonvibrating plane and is modelled
mathematically by setting the normal acoustic velocity to zero in the exterior of the plate in the
plane containing it. It is imposed because it allows us to use the simplified Rayleigh integral (2)
to calculate sound pressure. The baffling condition is less physical in the Neumann case, but
provides a tractable model for the proof-of-principle demonstration in this paper that boundary
conditions are a leading effect.

Correlation functions near a boundary, taking into account boundary conditions, have been
described in [35] using a boundary-modified random plane-wave model. Accounting also for
baffling, these are written here in the form

Γedge
Ω (x, x′) = χΩ(x)

(
J0(kB|x − x′|) ± J0(kB|x −Rx′|)

)
χΩ(x′), (16)
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where Rx′ denotes a reflection of x′ through the edge and the ± signs apply to Neumann and
Dirichlet boundary conditions, respectively. For other boundary conditions, the corrections are
more complicated and not treatable by the method of images. Instead, one can take the approach
described in [35], for example, where random superpositions of plane waves are replaced by
random superpositions of sines, cosines but now modified to account for the reflection phases of
generic boundary corrections and to include the decaying exponentials present in the solutions
of the fourth-order plate equation. In any case, these boundary corrections are valid exactly
only in domains with straight edges but we will argue that they give useful approximations
near generically shaped boundaries.

A numerical evaluation of the integrals in (12) using the CF (16) including boundary cor-
rections for a rectangular domain Ω is shown in figure 1, here at a wavelength kBLy = 42.
Interestingly, the radiation efficiency for the Dirichlet case is larger than for the Neumann
case, an observation to be discussed in more detail in the next sections.

2.4. Critical and subcritical radiation

The radiation efficiency for an infinite flat plate is [36]

σ =

⎧⎪⎨
⎪⎩

0 for α > 1,

1√
1 − α2

for α < 1,
(17)

with

α =
kB

kA
.

Because kB ∝
√
ω (see (A.1) [7]) and kA is linear in frequency, then α ∝ 1/

√
ω decreases with

frequency and there is a critical frequencyωc, depending on material parameters but not system
geometry, where α = 1. When α > 1, which is the case at low frequencies, the acoustic wave
decays evanescently away from the vibrating surface and therefore carries no power, so the
radiation efficiency vanishes. At higher frequencies, where α < 1, the vibrating surface is an
efficient radiator of sound.

The situation changes if the plate is of finite size. Then, a plate also radiates at lower fre-
quencies, where α > 1, and a smooth transition occurs across the critical frequency (where
α = 1) towards the case of efficient bulk radiation for α < 1. The aim of this paper is to char-
acterise these finite-size effects for diffuse fields by evaluating (12). For finite domains, the bulk
contribution from the interior of Ω dominates the integral in the numerator of equation (12)
when α < 1 and the plate remains a good radiator. When α > 1, the bulk contribution van-
ishes in the limit of large plates (Ω→R

2) and the integral is then dominated by contributions
near the boundary. These arise from two mechanisms: (i) when the integral in the numerator
of (12) is truncated, phase cancellations are incomplete near the boundary and (ii) correc-
tions near the boundary such as discussed in equation (16)—and depending on the boundary
conditions—give significant contributions. Both of these effects are of the same order.

3. Evaluation of finite-size and boundary effects

We now describe how finite-size and boundary effects enter into the calculation of the radiation
efficiency starting from equation (12). It is useful to approach this from two different points of
view, respectively doing the calculations in the direct and Fourier domains. We will treat these
approaches in turn, in this section and the next.
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3.1. Radiation in the direct representation

Let us begin by transforming the integral in the numerator of (12) in terms of the following
mean and displacement variables,

x̄ =
x + x′

2
and u = x − x′. (18)

Assuming that Ω is convex and x and x′ are in Ω, then the domain of x̄ is Ω itself, whereas the
domain of u is a set Ωx̄ depending on x̄. The domain Ωx̄ is obtained by demanding that both
x = x̄ + u/2 and x′ = x̄ − u/2 are inΩ; note that the area ofΩx̄ shrinks to zero as x̄ approaches
the boundary of Ω. The numerator in (12) is then of the form

Tr ĝΓΩ = 2kA

∫
Ω

dx̄
∫
Ωx̄

du g(u)ΓΩ(x̄ + u/2, x̄ − u/s). (19)

For the special case of the diffuse-field bulk CF (14), which is independent of x̄, the integral
(19) can be written as

Tr ĝΓbulk
Ω = kA

∫
Ω

dx̄
∫
Ωx̄

du
sin(kAu)

2πu
J0(αkAu), where u ≡ |u|.

