
A Measure of Structural Complexity of Hierarchical
Fuzzy Systems Adapted from Software Engineering

Tajul Rosli Razak1,2, Jonathan M. Garibaldi1 and Christian Wagner1

1Laboratory for Uncertainty in Data and Decision Making (LUCID),
School of Computer Science, University of Nottingham, United Kingdom.

2Faculty of Computer and Mathematical Science, Universiti Teknologi MARA, Perlis, Malaysia.
Email: 1{tajul.razak,jon.garibaldi,christian.wagner}@nottingham.ac.uk, 2tajulrosli@uitm.edu.my

Abstract—Hierarchical fuzzy systems (HFSs) have been seen
as an effective approach to reduce the complexity of fuzzy logic
systems (FLSs), largely as a result of reducing the number of
rules. However, it is not clear completely how complexity of HFSs
can be measured. In FLSs, complexity is commonly expressed
using a multi-factorial approach, taking into consideration the
number of rules, variables, and fuzzy terms. However, this may
not be the best way to assess complexity in HFSs that have
structures involving multiple subsystems, layers and different
topologies. Thus far, structural complexity associated with the
structure of HFSs has not been discussed. In the field of software
engineering (SE), a complexity measure has been proposed to
measure program complexity. This measure uses the concept of
graph theory complexity, which considers the control structure
complexity. The measure can also be applied to assess the
complexity of a collection of programs known as a hierarchical
nest. In this paper, we present an approach to mapping an
SE complexity measure to HFS design. The approach includes
several mapping alternatives that are outlined and illustrated
using different HFS designs. This study contributes a new
approach for the first time to assessing structural complexity
in HFSs based on an approach from SE complexity measure.

Index Terms—Hierarchical fuzzy systems, Complexity, Struc-
tural complexity, Mapping Process.

I. INTRODUCTION

One of the most important motivations for using FLSs for
system modelling is that they use linguistic variables and
rules [1] that are easy to understand. Moreover, FLSs are also
good at capturing the complexity of a wide range of problems
through their linguistic modelling and approximate reasoning
capabilities [2]. However, FLSs pose significant challenges,
including the curse of dimensionality, whereby the number of
required rules and the model complexity commonly increase
exponentially with the number of input variables [3], [4], thus
potentially reducing the transparency and interpretability of
FLSs. In exploring this problem, several methods have been
proposed for reducing the size of the rule-based structure in
FLSs, such as that of rule selection [5], feature selection [6],
rule interpolation [7], singular-value decomposition-QR [8],
evolutionary algorithms [9], fuzzy similarity measures [4], rule
learning [10] and HFSs [11].

HFSs were introduced as an approach to overcome the
curse of dimensionality arising in conventional FLSs [11],
[12]. HFSs have been shown to be an effective way to reduce
the number of rules in FLSs, which is argued to reduce the

model complexity and improve its interpretability. Indeed, in
literature, it has been claimed that reducing complexity is a
way of improving model interpretability in FLSs [4], [13],
[14]. Thus, complexity appears to be a key component in the
interpretability of FLSs. Despite the fact that people usually
measure complexity in FLSs by looking principally at the rule-
based complexity level [4], [15]–[17], this is not an ideal way
to assess complexity, especially for HFSs which feature an
overall structure comprising multiple subsystems, layers and
different topologies.

Whilst it is an important consideration, it would appear that
complexity measures associated with HFS structures have not
been discussed in much depth. In the literature, a complexity
measure has been proposed in the field of software engineering
(SE), namely McCabe’s measure [18], which considers the
complexity of the control structure. This has been used to
measure program complexity through the control graph as well
as through decomposition into constituent sub-routines. Such
decomposition of a complex program may be viewed to be a
similar concept to that of HFSs. Thus, in this paper, we intend
to present an approach to map an SE complexity measure to
HFS design. Specifically, we focus on translating all elements
in McCabe’s measure to the structures of HFS designs that
have multiple subsystems, layers and different topologies.

The rest of this paper is organised as follows. Section II ex-
plains the background on the state of the art of interpretability
and complexity in FLSs and other fields, and also hierarchical
fuzzy systems. Section III concisely outlines the McCabe
measure from SE. Section IV introduces a new approach to
mapping the McCabe measure to the elements of HFS design.
Section V demonstrates the new complexity measure of HFS
with real-world example, namely the Rotary crane (as used in
[19]). Finally, Sections VI and VII present results, conclusion
and future works.

