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Abstract

A damage model for linear viscoelastic unidirectional (UD) composites undergoing

transverse matrix cracking is proposed. The damage representation for the corresponding

elastic UD composite with an array of dispersed matrix cracks was derived from Li’s work

based on continuum damage mechanics (CDM). The elastic-viscoelastic correspondence

principle (CP) was used to obtain the damage representation for corresponding linear

viscoelastic UD composites in the Laplace domain, and re-expressed the time domain by taking

the inverse Laplace transformation. A damage evolution law was constructed using the Weibull

distribution of defects which will develop into cracks as a result of deformation. The time-

temperature superposition principle (TTSP) approach has been incorporated into this model.

Applications of this damage model are described in detail, and the predictions are compared

with experimental data.

Keywords: Damage, Linear viscoelasticity, Correspondence principle, Transverse matrix

cracks, Weibull distribution, Time-temperature superposition principle (TTSP).
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1. Introduction

The mechanical behaviour of cured polymer resins exhibits time and temperature dependence

under certain conditions, known as viscoelastic behaviour. In aerospace applications of

polymeric composites, it is sometimes necessary to estimate the properties of the composites

taking account of viscoelasticity. Unlike metals, the timescales cannot be validly ignored when

considering the loading regimes in which viscoelastic behaviour becomes significant. In

particular, airframes have long lifetimes (up to 50 years) during which they will be subjected

to complex loading cycles having frequencies as low as around 10-5 Hz (one cycle per flight)

as well as much higher frequencies. Direct replication of these timescales within tests is clearly

not practical. Fatigue tests at increased frequencies (such as those used with metals) cannot be

used directly as they do not account for the creep taking place within each cycle. The present

paper is a step towards undertaking accelerated fatigue and long term creep tests for

unidirectional (UD) composites with due consideration of viscoelastic effects.

By contrast with the time-independent linear elastic case, the constitutive equations for

viscoelastic materials are written in an integral form using the well-known Boltzman

superposition principle. In order to describe the degradation of properties, it is also desirable

to incorporate the effects and evolution of damage into the constitutive relations, since fatigue

and long-term creep processes often involve the material undergoing damage. This will be

achieved in the present paper by using the theoretical framework of continuum damage

mechanics (CDM) in conjunction with a damage representation and damage evolution law

combined with viscoelasticity.

1.1. Damage representation

Talreja [1] proposed a damage representation for composites based on the concept of CDM for

unidirectional composites, in the form of a vectorial internal state variable. The constitutive

relationship of the material under a fixed damaged state was derived from the constraints of

the second law of thermodynamics for an isothermal process. For composites with small

damage, the degraded elastic properties can be expressed as linear functions of an appropriate

damage parameter, defined as the length squared of the vectorial damage variable. However, a

considerable number of damage related material constants need to be determined before the

theory can be applied to a real material. Based on Talreja’s work, Li et al [2] determined the

damage related constants for transversely isotropic UD composites, primarily by using well
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justified virtual experiments. In their work, the effects of damage caused by matrix cracks (with

crack surfaces perpendicular to axis 2, taken to be a direction perpendicular to the fibre

direction and aligned with the transverse stress) were described in terms of a damage parameter

which could be directly associated with the reduction in effective Young’s modulus ଶܧ of the

damaged material. It was also found that the degradations of ଶܧ and ଵଶܩ are synchronised.

However, these developments apply only to the elastic regime and extension is required in

order to cover their viscoelastic applications.

To combine viscoelastic behaviour with damage in composite materials, Schapery [3, 4]

introduced the concepts of pseudo stress and pseudo strain which are single integral forms of

the viscoelastic constitutive equations. The concepts of pseudo strain energy density and

pseudo complementary strain energy density were then introduced in terms of pseudo strains

and damage as an analogy to the form of the strain energy in the elasticity theory [3]. Damage

can be represented as internal state variables. A constitutive model for uniaxial strain-stress

behaviour of viscoelastic materials with time-dependent damage growth was then introduced

based on this pseudo energy. However, the model obtained was limited to materials in which

all the properties were expressed in term of a single function of time, whereas for anisotropic

materials, the time dependencies in different directions may be different.