Note that replacing Ωx̄ → R
2 here and transforming to polar coordinates results in the inner

integral

kA

∫
R2

sin(kAu)
2πu

J0(αkAu)du =

∫ ∞

0
sin(ũ)J0(αũ)dũ

=

⎧⎪⎨
⎪⎩

0 for α > 1,

1√
1 − α2

for α < 1,

see [37], section 6.67, which is consistent with the infinite plate result (17) after normalising by
the plate area A in (12). For finite plates, incomplete phase cancellation in the corresponding
integral over Ωx̄ leads to a nonzero efficiency for α > 1, which is an important part of the
finite-size effects discussed later. Note that this is predominantly a boundary effect because Ωx̄

shrinks as x̄ approaches the boundary.

3.2. Boundary contributions to radiation

To better understand boundary contributions to radiation, we examine a simplified planar
geometry illustrated in figure 2. We replace a region near the boundary of Ω, sketched on
the left, with a semi-infinite strip in a half-plane, sketched on the right. In the rectified
geometry we use Cartesian coordinates x = (x, y) with x running along the boundary and
0 < y < ∞. We consider the case α > 1, for which the resulting integral is dominated by
boundary contributions.

The radiated power from the entire half-plane is infinite, so we regularise the calculation by
restricting integration over x̄ to a finite interval—when radiation is localised near the boundary
of the plate forα > 1, this can then be interpreted as providing a radiated power per unit length.
We calculate the contribution to (19) for x̄ between x and Δx, while ux ranges over the whole
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Figure 2. Schematic illustration of the local parameterisation of the plate around its
boundary using a rectified geometry.

real line and ȳ and uy are constrained by 0 < y, y′ < ∞. The corresponding contribution to Π′

is then

ΔΠ′ = 2kA

∫ x+Δx

x
dx̄
∫ ∞

0
dȳ
∫ ∞

−∞
dux

∫ 2ȳ

−2ȳ
duy g(|u|)ΓΩ(x̄ + u/2, x̄ − u/2).

The inner integrals over ux and uy replace the integral over Ωx̄ in (19); note that the range
of the integral over uy shrinks to zero as ȳ → 0. We further define a (scaled) radiated power per
unit length by

π′(x) ≡ ΔΠ′

Δx
= 2kA

∫ ∞

0
dȳ
∫ ∞

−∞
dux

∫ 2ȳ

−2ȳ
duy g(|u|)ΓΩ(x̄ + u/2, x̄ − u/2). (20)

This integral converges when α > 1, and is dominated by contributions that are confined to an
increasingly narrow layer in ȳ in the asymptotic limit kA →∞. We may use this as the basis
for an asymptotic approximation for the radiation efficiency in the form of a boundary integral

σ �
∫
∂Ωπ

′(s)ds∫
ΩΓΩ(x, x)dx

,

where the arclength s replaces x in the full geometry. Note that, even forα > 1, the denominator
here is dominated by bulk contributions, and is equal to the area A of the plate for the CF
in (14), for example. The approach taken here is motivated by established derivations of the
Weyl formula for the density of states of billiard problems, where bulk and boundary terms can
likewise be obtained from free-space Green functions and their image corrections, respectively
[3–5]. In the current case, when α > 1, however, the bulk contribution vanishes and the Weyl-
formula analogue begins with the boundary contribution.

In the special case where ΓΩ(x, x′) is of the form (16), we find that the remaining integral
transverse to the boundary depends on the boundary conditions but is independent of s and
other geometrical features, so that,

σ � 1
A

∫
∂Ω

ds × integrals independent of geometry

≡ 2	
πkAA

f (α), (21)

10
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Figure 3. The radiation efficiency for a baffled rectangular plate with side lengths Lx

and Ly subject to diffuse vibrational excitation and for Dirichlet and Neumann boundary
conditions for LyKB = 42. Results from a numerical simulation as shown in figure 1 are
compared with the approximations evaluated using (21) together with (22) (green dashed
curve for the Dirichlet case and cyan dashed curve for the Neumann case) and using the
asymptotic form (23) (purple dot-dashed curve for Dirichlet and gold dot-dashed curve
for Neumann).

where 	 denotes the perimeter of Ω and

f (α) =
1

2π

∫ 2π

0
dφ

∫ 1

0
dp

p√
1 − p2

√
α2 − p2 cos2 φ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α2 − p2 cos2 φ(
α2 − p2

)2 Dirichlet,

p2 sin2 φ(
α2 − p2

)2 Neumann.
(22)

The form given here for f (α) is derived in the following sections.
The asymptotic result (21) is compared in figure 3 with direct evaluation of (12), which

has previously been shown in figure 1: the asymptotic approximation and full evaluation agree
well for α > 1 except as α approaches the critical value α = 1, where it is expected that the
asymptotic approximation should fail. There are also some small oscillations not accounted for
by this asymptotic result—these are eliminated after some frequency averaging, for example,
as set out in appendix A. We also show in appendix A that, in the rectangular case where
modes can be calculated analytically, these diffuse-field results are successfully reproduced by
a modal average (see figure A2).