II. BACKGROUND

In this section, we briefly provide background in respect to
interpretability and complexity in FLSs, complexity in other
fields and HFSs.

A. Interpretability

Interpretability refers to the capability of FLSs to express
the behavior of the system in an understandable way [20].

Fig. 1. A taxonomy to analyse interpretability of FLSs. Adapted from [21].

Gacto et al. introduced a taxonomy for assessing interpretabil-
ity of FLSs [21], that includes the two key components;
(i) complexity-based interpretability; and (ii) semantic-based
interpretability as shown in Fig. 1. Complexity-based inter-
pretability is devoted to decreasing the complexity of the
obtained model (usually measured as the number of rules,
variables, labels per rule, and other factors). Meanwhile,
semantic-based interpretability is dedicated to preserving the
semantics associated with the membership functions (MFs), to
ensure semantic integrity by imposing constraints on the MFs
or approaches considering measures such as distinguishability,
coverage and other factors.

Following Gacto et al., it is generally accepted that complex-
ity is an essential component to determine the interpretability
of FLSs [21]. Thus far, complexity has often been used as an
indirect measurement of the interpretability of FLSs. Indeed,
several researchers claim that the reduction of complexity in a
system can lead to better interpretability of the fuzzy systems
[4], [13], [14], [22].

B. Complexity in FLSs

In FLSs, complexity could be related to the specific problem
described by the fuzzy model. In other words, from the
structural analysis of a knowledge base, we should expect to
gain information concerning the complexity of the underlying
problem [23]. Complexity of conventional FLSs is usually
evaluated by a multi-factorial approach, taking into consid-
eration the number of rules, variables, and fuzzy terms.

1) Hierarchical Fuzzy Systems: The term ‘hierarchical’ has
generally been used to refer to a complex system in which each
of the subsystems is subordinated by an authority relating to
the system it belongs to [24]. In fuzzy logic systems, HFSs
are defined by composing the input variables into a collection
of low-dimensional fuzzy logic subsystems [11], [12]. Also,
HFSs can be illustrated as a cascade structure where the output
of each layer is considered as an input to the following layer as
shown in Fig. 3. Moreover, a system that goes from one layer
as shown in Fig. 2 to two layers as in Fig. 3 has fewer rules
than the one in one layer [25]. The most extreme reduction of
rules will be if the structure of HFS has two input variables for
each low dimensional FLS, with the number of layers being
one fewer than the number of inputs [11].

Therefore, HFSs have been shown to be an effective ap-
proach to reducing the number of rules in FLSs, and thus
reducing the complexity model. However, the reduction in
the complexity of each individual subsystem is, to a degree,
countered by the existence of a structure (and associated
arrangement) of multiple connected subsystems. It is not clear
how the complexity in HFSs in relation to their structure can

Fig. 2. Fuzzy Logic System Fig. 3. Hierarchical Fuzzy System

be measured. To date, this issue has not been explored to any
great degree.

C. Complexity in others fields

Complexity arises from either the structure of the interac-
tions between very similar units or from the units and the
interactions themselves having specific characteristics. In both
cases, the abstract representation of a complex system can be
achieved by a collection of nodes (units) and edges (repre-
senting interactions between the units) forming a network (or
graph) [26].

One common view of a general complexity measure is that
it is dependent on the number of structural features contained
within an organisation rather than simply on the number of
its basic elements [27]; this idea is also known as structural
complexity.

Structural complexity is an attribute of any general type of
system. This attribute can be assessed by different measures,
and it is often linked to interaction among systems’ properties
such as nodes, edges and networks [26], [28]. Several mea-
sures that cover the structural complexity have been proposed
to the other fields such as SE [18], circuit design [29] and
Psychology [30].

III. A COMPLEXITY MEASURE IN SOFTWARE
ENGINEERING

McCabe [18] proposed a complexity measure that uses
various concepts from graph-theory. The complexity measure
was developed to measure and control the number of paths
through a program using a cyclomatic number. The cyclomatic
number v(G) of graph G with n vertices / nodes, e edges, and
p connected components can be expressed as follows:

v(G) = e− n+ 2p (1)

The overall strategy involves measuring the complexity of
a program by computing the number of linearly independent
paths v(G). In a strongly connected graph G, the cyclomatic
number v(G) is equal to the maximum number of linearly
independent paths in G. Note that a graph is define as strongly
connected if every node is reachable from every other node.
Other properties of cyclomatic complexity include: (i) v(G)
≥ 1; (ii) G has only one path if and only if v(G) = 1;
(iii) inserting a new edge (e) in G increases v(G); and (iv) for
fully connected graphs G, the maximum number of edges (e)
is computed as:

e =
n(n− 1)

2
(2)

Fig. 4. A control graph,
C1.