Kumar and Talreja [5, 6] presented a damage representation for a linear viscoelastic cross-ply

laminated composite based on new functions for pseudo strain energy and pseudo

complementary strain energy in the Laplace domain, which are extended from the elastic-

viscoelastic correspondence principle. Here the pseudo strain energy is a function of Laplace

transformed strains and the pseudo complementary strain energy is a function of Laplace

transformed stresses. These pseudo energies are different from the pseudo energies defined by

Schapery [3] since they are based on Laplace transformed pseudo strains or pseudo stresses.

Kumar’s model was limited to cross-ply laminates with transverse matrix cracks in which

damage is represented through internal variables taking the form of second rank tensors.

1.2. Damage evolution law

Damage representation describes the effects of damage at a given level on the constitutive

relationship in terms of residual properties; however, in order to describe the behaviour of the

material over the complete process of deformation, damage evolution should also be
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incorporated into the model. One way of constructing an approximate damage evolution law is

by the interpolation of experimental stress-strain curves using empirical functions to

incorporate the effects of damage and damage evolution. However, this type of damage

evolution law is limited in its ability to describe interactions between different effective

properties.

There are two major systematic approaches to the formulation of damage evolution laws: one

follows the concept of a damage surface which is similar to the concept of a yield surface in

plasticity, and the other is based on the derivation of a damage driving force which is a concept

analogous to energy release rate in fracture mechanics [7, 8]. Damage surface expressions are

often derived from damage initiation criteria so that, as damage evolves, the damage surface

will be updated continuously. An incremental damage evolution law based on a damage surface

can then be devised in a similar way to that in the incremental theory of plasticity. Li et al. [9]

developed a CDM model for characterising transverse matrix cracks in laminates, by

employing the concept of a damage surface in order to formulate a damage evolution law.

Damage driving force expressions are normally derived from energy functions of damaged

materials. In the CDM model proposed by Daghia and Ladeveze [10], a strain energy density

function for the damaged UD composite was used to derive the damage driving force. The

Helmholtz free energy function was chosen by Talreja [1] as a generally applicable approach

to derivation of the damage driving force. Yu [11] took it further by presenting a damage

evolution law also based on the concept of damage driving force for modelling the evolution

of matrix damage in UD composites. This particular damage evolution law led to the damage

driving force being expressed in terms of three naturally partitioned components directly

associated with the corresponding stress components. However the damage evolution laws

described above were all based on elastic theory. The damage evolution law required in the

present work will be based on viscoelastic theory and applicable to viscoelastic materials.

Several other types of damage evolution law have been proposed for composite materials.

Akshantala and Talreja [12] proposed a mechanistic model for fatigue damage evolution in

composite laminates. In that paper, the changes in the Young’s modulus of the laminate due to

matrix cracking and delamination were found by calculating the changes in the average strain

of the laminate, and the damage evolution was described in terms those changes. Lemaitre et

al. [13] presented a damage evolution law for fatigue, where the coupling of damage with

elastic properties was expressed in terms of a tensor associated with the deviatoric strain and a
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scalar associated with the hydrostatic strain. The kinetic law of damage evolution was an

extension from the isotropic case.

There is clearly a need for a damage evolution law to complement the viscoelastic damage

representation, and it is the objective of this paper to propose both the damage representation

and damage evolution for UD composites of a linear viscoelastic matrix while incorporating

the time-temperature superposition principle (TTSP). Some of the predictions produced from

the model will be verified against experimental data.

2. Correspondence Principle

In the viscoelasticity literature, the similarity in form between the linear elastic problem and

the Carson transformation of the linear viscoelastic problem is normally referred to as the

viscoelastic correspondence principle (CP).

For elastic materials, the constitutive equation is a linear relationship between stresses and

strains and the generalized Hooke’s law relating stresses to strains can be expressed in

contracted notation [14] as

=௜ߪ ௜௝ܥ ௝߳ ,݆݅= 1, … ,6 (1)

where ௜andߪ ௝߳ are the stress and strain components, respectively, ௜௝ܥ is the stiffness matrix.