Interestingly, we find in all these cases that the radiation efficiency for the Dirichlet case is
larger than for the Neumann case below the critical frequency, for otherwise identical geome-
tries. This observation can be highlighted by evaluating the asymptotic form of f (α) asα→∞:

f (α) �

⎧⎪⎨
⎪⎩

1
α3

Dirichlet,

1
3α5

Neumann
(23)

(and see also figure 3). A derivation of (23) is given in appendix C.
The observation of relatively higher radiated power for the Dirichlet case is somewhat coun-

terintuitive as the velocity amplitude driving the radiated power in (11) must vanish on the
boundary for those boundary conditions, but is typically nonzero in the Neumann case. Given

11
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that acoustic radiation for α > 1 originates from contributions near the boundaries of a plate,
one might expect intuitively that the Neumann case with non-zero amplitude on the boundary
would be the more efficient radiator. Why this is not the case is not immediately clear from the
integral in (12), but emerges from the more detailed calculations to follow. It stems ultimately
from the fact that radiation is effectively from a boundary layer several wavelengths deep and
the value of the solution at the terminating edge of the layer does not determine the overall
contribution in a simple way.

4. Finite size effects using a Fourier representation

Fourier representation provides a useful means of interpreting and calculating the radiated
power discussed in the previous sections. It has been used in [15], for example, where a more
detailed discussion can be found of the challenges and uses of the method.

4.1. Radiation in the Fourier domain

We transform to a Fourier representation using the convention

F [w(x)] = W(p) =
∫
R2

e−ikAp·xw(x)dx. (24)

Note that even though the plate is confined to the domain Ω, we define the Fourier transform
over the whole plane in general and rely on the baffling conditions w(x) = 0 for x /∈ Ω to
reduce this to

W(p) =
∫
Ω

e−ikAp·xw(x)dx

when appropriate. We also use the acoustic wavenumber kA in (24) even when dealing with
the vibrational problem. The transform of the two-point CF (7) is correspondingly defined by

F [ΓΩ(x, x′)] = ΓΩ(p, p′) =
∫
R2

∫
R2

e−ikAp·x+ikAp′·x′ΓΩ(x, x′)dxdx′.

Fourier representation is useful because it simplifies the operator ĝ appearing in the integral
(12), being defined as the convolution integral (10). We first note that the Fourier transform of
the kernel defined in (4) is

F [g(x)] =
1

2kA

⎧⎪⎨
⎪⎩

1√
1 − |p|2

for |p| < 1

0 for |p| > 1

≡ 1
2kA

K(p),

see [37], section 6.67. Then

F [ĝw] = K(p)W(p)

vanishes outside the disk D defined by |p| < 1. Furthermore the trace operations in (11) and
(12) can respectively be confined to diagonal components inside the disk D:

Π′ =

(
kA

2π

)2∫
R2

K(p)ΓΩ(p, p)dp =

(
kA

2π

)2∫
D

ΓΩ(p, p)√
1 − |p|2

dp (25)

12
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and

σ =

∫
D

ΓΩ(p, p)√
1 − |p|2

dp∫
R2
ΓΩ(p, p)dp

. (26)

The radiation efficiency is thus an average of the function K(p) weighted by ΓΩ(p, p).
The infinite plate limit (17), and the origin of deviations due to finite-size effects are easily

understood qualitatively from this form. When the vibrational field is characterised by the
wave number kB, the diagonal Fourier elements ΓΩ(p, p) are supported near the circle in p
space given by the condition

|p| = α ≡ kB

kA

(see also the discussion in the next section). If we take a limit in whichΩ gets larger, this support
concentrates in an increasingly narrow neighbourhood of the circle |p| = α, converging to the
δ function in equation (32) below. If α < 1, the narrowing support of ΓΩ(p, p) lies inside the
support D of K(p) and we find the nonzero limit

σ → 1√
1 − α2

for A→∞.

If α > 1, then the support of ΓΩ(p, p) increasingly concentrates outside of D and

σ → 0 for A→∞.

Finite-size effects at moderate plate sizes are then determined by the part of ΓΩ(p, p) overlap-
ping with the disk D.

4.2. Accounting for the plate geometry in the Fourier domain

In order to incorporate the plate geometry in a Fourier representation of the radiation problem,
let us define

H(p) =
∫
R2
χΩ(x)e−ikAp·x dx =

∫
Ω

e−ikAp·x dx, (27)

where χΩ(x) is the characteristic function of Ω as defined in (15). Then the Fourier transform
of the CF in (16) can be written

Γedge
Ω (p, p′) = A(p, p′) ± B(p, p′), (28)

where the lead term is a double convolution

A(p, p′) =

(
kA

2π

)4 ∫
H(p − q)Γ0(q, q′)H(p′ − q′)dqdq′

≡
(

kA

2π

)4

H(p) ∗ Γ0(p, p′) ∗ H(p′), (29)

with

Γ0(p, p′) =
∫
R2

∫
R2

J0(αkA|x − x′|)e−ikAp·x+ikAp′·x′ dx dx′ (30)

13
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and the image contribution B(p, p′) is discussed in more detail below. Note that Γ0(p, p′) is
defined by a Fourier transform over all of R2 and is independent of the plate geometry, which
is encoded in the convolution with H(p).