Fig. 5. A control graph,
C2.

Fig. 6. A control graph,
C3.

Figs. 4, 5 and 6 present several examples of the control
graph (C). The cyclomatic complexity of each C can be
computed using the cyclomatic number presented in (1).

For example, the complexity of control graphs C1, C2 and
C3 can be computed using (1) as follows:

v(C1) = e− n+ 2p = 3− 3 + 2× 1 = 2

v(C2) = e− n+ 2p = 6− 4 + 2× 1 = 4

v(C3) = e− n+ 2p = 10− 5 + 2× 1 = 7

A control graph is more complex when the cyclomatic
complexity v(G) value is large and less complex when the
v(G) value is small. In the example above, based on v(G)
values, we may say that C3 is more complex than C2 and
C1 (C3 > C2 > C1) in terms of their control structure
complexity. It is also true that the increasing number of nodes
(n) and edges (e) from the control graph C1 to C3 would
result in increased complexity.

The control graphs (C1, C2, and C3) are presented in in-
creasing order of complexity in order to suggest the correlation
between the complexity numbers and an intuitive notion of
control flow complexity.

A. Decomposition – Hierarchical Nest

As discussed earlier, p is the number of connected compo-
nents as presented in (1). The way a program control graph is
defined would result in all control graphs having only one con-
nected component, that is p = 1. However, for control graphs
(C) that have more than one connected component (p 6= 1), the
collection of control graphs may be described as a hierarchical
nest of subroutines. Thus, the complexity of a collection of
control graphs C with p connected components, is equal to
the summation of their complexities as C1 ∪ C2... ∪ Cp. It
also can be expressed as follows:

v
(p⋃

i=1

)
= e− n+ 2p (3)

For clarity, we used two cases as examples to illustrate (3)
in the following subsection.

1) Case 1: In this case, we assume that a main program M1
and two subroutines A1 and B1 which have control structure
as shown in Fig. 7. Let us denote the total graph in Case 1
with 3 connected components as M1 ∪ A1 ∪ B1. Also, this
total graph will consist of e = 13 (only solid edges), n = 13

Fig. 7. Case 1: one main program M1, with two subroutines A1 and B1 (only
include solid edges). Case 2: one main program M1, with two subroutines A1
and B1 (include solid and dotted edges). Adapted from McCabe [18].

and p = 3. Now, since p = 3, the complexity of the total
graph in Case 1 can be computed using (3) as follows:

v(M1 ∪A1 ∪B1) = e− n+ 2p

= 13− 13 + 2× 3 = 6

2) Case 2: Similarly, to Case 1, we assume that a main
program M1 and two subroutines A1 and B1 which have
control structures as shown in Fig. 7. However, for this case,
this total graph will consist of e = 17 (include solid and dotted
edges), n = 13 and p = 3. Now, since p = 3, the complexity
the total graph in Case 2 can be computed using (3) as follows:

v(M1 ∪A1 ∪B1) = e− n+ 2p

= 17− 13 + 2× 3 = 10

In general, the computed complexity of the collection of
programs in Case 2 (v(M1∪A1∪B1) = 10) is higher than the
computed complexity of the collection of programs in Case 1
(v(M1∪A1∪B1) = 6). This could indicate that the collection
of programs in Case 2 are more complex than in Case 1 in
terms of the control structure complexity. Although both Case
1 and Case 2 have the same number of nodes (n) and the
number connected component (p), the difference in the number
of edges (e) explains the difference in the complexity they
present.

IV. MAPPING A COMPLEXITY MEASURE FROM SE TO
HFSS

In this paper, we aim to translate a measure of the com-
plexity from SE (McCabe measure) to the HFSs’ design.
Particularly, we focus on proposing an approach to mapping
all the components in a complexity measure from SE to the
design of HFSs. However, some questions arise including:
”How is the complexity measure from SE related to the design
of HFSs?” and ”How can a complexity measure from SE map
to the design of HFSs?”