For a linear viscoelastic and non-aging material, the constitutive equations can be given in an

integral form using the well-known Boltzman superposition principle [6] as

௜௝ߪ = (ݐ)௜௝௞௟ܥ ௞߳௟
଴ + න −ݐ)௜௝௞௟ܥ )߬

௧

଴

߲ ௞߳௟( )߬

߲߬
݀߬ (2)

or, inversely

௜߳௝ = ௜ܵ௝௞௟(ݐ)ߪ௞௟
଴ + න ௜ܵ௝௞௟(ݐ− )߬

௧

଴

)௞௟ߪ߲ )߬

߲߬
݀߬

(3)

Here (ݐ)௜௝௞௟ܥ and ௜ܵ௝௞௟(ݐ) are the relaxation modulus tensor and creep compliance tensor,

respectively. Taking the Laplace transform of both sides of (2) and (3) and applying the

convolution theorem [15], one obtains
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ത௜௝ߪ = ௜௝௞௟߳ܥ̅ ௞௟
଴ + ௜௝௞௟ܥ̅ ∙ ቆ

߲ ௞߳௟( )߬

߲߬
ቇ

തതതതതതതതതതതതത

= ௜௝௞௟߳ܥ̅ ௞௟
଴ + ௜௝௞௟ܥ̅ ∙ (− ௞߳௟(0) + ݏ߳ ҧ௞௟)

= ሚ௜௝௞௟߳ܥ ௞̅௟

(4)

and

߳̅௜௝ = ܵ̅௜௝௞௟ߪ௞௟
଴ + ܵ̅௜௝௞௟ ∙ ቆ

)௞௟ߪ߲ )߬

߲߬
ቇ

തതതതതതതതതതതതത

= ܵ̅௜௝௞௟ߪ௞௟
଴ + ܵ̅௜௝௞௟ ∙ ௞௟(0)ߪ−) + (ത௞௟ߪݏ

= ሚܵ
௜௝௞௟ߪത௞௟

(5)

where ௞߳௟
଴ = ௞߳௟( )߬|ఛୀ଴, ௞௟ߪ

଴ = )௞௟ߪ )߬|ఛୀ଴, the Laplace transform (ݏ)݂̅ of a function (ݐ݂) is

defined as

(ݏ)݂̅ ≡ ℒ{݂(ݐ)} ≡ න ݁ି௦௧ ݐ݀(ݐ݂)
ஶ

଴

(6)

ሚ௜௝௞௟ܥ and ሚܵ
௜௝௞௟ are the Carson transforms of (ݐ)௜௝௞௟ܥ and ௜ܵ௝௞௟(ݐ) defined as

≡ሚ௜௝௞௟ܥ ௜௝௞௟ܥ̅ݏ
(7)

and

ሚܵ
௜௝௞௟≡ ݏܵ ௜̅௝௞௟

(8)

respectively.

After taking the Laplace transformation, the integral constitutive equations transform to purely

algebraic equations in the Laplace domain. (4) and (5) are analogous to the linear elastic

constitutive equations except that they are now given as relationships between the Laplace

transformed stresses and strains. The constitutive equation of a linear viscoelastic material is

time dependent. Since the Laplace transformation affects time but not spatial parameters, the

corresponding viscoelastic constitutive relationship in the Laplace domain is analogous to that

of the elastic counterpart in the time domain [16]. If the solution for an elastic problem is

available, then the solution in the Laplace domain for the corresponding viscoelastic problem

can be obtained by replacing all the material properties appearing in the elastic solution by their

Carson transforms. This solution is then inverted to obtain the time domain solution. This is

the well known correspondence principle of linear viscoelasticity theory [17]. In the next

section, it will be shown how the constitutive relationship of elastic materials with damage is

extended to cover the viscoelastic case.
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3. Damage Representation

3.1. Damage representation of the elastic UD composite with matrix cracks

Based on continuum damage mechanics (CDM), Li et al. [2] obtained an expression for the

stiffness modulus of UD composites with matrix cracks (the crack surface perpendicular to axis

2). There are three assumptions in their work, which are commonly employed in damage

theories, either explicitly or implicitly.

(1) The virgin material is homogeneous so that the heterogeneity between reinforcing fibres

and the matrix can be neglected;

(2) The virgin material is transversely isotropic. The damage to it takes a form of a single

array of cracks, small in size but large in number, with a common orientation such that

the damaged material exhibits homogeneous orthotropic behaviour;

(3) The matrix cracks concerned are all mathematical cracks having completely flat and

closed crack surfaces under an unloaded condition and the material around the cracks

is free from any initial stresses.