4.3. Contribution from the bulk

In order to further simplify this result, let is define mean and displacement variables, in analogy
with (18), according to

p̄ =
p + p′

2
and q = p − p′. (31)

Then equation (30) yields

Γ̂0(p̄ + q/2, p̄ − q/2) =
∫
R2

∫
R2

J0(αkA|u|)e−ikAq·x̄−ikAp̄·s du dx̄ (32)

=
1
π

(
2π
kA

)4

δ(q)δ
(
|p̄|2 − α2

)
. (33)

Inserting this into (29) gives

A(p, p′) =
1
π

∫
R2

dp′′ H(p − p′′)δ
(
|p̄|2 − α2

)
H∗(p′ − p′′)

= 〈H(p − pα)H∗(p′ − pα)〉, (34)

where pα(θ) = (α cos θ,α sin θ) and the average 〈·〉 is over the direction of pα.
Substituting the definition (27) for H(p) and transforming to mean and displacement coor-

dinates as in (19) allows us to write this in the form

A(p, p′) =

〈∫
Ω

∫
Ω

e−ikA(p−pα)·xeikA(p′−pα)·x′ dx dx′
〉

=

〈∫
Ω

dx̄
∫
Ωx̄

du e−ikAq·x̄−ikA(p̄−pα)·u
〉
. (35)

Note that for (12) we need only the diagonal elements

A(p, p) =

〈∫
Ω

dx̄
∫
Ωx̄

du e−ikA(p−pα)·u
〉

obtained by setting q = 0 and p̄ = p, which we may write in the form

A(p, p) =
∫
Ω

〈hx̄(p − pα)〉dx̄, (36)

where

hx̄(p) ≡
∫
Ωx̄

e−ikAp·u du (37)

(which depends on x̄ because Ωx̄ does). When x̄ is in the interior of Ω, hx̄(p) becomes localised
around p = 0 as kA →∞. The rate at which this localisation occurs slows as x̄ approaches
the boundary of Ω and Ωx̄ shrinks. Correspondingly, the contribution from x̄ to (36) becomes

14
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increasingly localised around a circle of radius α as discussed in section 4.1. When α > 0
this contribution is localised outside the domain of integration in the radiation integral in the
numerator of (26) and the radiated power is small. The largest contributions come from values
of x̄ near the boundary of Ω, where hx̄(p) is least localised. These contributions cannot easily
be separated however from image-corrections accounting for boundary conditions, which are
discussed in the next subsection.

4.4. Contribution from images

To account for the image corrections controlled by the boundary conditions and described by
the term B(p, p′) in (28), we return to the boundary rectification illustrated in figure 2. Here the
image contribution in brackets in (16) can be written

Γ1(x, x′) = J0(αkA|(x − x′, y + y′)|)

and we define a corresponding Fourier transform

Γ̂1(p, p′) =
∫
R2

∫
R2

J0(αkA|(x − x′, y + y′)|)e−ikAp·x+ikAp′·x′ dx dx′. (38)

As with the equivalent bulk function Γ0(x, x′), this is defined over the whole plane and does
not incorporate the geometry of the plate, which is instead achieved by convolution operations
equivalent to (29). That is,

B(p, p′) =

(
kA

2π

)4

H(p) ∗ Γ1(p, p′) ∗ H(p′). (39)

Using mean and displacement variables (18) in equation (38), we get

Γ̂1(p̄ − q/2, p̄ + q/2)

=

∫
R2

∫
R2

J0

(
αkA

√
u2

x + (2ȳ)2
)

e−ikAq·x̄−ikAp̄·u du dx̄,

=

(
2π
kA

)2

δ(qx)δ( p̄y)

×
∫
R2

J0

(
αkA

√
u2

x + (2ȳ)2
)

e−ikAqyȳ−ikA p̄xux dux dȳ.

Making use of the relation [38]

J0

(
α
√

x2 + y2
)
=

1
2π

∫ 2π

0
dθ cos(αx cos θ) cos(αy sin θ),

we obtain

Γ̂1(p̄ − q/2, p̄ + q/2) =
1

2π

(
2π
kA

)4

δ(qx)δ( p̄y) δ

(
p̄2

x +
(qy

2

)2
− α2

)
. (40)

Using similar steps as in the calculation for A(p, p′), we can simplify B(p, p′) as follows:

B(p, p′) =
1
π

∫
R2

dp′′ H(p − p′′)δ(p′′2x + p′′2y − α2)H∗(p′x − p′′x , p′y + p′′y ).