Clearly, one may argue whether the selection of a com-
plexity measure from SE (McCabe measure) is appropriate,
given that there are other measures available. However, for
an initial step, in this paper we propose to use the McCabe
measure based on the following reasons: (i) A control graph
theory that was used in McCabe is a similar structure to the

fuzzy cognitive map (FCM). FCMs are fuzzy-graph structures
in FLSs that were used for representing causal reasoning [31].
However, none of the indices or measures have been proposed
in measuring FCMs’ structure of complexity. (ii) The McCabe
measure takes into account the structural complexity in their
measures. (iii) The McCabe measure can also be applied
to assess the complexity of a collection of control graphs
known as a hierarchical nest (see Section III-A). Moreover,
the decomposition in the McCabe measure is very similar to
the concept with the structure of HFSs that may feature an
arbitrary number of multiple subsystems.

However, to map McCabe measure to the design of HFSs is
a non-trivial task. Although the elements in both the structures
of the control graph and HFSs’ design have similarities, there
are some that are not entirely similar. Thus, we propose an
approach of mapping the McCabe measure to the HFSs’ design
as explained in the following steps.

A. Step 1: Identify elements in HFSs’ Design

First, let us denote all the elements which are contained
in HFSs’ design (see an example of HFS design in Fig. 9):
(i) x indicates the number of input variables in HFSs, (ii) l
indicates the number of layers in HFSs, (iii) a indicates the
number of input-output (IO) connections in HFSs, and (iv) s
indicates the number of subsystems in HFSs.

B. Step 2: Mapping Edges (e) to the HFSs’ Design

The first element of the McCabe measure is e, that is the
number of edges in the control graph that need to be mapped
to the HFSs’ design. The mapping possibilities may be viewed
as follows:

e→ (x or l or a or s).

Intuitively, one may say that the element of a (number of
the IO connections in an HFS) could be the best option for
mapping to the element e (number of edges). However, one
might also argue that the element l (number of layers in HFSs’
design) could be a better mapping to e. Thus, delaying the best
choice, we present two alternative mappings which can now
be viewed as follows:

e→ a OR e→ l.

C. Step 3: Mapping Nodes (n) to the HFSs’ Design

The next element of the McCabe measure is n, that is the
number of nodes in the control graph that will be mapped.
Taking into account the mapping in Step 2, there are two
alternative mapping possibilities:

EITHER n→ (x or l or s) OR n→ (x or a or s).

For the first alternative, it seems most reasonable to choose s
(number of subsystems) in HFSs’ design to map to n (number
of nodes) in the McCabe measure. For the second alternative,
we choose x (number of inputs) to map to n. Consequently,
both alternative mappings can now be represented as follows:

n→ s OR n→ x.

D. Step 4: Mapping Components (p) to the HFSs’ Structure

The final element of the McCabe measure is p, that is
the number of connected components in the control graph.
Now, given the assignments in Steps 2 and 3, the remaining
possibilities are:

EITHER p→ (x or l) OR p→ (a or s).

The number of connected components in the control graph (p)
is a very similar concept as the number of layers (l) in HFSs. In
HFSs, all subsystems are placed and attached through the HFS
layers. However, one may argue that the number of connected
components in the control graph can also be related to the
number of subsystems (s) in HFSs. Therefore, for the first
alternative, we map l to p; whilst in the second alternative,
we map s to p. Hence, both alternative mappings now are
presented as follows:

p→ l OR p→ s.

E. Step 5: Construct complexity measure of HFSs – (CHFS)

Following the mapping selection in Steps 2, 3, and 4, two
alternative mappings are obtained, namely the first alternative
(from now on referred to as A), which constitutes the mapping
e → a, n → s and p → l, whereas the second alternative
(termed B) which constitutes e → l, n → x and p → s.
Finally, a complexity measure for HFSs is assembled using
both alternative mappings, and now (3) appears as follows:

CHFSA
(s⋃

i=1

)
= a− s+ 2l (4)

CHFSB
(s⋃

i=1

)
= l − x+ 2s (5)

where CHFSA and CHFSB indicate the non-normalised struc-
tural complexity in HFSs using alternative mappings A and B
respectively.