The compliance matrix of a virgin UD composite is expressed as

[ܵ଴] =

⎣
⎢
⎢
⎢
⎢
⎡

1 ଵܧ
଴⁄

ଵଶߥ−
଴ ଵܧ

଴⁄

ଵଶߥ−
଴ ଵܧ

଴⁄

0
0
0

1 ଶܧ
଴⁄

ଶଷߥ−
଴ ଶܧ

଴⁄

0
0
0

1 ଶܧ
଴⁄

0
0
0

1 ଶଷܩ
଴⁄

0
0

Symm.

1 ଵଶܩ
଴⁄

0 1 ଵଶܩ
଴⁄ ⎦
⎥
⎥
⎥
⎥
⎤

(9)

where ଶଷܩ
଴ =

ாమ
బ

ଶ൫ଵାఔమయ
బ ൯

.

For the particular damage mode concerned, i.e. where matrix cracks have a common orientation

with crack surfaces perpendicular to axis 2, damage is characterized in terms of variable ܦ

defined as the reduction in stiffness in direction 2.

ܦ = 1 − ଶܧ ଶܧ
଴⁄ (10)

and the compliance matrix of the composite damaged in this way can be given as [2]
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[ ]ܵ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1 ଵܧ
଴⁄

ଵଶߥ−
଴ ଵܧ

଴⁄

ଵଶߥ−
଴ ଵܧ

଴⁄

0

0
0

1 ଶܧ]
଴(1 − ⁄[(ܦ

ଶଷߥ−
଴ ଶܧ

଴⁄

0

0
0

1 ଶܧ
଴⁄

0

0
0

1 ቈܩଶଷ
଴ ቆ1 −

1

2(1 + ଶଷߥ
଴ )

ቇ቉ൗܦ

0
0

Symm.

1 ଵଶܩ
଴⁄

0 1 ଵଶܩ]
଴ (1− ⁄[(ܦ݇ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

(11)

where k is a damage related material constant which can be determined through virtual testing

[2]. Its magnitude usually falls between 0 and 1.

The UD composite becomes orthotropic in the presence of damage and its effective

properties can be expressed as

ଵܧ = ଵܧ
଴, ଶܧ = ଶܧ

଴(1− ,(ܦ ଷܧ = ଷܧ
଴ (= ଶܧ

଴)

ଵଶߥ = ଵଶߥ
଴ , ଵଷߥ = ଵଷߥ

଴ (= ଵଶߥ
଴ ), ଷଶߥ = ଷଶߥ

଴ (= ଶଷߥ
଴ )

ଵଷܩ = ଵଷܩ
଴ (= ଵଶܩ

଴ ), ଶଷܩ = ଶଷܩ
଴ ൬1 −

ଵ

ଶ൫ଵାఔమయ
బ ൯
�൰ܦ

ଵଶܩ = ଵଶܩ
଴ (1 − .(ܦ݇

(12)

3.2. Damage representation of a viscoelastic UD composite

According to the correspondence principle, the damage representation for an elastic UD

composite can be extended to the viscoelastic case in the Laplace domain by replacing the

engineering constants with the Carson transformation of the relaxation modulus in the

corresponding creep compliance.

ൣܵሚ൧=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1 ෨ଵܧ
଴⁄

෤ଵଶߥ−
଴ ෨ଵܧ

଴⁄

෤ଵଶߥ−
଴ ෨ଵܧ

଴⁄

0

0
0

1 ෨ଶܧൣ
଴൫1− ⁄෡൯൧ܦ

෤ଶଷߥ−
଴ ෨ଶܧ

଴⁄

0

0
0

1 ෨ଶܧ
଴⁄

0

0
0

1 ቈܩ෨ଶଷ
଴ ቆ1 −

1

2(1 + ෤ଶଷߥ
଴ )

෡ቇ቉ൗܦ

0
0

Symm.

1 ෨ଵଶܩ
଴⁄

0 1 ෨ଵଶܩൣ
଴ ൫1− ⁄෡൯൧ܦ݇ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

(13)

where ෡ܦ = 1 − ෨ଶܧ ෨ଶܧ
଴⁄ .