15
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Converting p′′ = (p′′x , p′′y ) to polar coordinates yields

B(p, p′) =
〈
H(p − pα)H∗(p′x − α cos θ, p′y + α sin θ)

〉
, (41)

where the average is over the polar angle of pα as for the bulk contributions.
We proceed in analogy to the calculation for A(p, p′) by writing

B(p, p′) =

〈∫
Ω

∫
Ω

e−ikA(p−pα)·xeikA[(p′x−α cos θ)x′+(p′y+α sin θ)y′] dx dx′
〉

=

〈∫
Ω

dx̄
∫
Ωx̄

du e−ikA[(px−p′x)x̄+(py−p′y−2α sin θ)̄y]

× e
−ikA

[(
px+p′x

2 −α cos θ

)
ux+

(
py+p′y

2

)
uy

]〉
.

The diagonal elements of this can be written in the form

B(p, p) =

〈∫
Ω

dx̄
∫
Ωx̄

du e2ikAαȳ sin θe−ikA[(px−α cos θ)ux+pyuy]

〉
. (42)

We will demonstrate in the next section that B(p, p) is a negative quantity when α > 1, so that
Dirichlet problems radiate more strongly than Neumann problems for equivalent geometries.

4.5. Evaluation of asymptotic boundary corrections

We now adapt the calculations of sections 4.3 and 4.4 to evaluate the asymptotic boundary
contributions to the infinite half-plane scenario in section 3.2. Throughout this subsection it is
assumed that α > 1 and we consider the limit kA →∞.

Equation (20) can be evaluated by adapting (26) to the rectified geometry of section 3.2.
This is achieved by replacing the spatial domains of integration according to

(x, x′) ∈ Ω× Ω → (x̄, ux, ȳ, uy) ∈ I × R× W,

where I is an interval of length Δx and W is the wedge in the (ȳ, uy)-plane defined by ȳ > 0
and −2ȳ < uy < 2ȳ. Combining (36) and (42) for this geometry, we write

Γedge
Ω (p, p) =

∫
∂Ω

(ax̄(p) ± bx̄(p))dx̄,

where

ax̄(p) =

〈∫ ∞

0
dȳ
∫ 2ȳ

−2ȳ
duy

∫ ∞

−∞
dux e−ikA[(px−α cos θ)ux+(py−α sin θ)uy]

〉

and

bx̄(p) =

〈∫ ∞

0
dȳ
∫ 2ȳ

−2ȳ
duy

∫ ∞

−∞
dux e−ikA[(px−α cos θ)ux+pyuy−2αȳ sin θ]

〉
.

These integrals converge when α > 1, where the outer integral over ȳ becomes increasingly
localised near the boundary ȳ = 0 as kA →∞. This suggests that

π′(x̄) =

(
kA

2π

)2∫
R2

K(p)(ax̄(p) ± bx̄(p))dp (43)
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should be interpreted as a (scaled) radiated power per unit length, providing an alternative
means of evaluating (20).

We first compute ax̄(p), which arises from incomplete cancellation of the bulk contribution
when integrated over a truncated domain. This term can be rewritten in the form

ax̄(p) =

〈∫ ∞

0
dy
∫ ∞

0
dy′

∫ ∞

−∞
dux e−ikA[(px−α cos θ)ux−ikA(py−α sin θ)(y−y′)]

〉

=

〈
1

ikA(py − α sin θ − i0+)
× 1

−ikA(py − α sin θ + i0+)

× 2π
kA

δ(px − α cos θ)

〉

=
1

k3
A

∫ 2π

0

1
(py − α sin θ)2

δ(px − α cos θ) dθ

=
1

k3
A

1√
α2 − p2

x

⎡
⎢⎣ 1(

py −
√
α2 − p2

x

)2 +
1(

py +
√
α2 − p2

x

)2

⎤
⎥⎦

=
2

k3
A

1√
α2 − p2

x

α2 − p2
x + p2

y(
α2 − p2

x − p2
y

)2 . (44)

Note that the denominators here cannot vanish for α > 1 inside the support of K(p) in (43).
The second contribution ±bx̄(p) arises due to boundary corrections. It can analogously be

written as

bx̄(p) =

〈∫ ∞

0
dy
∫ ∞

0
dy′

∫ ∞

−∞
dux

× e−ikA[(px−α cos θ)ux+(py−α sin θ)y−(py+α sin θ)y′]
〉

=

〈
1

ikA(py − α sin θ − i0+)
× 1

−ikA(py + α sin θ + i0+)

× 2π
kA

δ(px − α cos θ)

〉

=
1

k3
A

∫ 2π

0

1

p2
y − α2 sin2 θ

δ(px − α cos θ) dθ

= − 2
k3

A

1√
α2 − p2

x

1
α2 − p2

x − p2
y
. (45)

We thus obtain

ax̄(p) ± bx̄(p) =
4
k3

A

1√
α2 − p2

x

1
(α2 − p2

x − p2
y)2

×
{
α2 − p2

x Dirichlet

p2
y Neumann.

Evaluation of the resulting integrals in (43) using polar coordinates leads to (22).
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Figure 4. A schematic illustration of the images used to calculate the boundary correc-
tions around a single corner in section 4.7.