F. Step 6: Normalise the complexity measure output of HFSs
– (C̃HFS)

McCabe’s measure ranges from [1,∞] whereas CHFSA
and CHFSB range from [1,∞] and [−∞,∞] respectively.
Whilst there is no inherent problem with this, other measures
of interpretability for FLSs (such a Nauk’s index [32] or
Alonso et al. [33]) have traditionally been defined over [0, 1].
Given this, it will be easier to subsequently combine a HFS
complexity measure with other components of interpretability
if it lies over the same range. Thus, we would like to normalise
the complexity values of CHFSA and CHFSB to be in the
range [0, 1]. There are several alternative functions that can be
used but for this paper, we will make an arbitrary choice to
use one of the principal functions in mathematics, which is an
inverse trigonometric function. This function can be expressed
as follows:

C̃HFS =
arctan(CHFS)× 2

π
(6)

TABLE I
DESCRIPTION OF THE VARIOUS HFS DESIGNS FOR ROTARY CRANE

Descriptions Rotary Crane

FLS HFS-1 HFS-2 HFS-3 HFS-4

Number of inputs (x) 6 6 6 6 6
Number of layers (l) 1 2 2 3 5
Number of subsystems (s) 1 3 4 5 5
Number of the IO connections (a) 7 9 10 11 11

For the case of the CHFSB that has a different range to
CHFSA, we also use the inverse trigonometric function to
normalise its complexity values to be in the range [0, 1].
However, (6) appears as follow:

C̃HFS =
arctan(CHFS)× 2 + π

2π
(7)

where arctan() is the inverse of the tangent function, CHFS

represents the values of CHFSA or CHFSB, and C̃HFS

indicates the normalised structural complexity in HFSs.
An HFS model is less complex when the C̃HFS is close to

0 and more complex when C̃HFS is close to 1, in terms of
structural complexity.

V. EXPERIMENTS AND RESULTS

In this section, we will illustrate the complexity measure
C̃HFS to HFSs design using the real-world example. Note
that this example is not used to show any benefits of the
hierarchical approach. In this experiment, we used an example
of HFSs’ design, namely the rotary crane example, as used
in [19], which is a load rotation and hoisting system. A
summary of the rotary crane for various HFS designs is
presented in Table I. This experiment aims to demonstrate the
complexity measure (C̃HFS) as proposed in Section IV, using
the examples above and described in the following subsection.

A. Measuring the complexity of HFSs’ design in the Rotary
crane

As can be seen in Table I, there are five HFSs’ designs
use for the rotary crane example, namely a flat system (FLS),
HFS’s design 1 (HFS-1), HFS’s design 2 (HFS-2), HFS’s
design 3 (HFS-3) and HFS’s design 4 (HFS-4). In this sec-
tion, the complexity of these designs are assessed using the
proposed measure as in (4) and (5), and illustrated below.

1) The Flat FLS: In this case, the structure of a flat FLS
design consists of x = 6, l = 1, s = 1, and a = 7, as shown
in Fig. 8. According to equation (4) and (5), the suggested
complexity for FLS are:

CHFSA(FLS) = a− s+ 2l

= 7− 1 + 2× 1 = 8

CHFSB(FLS) = l − x+ 2s

= 1− 6 + 2× 1 = −3

TABLE II
A SUMMARY OF STRUCTURAL COMPLEXITY MEASURE (C̃HFS) FOR

HFSS’ DESIGN OF THE ROTARY CRANE

Rotary Crane
Structural complexity measure Number of

rulesMapping alternative: A Mapping alternative: B

CHFSA C̃HFS CHFSB C̃HFS

FLS 8 0.9208 -3 0.1024 729
HFS-1 10 0.9365 2 0.8524 63
HFS-2 10 0.9365 4 0.9220 54
HFS-3 12 0.9471 7 0.9548 45
HFS-4 16 0.9603 9 0.9648 45

2) HFS-1: For this case, the HFS-1 structure consists of
x = 6, l = 2, s = 3, and a = 9, as shown in Fig. 9. According
to equation (4) and (5), the suggested complexity for HFS-1
are:

CHFSA(HFS-1) = a− s+ 2l

= 9− 3 + 2× 2 = 10

CHFSB(HFS-1) = l − x+ 2s

= 2− 6 + 2× 3 = 2

Similarly, for HFS-2, HFS-3 and HFS-4. Finally, the results
of CHFSA and CHFSB for these designs are then normalised
using (6) and (7) as shown in Table II. For comparison, Table II
also provides the number of rules in each fully specified rotary
crane system, based on using three membership functions in
each variable.