It is noted that ൣܵሚ൧is the creep compliance in the Laplace domain. Then the creep compliance

in the time domain taking account of damage with damage, [ ,[(ݐܵ) can be obtained by taking

the inverse Laplace transformation of ൣܵሚ൧. The expression for ൣܵሚ൧was chosen for expressing

the damage in terms of the Carson transformed engineering constants as it is much simpler than

.ሚ൧ܥൣ The commonly used relaxation modulus [(ݐ)ܥ] can be obtained through the inverse

Laplace transformation of ሚ൧whichܥൣ is the inverse matrix of ൣܵሚ൧. The relaxation modulus
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incorporating damage [(ݐ)ܥ] can also be considered as the representation of this damaged

viscoelastic UD composite.

The Carson transformed engineering constants such as ෨ଵܧ
଴ , ෨ଶܧ

଴ , ෤ଵଶߥ
଴ , ෤ଶଷߥ

଴ and ෨ଵଶܩ
଴ can be

obtained from the relaxation moduli ଵܧ
଴(ݐ), ଶܧ

଴(ݐ), ଵଶߥ
଴ ,(ݐ) ଶଷߥ

଴ (ݐ) and ଵଶܩ
଴ (ݐ) which in turn can

be obtained from stress relaxation tests. The damage representation for viscoelastic UD

composites with matrix cracks can then be obtained in the Laplace domain for a given damage

state .෡ܦ

4. Damage Evolution Law

The damage representation for a transversely isotropic viscoelastic UD composite is obtained

from the damage representation for the elastic case, extended using the correspondence

principle (CP). Unfortunately, the CP can only be used in cases where the state of damage, is

fixed [18]. A damage evolution law based on viscoelastic theory is required to determine the

growth of damage and its simplest form can be obtained in a one-dimensional idealisation as

follows, starting with a general definition of a viscoelasticity model.

4.1. The Wiechert model

The most common mathematical model used to describe viscoelasticity in a one-dimensional

form is the Wiechert model [16] (Figure 1), which represents viscoelasticity using a series of

springs (elasticity) and dashpots (viscosity) connected in parallel.

The relaxation modulus for this model is

(ݐ)௥௘௟ܧ = ௘݇ + ෍ ௝݇݁

൬ି
௧
ఛೕ
൰

௝

(14)

where ௘݇ is the elastic modulus of the main spring, ௝݇ is the elastic modulus of spring

connected with a dashpot, ௝߬ is their relaxation time and

௝߬ =
௝ߟ

௝݇
(15)

௝ߟ being the viscosity of the dashpot.

In the CDM theory, the effects of damage are often represented in terms of the reduction in

stiffness [19-21], as shown in equation (10) in the case of matrix cracking in direction 2. For
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viscoelastic materials represented by the Wiechert model, it will be assumed that the damage

affects all its parts (springs ௝݇ and dashpots (௝ߟ equally.

The relaxation modulus with damage can then be defined as

(ݐ)஽ܧ = (1 − (ܦ ቎݇ ௘ + ෍ ௝݇݁

൬ି
௧
ఛೕ
൰

௝

቏ (16)

where (ݐ)஽ܧ is interpreted as (ݐ)ଶܧ (transverse modulus) in the present representation of

damage in three dimensions.

4.2. Damage evolution law for the transverse direction behaviour of UD composites

To describe matrix cracking in terms of CDM, a damage evolution law will be formulated here,

based on the assumption that the damage evolution is controlled by the transverse tensile strain

in line with the work in [22]. The Weibull distribution can be employed to characterise the

defects in the matrix, in which damage (cracking) is expressed as a function of the strain in the

transverse direction. Transverse tensile tests will be conducted on UD composites to obtain the

necessary material properties.

The concept of a representative volume element (RVE) in a UD composite will be employed

to introduce damage. It will be assumed that the RVE contains a large number of microscopic

defects of different sizes as shown in Figure 2 (a). These defects develop into cracks as the

strain increases as illustrated in Figure 2 (b). These discrete cracks are the physical

manifestation of the idealised, continuous damage. The effects of these cracks are expressed as

the damage parameter ,ܦ the value of which is in the range 0 and 1. When ܦ equal to 0, the

material is undamaged. When ܦ becomes equal to 1, the material has completely failed. The

probability density of these defects can be described by the Weibull distribution which is

defined here as a function of strain.