4.6. Corner corrections

For the special case of rectangular plate geometries, we can go beyond the bulk and edge
contributions considered so far to include also corner corrections arising from image of image
contributions as depicted in figure 4. To do so, we need to replace the CF in (16) by

Γ(x, x′) = J0(kB|x − x′|) ± J0(kB|x −Ryx′|)

± J0(kB|x −Rxx′|) + J0(kB|x −Rxyx′|)
≡ Γ0(x, x′) ± Γ1(x, x′) ± Γ2(x, x′) + Γ3(x, x′) (46)

to account for boundary corrections near a corner joining edges x = y = 0 (see figure 4).
Here, Rxx′ denotes a reflection of x′ through the edge x = 0, Ryx′ denotes a reflection of
x′ through the edge y = 0, Rxy = RxRy and the ± signs account for Dirichlet and Neumann
boundary conditions as before. Contributions Γ0(x, x′), Γ1(x, x′) and Γ2(x, x′) are as given in
sections 4.3–4.5 with Γ2 being a perimeter contribution consistent with the treatment leading
to (22). The remaining contribution can be written explicitly as

Γ3(x, x′) = J0(αkA|x + x′|). (47)

We accordingly generalise the contributions of these two edges to the Fourier transform
(28) to

Γcorner
Ω (p, p′) = A(p, p′) ± B1(p, p′) ± B2(p, p′) + C(p, p′), (48)

where (see appendix B)

C(p, p′) = 〈H(p − pα)H∗(p′ + pα)〉. (49)

It is shown in appendix B that the corner contribution C(p, p′) vanishes for 90◦ corners; a
general treatment for arbitrary angles or curvature corrections is not attempted in this paper.
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4.7. Radiation from rectangles

We further illustrate the results of sections 4.3–4.6 by applying them to the case of rectangu-
lar geometries, for which analytical results are available for the characteristic function H(p)
and there are multiple images obtained by reflection through different sides. Although the full
solution to this problem is obtained from an infinite sequence of images, we here calculate
the contributions only from singly-reflected images from horizontal and vertical sides and
doubly-reflected images giving corrections near corners.

For a rectangular plate occupying 0 < x < Lx and 0 < y < Ly, the characteristic function
H(p) can be written explicitly as

H(p) = LxLysinc

(
1
2

kALx px

)
sinc

(
1
2

kALy py

)
e−ikA(pxLx+pyLy)/2.

Then the bulk contribution in (34) can be written for p = p′ as

A(p, p) =

〈[
sinc

(
kALx(px − α cos θ)

2

)
sinc

(
kALy(py − α sin θ)

2

)]2
〉

,

whereas the corresponding boundary contribution (41) for the bottom horizontal edge can be
written

B1(p, p) =

〈[
sinc

(
kALx(px − α cos θ)

2

)]2

sinc

(
kALy(py − α sin θ)

2

)

× sinc

(
kALy(py + α sin θ)

2

)
e2iαkALy sin θ

〉
.

Note that there is an analogous contribution

B2(p, p) =

〈
sinc

(
kALx(px − α cos θ)

2

)
sinc

(
kALx(px + α cos θ)

2

)

×
[

sinc

(
kALy(py − α sin θ)

2

)]2

e2iαkALx cos θ

〉

from image corrections along the left vertical edge. Finally, we can also include a corner
correction from the bottom left corner using

C(p, p) =

〈
sinc

(
kALx(px − α cos θ)

2

)
sinc

(
kALy(py − α sin θ)

2

)

× sinc

(
kALx(px + α cos θ)

2

)
sinc

(
kALy(py + α sin θ)

2

)

× e2iαkA(Lx cos θ+Ly sin θ)

〉
.

Note that the remaining two sides and three corners contribute symmetrically so that we can
account for all four edges and all four corners of the rectangle by using

Γrect
Ω (p, p) = A(p, p) ± 2B1(p, p) ± 2B2(p, p) + 4C(p, p) (50)

in place of ΓΩ(p, p) in (26).
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For the special case of the rectangle, the boundary approximation (22) can be written

σ � 4(Lx + Ly)
πkALxLy

f (α)

and figure 3 shows both the result of calculation f (α) in full (for α > 1) using (22) and its
asymptotic form (as α→∞) given in (23). Note also that an evaluation by integration of
(26) applies uniformly for all α, including across the critical value α = 1, and, except for the
negligible corner correction, is completely equivalent to the direct integration of (12) shown
in figure 1. In fact evaluation using (50) is significantly faster, involving one integral fewer,
although it is restricted to the case of rectangular geometry.

In appendix A, the results obtained here are compared with a modal approach, where a
radiation efficiency is calculated for each eigenmode of a rectangular plate. The diffuse field
case is then obtained after averaging over many eigenmodes, see figure A2.