VI. DISCUSSIONS

This paper has presented a new approach to mapping a
complexity measure from SE to HFSs’ design. The approach
introduces two key mapping alternatives, namely the mapping
A and B. A detailed of these mapping alternatives consisted of
six steps as described in Section IV. Obviously, the proposed
mapping alternatives adopted in this paper is not unique and
different methods may be adopted. However, as an initial step,
the mapping alternatives are based on the similarities in both
the structures of the control graph and HFSs’ design. It is clear
that further work is still required to establish ground truth on
this mapping strategies.

The complexity measure for HFSs was demonstrated using
different HFS designs in real-world example namely rotary
crane as shown in Section V. The summaries of a complexity
measure (C̃HFS) using alternative mappings A and B, to the
different configuration of the rotary crane as shown in Table II.

For the case of mapping A, the measure produces a result
that is equally complex for the design of HFS-1 and HFS-2
although they have a different number of subsystems (s) and
number of IO connections (a). Some possible explanations for
this finding include: (i) although there is equally incrementing
for a and s in the design of HFS-1 to HFS-2, the number of
layers (l) is still the same in both designs; and (ii) following
the configuration in mapping A, the complexity of design in
the HFS-1 (9−3+2×2 = 10) and HFS-2 (10−4+2×2 = 10)
is equivalent. On the other hand, for the case of mapping B,

Fig. 8. Rotary crane: A flat FLS
Fig. 9. Rotary crane: HFS’s design 1 (HFS-1) Fig. 10. Rotary crane: HFS’s design 2 (HFS-2)

Fig. 11. Rotary crane: HFS’s design 3 (HFS-3)

Fig. 12. Rotary crane: HFS’s design 4 (HFS-4)

the measure produces a different complexity result for HFS-
1 and HFS-2 that indicate HFS-2 (C̃HFS = 0.922) is more
complex than HFS-1 (C̃HFS = 0.8524), in term of structural
complexity. It seems possible that these results are due to a
different number of subsystems for both HFS-1 and HFS-
2 as shown in Figs. 9 and 10 respectively, which influence
their structural complexity. Overall, the findings from the
measure using both mapping A and B agreed that in HFSs, the
complexity increases exponentially with the number of HFS
layers regarding the structural complexity. The finding also
follows intuition in the sense that one expects the HFS-4 to
be more complicated than all designs, because of their number
of layers.

Perhaps surprisingly, if we only consider the number of rules
as the complexity assessment for the Rotary crane designs (see
Table II), it is shown that HFS-3 and HFS-4 were equally less
complex than other designs regarding rule-based complexity.
However, in contrast to rule-based complexity, the structural
complexity measure using the proposed C̃HFS showed that
the HFS-4 is more complex than other designs for the Rotary

crane. Also, although HFS-3 and HFS-4 have the same number
of rules, the results of C̃HFSB indicate that they are different
regarding structural complexity. On the other hand, C̃HFSA
indicates the same structural complexity for HFS-1 and HFS-2,
despite the fact that HFS-2 features fewer rules (54 compared
to 63). Therefore, in this context, it is clear that further
work is required to establish a comprehensive measurement
of complexity in HFSs, i.e. merging rule-based complexity
and structural complexity.

Obviously, there are limitations on this measure as it does
not capture structure complexity perfectly. For example, in the
case of the measure with mapping A as in (4), it is important to
notice that a−s is an invariant for any HFS when intermediate
systems have a single output. Thus, the number of intermediate
variables is always equal to the number of subsystems minus
1. Consequently, a − s is always equal to the number of
input variables. Hence, the final result is that our structural
complexity measure only changes with the number of layers.
Therefore, it is clear that more research on this measure needs
to be undertaken in future work.

VII. CONCLUSION

In conclusion, we have proposed a new approach to assess-
ing structural complexity in HFSs using an existing complexity
measure from software engineering, mapped to the design of
HFSs, which feature multiple subsystems, layers and different
topologies. In order to do that, we introduced two mapping
alternatives, namely mapping A and B, to the proposed com-
plexity measure (C̃HFS).

A real-world example was used to illustrate the measure
C̃HFS to the different HFS designs. The measure shows
promise for measuring the structural complexity in HFSs using
both mapping A and B. Based on the current evidence, we
tentatively suggest the use of mapping B which is based on
mapping e→ l, n→ x and p→ s, to the proposed complexity
measure C̃HFS as it appears to behave in an intuitive and
natural manner.