)ߩ ,ߣ߳; ℎ) = ൝
ℎ

ߣ
ቀ
߳

ߣ
ቁ
௛ିଵ

݁ିቀ
ఢ
ఒ
ቁ
೓

≤ߪ 0

0 ߪ < 0

(17)

where ℎ and ߣ are constants. Then damage can be defined as

ܦ = න ߩ
ఢ

଴

dݔ= 1− ݁ିቀ
ఢ
ఒ
ቁ
೓

(18)
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This definition of the damage ratio ܦ is consistent with the previous definition of ܦ as stiffness

reduction in (10).

Using the viscoelastic constitutive relations in (2) or (3) and treating the relaxation modulus as

a function of damage as expressed in (16), the constitutive equation of the damaged viscoelastic

material is written as

ߪ (ݐ) = (ݐ)஽ܧ ଴߳ + න −ݐ)஽ܧ )߬
߲ (߳ )߬

߲߬
d߬

௧

଴

= (1 − (ݐ)௥௘௟ܧ(ܦ ଴߳ + (1 − න(ܦ −ݐ)௥௘௟ܧ )߬
߲ (߳ )߬

߲߬
d߬

௧

଴

= ݁ିቀ
ఢ
ఒ
ቁ
೓

(ݐ)௥௘௟ܧ ଴߳ + ݁ିቀ
ఢ
ఒ
ቁ
೓

න −ݐ)௥௘௟ܧ )߬
߲ (߳ )߬

߲߬
d߬

௧

଴

= ݁ିቀ
ఢ
ఒ
ቁ
೓

቎݇ ௘ + ෍ ௝݇݁
൬ି

௧
ఛೕ
൰

௝

቏ ଴߳

+݁ିቀ
ఢ
ఒ
ቁ
೓

න ቎݇ ௘ + ෍ ௝݇݁

൬ି
௧ି ఛ
ఛೕ

൰

௝

቏
߲ (߳ )߬

߲߬
d߬

௧

଴

(19)

where ߳= ଴߳ + ∫
డఢ(ఛ)

డఛ
d߬

௧

଴
and ߳= ଴߳ when =ݐ 0 . Therefore (19) presents the damage

evolution law for the viscoelastic material.

In the case of a constant strain rate test at a strain rate ,ܽ (19) will transform into

ߪ (ݐ) = ܽ݁ିቀ
௔௧
ఒ
ቁ
೓

න ቎݇ ௘ + ෍ ௝݇݁

൬ି
௧ି ఛ
ఛೕ

൰

௝

቏d߬
௧

଴

= ܽ݁ିቀ
௔௧
ఒ
ቁ
೓

ቐ ௘݇ݐ+ ෍ ቈ݇ ௝߬ ௝− ௝݇߬ ௝݁
൬ି

௧
ఛೕ
൰
቉

௝

ቑ

(20)

In Kumar and Talreja [6] and Koyanagi et al. [23], the purely elastic part of the Wiechert model

is absent for the cases of pure resin or the transverse properties of the UD composite, so that

(20) can be further simplified as

ߪ (ݐ) = ܽ݁ିቀ
௔௧
ఒ
ቁ
೓

∙ ෍ ቈ݇ ௝߬ ௝− ௝݇߬ ௝݁

൬ି
௧
ఛೕ
൰
቉

௝

(21)

The strength under constant strain rate can be determined as the maximum value of (21)

corresponding to its first derivative with respect to time becoming zero:
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d(ݐ)ߪ

dݐ
= ܽ݁

ିቀ
௔௧
ఒ
ቁ
೓

෍ ௝݇ቈ݁
ି
௧
ఛೕ−

ℎܽ

ߣ ௝߬൬
ݐܽ

ߣ
൰
௛ିଵ

ቆ1 − ݁
ି
௧
ఛೕቇ቉

௝

= 0 (22)

Incidentally, this damage evolution law obtained for a UD composite under transverse tensile

can be also used, with different parameter values, to describe the damage evolution for purely

homogenous viscoelastic materials.