5. Conclusion

We have provided asymptotic estimates of acoustic power radiated from vibrating plates whose
normal velocity field is homogeneously diffuse, corresponding to ray densities in phase space
that are uniform in the corresponding ray-tracing model. Below a critical frequency, where
the wavenumber for plate vibration is larger than the acoustic wavenumber, the plate couples
weakly to the surrounding air and radiation is driven from the fields near the boundary. We have
provided asymptotic estimates of the radiated power in this case in the form of a boundary inte-
gral, for both Dirichlet (or simply-supported) and Neumman (or guided) boundary conditions.
Surprisingly, radiation is relatively larger in the Dirichlet case even though the velocity ampli-
tude must then vanish on the boundary itself. The results have been validated by comparison
to a modal analysis in the separable case of a rectangular plate.

The boundary conditions treated in detail in this paper are rather simple and have been
chosen in order to provide a proof-of-principle demonstration of the importance of boundary
conditions, so that an analytical treatment using the method of images is possible. The wider
conclusion that radiation below a critical frequency can be approximated by a boundary inte-
gral will extend to more general and realistic boundary conditions. To treat the more general
case, it will be necessary to calculate the boundary corrections to the CF, including for example
coupling between propagating and evanescent bending modes, which have significant ampli-
tudes near the boundary. For problems without baffling, it will be necessary to compute also
the fields just outside the boundary and to modify the Rayleigh integral (2) accordingly. This
is a significantly more complicated calculation, but is, we believe, an entirely tractable one,
using the approach for example in [35] to compute boundary corrections.

We have also simplified the analysis by assuming that the diffuse field is uniform except for
these boundary corrections, which is equivalent in the analogous ray-tracing model to assuming
that the ray density is constant in phase space. A future extension to the case of nonuniform
CFs, and a reformulation using Wigner representations in terms of local phase space densities,
will be an important addition to turn the approach into a practical tool for sound simulation in
engineering contexts.
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Appendix A. Comparison with a modal approach

We benchmark in this appendix the calculations of radiation efficiency for disordered fields
presented in the main text against a more traditional approach based on a modal analysis. This
latter approach has the disadvantage of being applicable only to integrable plate geometries,
but the rectangular case treated in detail in the main text is such a problem and it is informative
to compare the results of these approaches here.

The power radiated by a vibrational eigenmode of the plate, wnm(x, y), denoting the local
normal velocity amplitude, is obtained from the following analogue of (25)

Π′
nm =

(
kA

2π

)2∫
D

|Wnm(p)|2√
1 − |p|2

dp,

where Wnm denotes the Fourier transform according to the convention in (24). We also define
a corresponding radiation efficiency σnm, defined in analogy to (5). Each of these modes has a
characteristic vibrational wave number knm, denoted

knm = kB(ωnm),

whereωnm is the modal frequency and for any frequencyω we define the vibrational wavenum-
ber kB(ω) by

k2
B = ω

√
ρsh
B

, (A.1)

where h is the plate thickness, ρs is its density,

B =
Eh3

12(1 − ν2)

is the bending stiffness, and ν denoted the Poisson ratio. The natural frequencies of the vibrat-
ing plate are in both the Dirichlet and Neumann cases given by

ωnm =

√
B
ρsh

[(
nπ
Lx

)2

+

(
mπ

Ly

)2
]

, (A.2)
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except that the mode numbers are n, m = 0, 1, 2, · · · in the Neumann case and n, m = 1, 2, · · ·
in the Dirichlet case. We distinguish between knm and kB because, if the plate is driven at a
nonresonant frequency (ω �= ωnm), they are different.

It is instructive to compare the forms of Wnm(p) for the two sets of boundary conditions
considered, which can be shown to be of the form [10]

Wnm(p) =
Anm√
LxLy

[
(−1)ne−ikALx px − 1

][
(−1)me−ikALy py − 1

][(
nπ/Lx

)2 − k2
A p2

x

][(
mπ/Ly

)2 − k2
A p2

y

]

×

⎧⎪⎨
⎪⎩

nmπ2

LxLy
Dirichlet

k2
A px py Neumann.

(A.3)

(Recall that the convention for the Fourier transform in (24) uses the acoustic wavenumber kA

even when dealing with the vibrational problem). Here,

Anm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for n = 0 and m = 0
√

2 for n = 0 or m = 0

2 for n �= 0 and m �= 0

is a normalisation constant. The relative sizes of the terms in braces are at the root of the
relatively greater radiated power for the Dirichlet case when α > 1.

Figure A1 shows how a selection of modal efficiencies σnm vary with frequency by plotting
them as a function the parameter

1
α

=
kA

knm
∝ ω.