In future research, we will focus on incorporating this com-
plexity measure for HFSs with other aspects of complexity,
such as the rule-based complexity, in order to reach a more
comprehensive understanding (together with measures of) the
overall interpretability of HFSs. Further work may also be
undertaken into exploring the use of alternative measures of
structural complexity taken from other fields.

ACKNOWLEDGMENT

We gratefully acknowledge the support of the Universiti
Teknologi Mara (UiTM) and Ministry of Higher Education,
Malaysia for sponsoring the first author to pursue his study at
the University of Nottingham (UoN), United Kingdom.

REFERENCES

[1] L. A. Zadeh, “Outline of a New Approach to the Analysis of Complex
Systems and Decision Processes,” IEEE Trans. Syst., Man, and Cybern.,
vol. SMC-3, no. 1, pp. 28–44, 1973.

[2] A. Gegov, D. Sanders, and B. Vatchova, “Complexity management
methodology for fuzzy systems with feedforward rule bases,” Int. J.
of Knowledge-based and Intell. Engineering Syst., vol. 19, no. 2, pp.
83–95, jan 2015.

[3] S.-M. Zhou, J. Garibaldi, R. John, and F. Chiclana, “On Constructing
Parsimonious Type-2 Fuzzy Logic Systems via Influential Rule Selec-
tion,” IEEE Trans. Fuzzy Syst., vol. 17, no. 3, pp. 654–667, jun 2009.

[4] Y. Jin, “Fuzzy modeling of high-dimensional systems: complexity reduc-
tion and interpretability improvement,” IEEE Trans. Fuzzy Syst., vol. 8,
no. 2, pp. 212–221, apr 2000.

[5] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting fuzzy
if-then rules for classification problems using genetic algorithms,” IEEE
Trans. Fuzzy Syst., vol. 3, no. 3, pp. 260–270, 1995.

[6] O. Cordón, M. J. Del Jesus, F. Herrera, L. Magdalena, and P. Villar, “A
Multiobjective Genetic Learning Process for joint Feature Selection and
Granularity and Contexts Learning in Fuzzy Rule-Based Classification
Systems,” in Interpretability issues in fuzzy modeling. Springer Berlin
Heidelberg, 2003, pp. 79–99.

[7] L. Koczy and K. Hirota, “Size reduction by interpolation in fuzzy rule
bases,” IEEE Trans. Syst. Man Cybern. - Part B, vol. 27, no. 1, pp.
14–25, 1997.

[8] Q. Liang and J. M. Mendel, “Designing interval type-2 fuzzy logic
systems using an SVD-QR method: Rule reduction,” Int. J. Intell. Syst.,
vol. 15, no. 10, pp. 939–957, oct 2000.

[9] Y. Jin, “Decentralized adaptive fuzzy control of robot manipulators,”
IEEE Trans. Syst. Man Cybern. - Part B, vol. 28, no. 1, pp. 47–57,
1998.

[10] S.-M. Zhou and J. Gan, “Low-level interpretability and high-level
interpretability: a unified view of data-driven interpretable fuzzy system
modelling,” Fuzzy Sets Syst., vol. 159, no. 23, pp. 3091–3131, dec 2008.

[11] G. V. S. Raju, J. Zhou, and R. Kisner, “Hierarchical fuzzy control,” Int.
J. Contr., vol. 54, no. 5, pp. 1201–1216, nov 1991.

[12] G. Raju and J. Zhou, “Adaptive Hierarchical Fuzzy Controller,” IEEE
Trans. Syst., Man, and Cybern., vol. 23, no. 4, pp. 973–980, 1993.

[13] M. Setnes and R. Babuska, “Rule base reduction: some comments on
the use of orthogonal transforms,” IEEE Trans. Syst., Man, and Cybern.
- Part C, vol. 31, no. 2, pp. 199–206, may 2001.

[14] J. Yen and L. Wang, “Simplifying fuzzy rule-based models using orthog-
onal transformation methods,” IEEE Trans. Syst., Man, and Cybern. -
Part B, vol. 29, no. 1, pp. 13–24, 1999.