It is evident that each of these curves changes considerably from one mode to the next. To
make a comparison with the diffuse-field results in the main text, we therefore also calculate
averaged efficiencies using

σ̄modal =
1

N2

N∑
m=1

N∑
n=1

σnm. (A.4)

In order to compare this average with the diffuse field result, we note that the latter depends
on two wave numbers kA and kB (or equivalently kA, and α = kB/kA). To distinguish it from
the modal average and to emphasise this dual dependence on wave numbers, let us denote it
by σD(kA, kB). In this appendix, σD(kA, kB) will be calculated using (50). In order to perform
an equivalent average over vibrational wave numbers, we therefore define the corresponding
average

σ̄diffuse(α) =
1

N2

N∑
m=1

N∑
n=1

σD(kA = knm/α, kB = knm). (A.5)

We compare σ̄modal and σ̄diffuse in figure A2. The results are in good agreement apart from very
small values of the radiation efficiency in the Neumann case below 1/α = 0.1; these deviations
are due to insufficient cancellations of relative large terms when truncating the sum (A.4) and
are thus of numerical nature. We note that the average of the Dirichlet and Neumann modal
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Figure A1. Modal radiation efficiencies σnm of simply supported plates are shown for
a selection of mode numbers (n, m), which are given in brackets in the legend. There
is significant fluctuation from one mode to the next here, which is eliminated in the
averaged efficiencies shown in figure A2.

Figure A2. The radiation efficiency of a baffled rectangular plate for different boundary
conditions and using both the diffuse-field (solid curves) and modal excitation (dashed
curves). Both approaches have been averaged according to (A.5). The diffusive field
excitation with Dirichlet ( ) and Neumann ( ) boundary conditions as well
as the mean value of the radiation efficiency with Dirichlet and Neumann boundary
conditions ( ) are compared with the eigenmode excitation for simply supported
plates ( ), guided plates ( ), and the mean value ( ).

results agree well with the diffuse results from the bulk contribution alone, neglecting boundary
corrections.

Appendix B. Corner correction in rectangular case

Here, we derive the corner correction C(p, p′) given in (49) following detailed calculations
analogous to those of sections 4.3 and 4.4 for A(p, p′) and B(p, p′).
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We begin by calculating the Fourier transform of the corner correction (47)

Γ̂3(p, p′) =
∫
R2

∫
R2

J0(αkA|x + x′|)e−ikAp·x+ikAp′·x′ dx dx′

and changing to mean and displacement variables defined in equation (18), according to

Γ̂3(p̄ − q/2, p̄ + q/2) =
∫
R2

∫
R2

J0(2αkA|x̄|)e−ikAq·x̄−ikAp̄·u du dx̄

=
1

4π

(
2π
kA

)4

δ(p̄)δ

(∣∣∣q
2

∣∣∣2 − α2

)
. (B.1)

Next, we derive (49) by inserting this into the appropriate analogue of (29) giving

C(p, p′) =
1
π

∫
R2

dp′′ H(p − p′′)δ
(
|p′′|2 − α2

)
H∗(p′ + p′′)

= 〈H(p − pα)H∗(p′ + pα)〉,

where the average is over the direction of pα as in the calculations of A(p, p′) and B(p, p′) in
the main text.

Substituting the defining equation for H(p), noting that we require only the diagonal com-
ponents with p = p′ and letting Ω be the first quadrant 0 < x, x′, y, y′ < ∞, leads to

C(p, p) =

〈∫
Ω

∫
Ω

e−ikA(p−pα)·x+ikA(p+pα)·x′dxdx′
〉

=

〈
1

ikA(px − α cos θ − i0+)
× 1

ikA(py − α sin θ − i0+)

× 1
−ikA(px + α cos θ + i0+)

× 1
−ikA(py − α sin θ + i0+)

〉

=
1

k4
A

〈
1

p2
x − (α cos θ + i0+)2

× 1
p2

y − (α sin θ + i0+)2

〉
.

When α > 1, then for each p inside the unit disk D we find that there are eight poles along
the integration path over θ corresponding to the average 〈·〉, 4 from each of the two factors in
the denominator. Evaluating the integral using residue calculus, we find that 2 of the 4 poles
for each of the factors do not contribute and the remaining poles cancel pairwise, so that

C(p, p) = 0

when evaluated for the special case of a quadrant [27]. Therefore the corner contribution to the
asymptotic development of the boundary integral vanishes in the special case of a right angle
and Dirichlet or Neumann boundary conditions, as claimed in the main text. Note however,
that the underlying destructive cancellation of the corner correction is incomplete when spatial
integration is restricted to the true finite domain Ω rather than being extended to the whole
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quadrant. Therefore, for example, the corner contribution to the rectangle geometry in (50)
does not exactly vanish, although it is numerically insignificant in our calculations.

Appendix C. Large α asymptotics

We here justify the asymptotic (as α→∞) forms given in (23) for the function f (α) defined
in (22). In this limit f (α) becomes

f (α) � 1
2π

∫ 2π

0
dφ

∫ 1

0
dp

p

α
√

1 − p2

⎧⎪⎪⎨
⎪⎪⎩

1
α2

Dirichlet,

p2 sin2 φ

α4
Neumann,

=

∫ 1

0
dp

p

α5
√

1 − p2

⎧⎪⎨
⎪⎩
α2 Dirichlet,

1
2

p2 Neumann.

Making use of the integrals∫ 1

0

p√
1 − p2

dp = 1, and
∫ 1

0

p3√
1 − p2

dp =
2
3

,

this then reduces to (23), as claimed.
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