[15] H. Ishibuchi and Y. Nojima, “Analysis of interpretability-accuracy trade-
off of fuzzy systems by multiobjective fuzzy genetics-based machine
learning,” Int. J. Approx. Reas., vol. 44, no. 1, pp. 4–31, jan 2007.

[16] M. Delgado, F. Von Zuben, and F. Gomide, “Multi-objective decision
making: towards improvement of accuracy, interpretability and design
autonomy in hierarchical genetic fuzzy systems,” in Proc. Int. Conf.
FUZZ-IEEE, vol. 2. IEEE, 2002, pp. 1222–1227.

[17] X. Zhu, J. Li, D. Wu, H. Wang, and C. Liang, “Balancing accuracy,
complexity and interpretability in consumer credit decision making: A
C-TOPSIS classification approach,” Knowledge-Based Syst., vol. 52, pp.
258–267, nov 2013.

[18] T. McCabe, “A Complexity Measure,” IEEE Trans. on Software Engi-
neering, vol. SE-2, no. 4, pp. 308–320, dec 1976.

[19] N. Masmoudi, C. Rekik, M. Djemel, and N. Derbel, “Optimal Control
for Discrete Large Scale Nonlinear Systems Using Hierarchical Fuzzy
Systems,” in 2010 Second Int. Conf. on Mach. Learning and Comput.
IEEE, 2010, pp. 91–95.

[20] J. Casillas, O. Cordón, F. Herrera, and L. Magdalena, “Interpretability
Improvements to Find the Balance Interpretability-Accuracy in Fuzzy
Modeling: An Overview,” in Interpretability issues in fuzzy modeling.
Springer Berlin Heidelberg, 2003, pp. 3–22.

[21] M. J. Gacto, R. Alcalá, and F. Herrera, “Interpretability of linguistic
fuzzy rule-based systems: An overview of interpretability measures,”
Inf. Sci., vol. 181, no. 20, pp. 4340–4360, 2011.

[22] T. R. Razak, J. M. Garibaldi, C. Wagner, A. Pourabdollah, and D. Soria,
“Interpretability and Complexity of Design in the Creation of Fuzzy
Logic Systems A User Study,” in 2018 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, 2018, pp. 420–426.

[23] C. Mencar, C. Castiello, R. Cannone, and A. M. Fanelli, “Interpretability
assessment of fuzzy knowledge bases: A cointension based approach,”
Int. J. Approx. Reas., vol. 52, pp. 501–518, 2011.

[24] H. A. Simon, “The Architecture of Complexity,” pp. 467–482, 1962.
[25] T. R. Razak, J. M. Garibaldi, C. Wagner, A. Pourabdollah, and D. Soria,

“Interpretability indices for hierarchical fuzzy systems,” in Proc. IEEE
Int. Conf. Fuzzy Systems (FUZZ-IEEE). IEEE, jul 2017, pp. 1–6.

[26] E. Mones, L. Vicsek, and T. Vicsek, “Hierarchy Measure for Complex
Networks,” PLoS ONE, vol. 7, no. 3, p. e33799, mar 2012.

[27] W. G. Bail and M. V. Zelkowitz, “Program complexity using Hierar-
chical Abstract Computers,” Computer Languages, vol. 13, no. 3-4, pp.
109–123, jan 1988.

[28] A. Gegov, Fuzzy Networks for Complex Systems, ser. Studies in
Fuzziness and Soft Computing. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, vol. 259.

[29] K.-H. Cho, S. H. Jung, and G.-Y. Kim, “Evolutionary design of
complex digital circuits based on hierarchical module composition and
predominant component prevention,” Electronics Letters, vol. 51, no. 20,
pp. 1568–1570, oct 2015.

[30] M. Commons, “Introduction to the model of hierarchical complexity.”
Behavioral Development Bulletin, vol. 13, no. 1, pp. 1–6, 2007.

[31] B. Kosko, “Fuzzy cognitive maps,” International Journal of Man-
Machine Studies, vol. 24, no. 1, pp. 65–75, jan 1986.

[32] D. Nauck, “Measuring interpretability in rule-based classification sys-
tems,” in Proc. 12th IEEE Int. Conf. Fuzzy Syst. IEEE, 2003, pp.
196–201.

[33] J. M. Alonso, S. Guillaume, and L. Magdalena, “A hierarchical fuzzy
system for assessing interpretability of linguistic knowledge bases in
classification problems,” in Proc. PIMU, 2006, pp. 348–355.