5. Incorporation of the time-temperature superposition principle (TTSP)

The mechanical behaviour of viscoelastic composites can be attributed to the rearrangement of

long chain molecules in polymers, which exhibit time and temperature dependence [24]. This

double dependence exacerbates the difficulty in describing this kind of material, but also brings

an opportunity to accelerate fatigue and long-term creep tests. In general, viscoelastic moduli

increase with loading rate but decrease with rising temperature [25]. Furthermore, if these

properties are plotted as functions of logarithmic time, it is observed that the profiles of the

resulting curves retain the same shape at different temperatures but are shifted along the

logarithmic time axis. This implies that a master curve at a given temperature can be used as a

template to generate curves at other temperatures by applying an appropriate shift operation.

This so-called time-temperature superposition principle (TTSP) of linear viscoelasticity is

based on the above observation [17], and can be is employed to determine temperature-

dependent mechanical properties of linear viscoelastic materials at a given time and

temperature from the known properties at a reference temperature.

5.1. The time-temperature shift factor defined in Miyano’s work

Miyano and Nakada conducted a large body of research on accelerating fatigue tests and

predicting fatigue life by using TTSP [22, 26-29] where the TTSP was used to transform the

effects of temperature by replacing the time withݐ a shifted or reduced time ᇱscaledݐ by the

TTSP at the reference temperature.

The time-temperature shift factor ܽ
బ்
(ܶ) is defined as

்ܽ = ܽ
బ்
(ܶ) =

ݐ

ᇱݐ
(23)

and in its the integral form as
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=ᇱݐ න
݀߬

்ܽ

௧

଴

(24)

with ᇱbeingݐ the reduced time to failure at temperature ଴ܶ. In this way, the reduced time ᇱ(aݐ

long time scale) at the reference temperature ଴ܶ (room temperature) can be obtained by

conducting the test over actual time atݐ temperature ܶ and scaling the time by using the time-

temperature shift factor ܽ
బ்
(ܶ).

In Miyano’s work [22], time and temperature were transformed simply by the time-temperature

shift factor ்ܽ from the creep compliance of the resin without any further manipulation. The

shift factor ்ܽ is determined by the Arrhenius equation as

where ܳ is the activation energy as a property of a specific resin which should be determined

before the theory can be applied, ܶ is the absolute temperature and ܴ is the gas constant,

8.314 × 10ିଷ[kJ/s(K×mol)].

5.2. The time-temperature shift factor defined from viscosity

The straightforward application of a time-temperature shift factor to obtain reduced time for a

UD composite may be viewed as an arbitrary approach lacking any clear theoretical basis. The

present work aims to combine the TTSP with the viscoelastic damage model presented earlier

in this paper. According to (15), ௝߬ can be replaced with ௝ߟ and ௝݇ in (21), so that

ߪ (ݐ) = ܽ݁ିቀ
௔௧
ఒ
ቁ
೓

∙ ෍ ቈߟ௝− ௝ߟ −ቆ݌ݔ݁
ݐ

௝ߟ
௝݇ቇ቉

௝

(26)

and ߳= ,ݐܽ then (26) can be further transformed to

ߪ (ݐ) = ߳݁ ିቀ
ఢ
ఒ
ቁ
೓

∙ ෍ ቈ
௝ߟ
ݐ
−
௝ߟ
ݐ

−ቆ݌ݔ݁
ݐ

௝ߟ
௝݇ቇ቉

௝

(27)

It is known that the viscosity ௝ߟ is temperature dependent. From Ojovan’s work [30, 31], if the

temperature is significantly lower than the glass transition temperature, ܶ≪ ௚ܶ , then the

viscosity can be expressed via an Arrhenius relationship as

=ߟ ௅ܶܣ ∙ ݁
ொಹ ோ்⁄ (28)

with

log ்ܽ =
ܳ

2.303ܴ
൬

1

ܶ
−

1

଴ܶ
൰ (25)
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ܳு = ௗܪ + ௠ܪ
(29)

where ௗܪ is the enthalpy of formation of broken bonds and ௠ܪ is the enthalpy of their motion.

When the temperature approaches the glass transition temperature but is still below it, the

activation energy of viscosity is high because most of the joining bonds are intact when

amorphous materials are in glassy state.

If the temperature is significantly higher than the glass transition temperature, i.e. ܶ≫ ௚ܶ, then

the viscosity can be expressed as

=ߟ ுܶܣ ∙ ݁
ொಽ ோ்⁄ (30)

with

ܳ௅ = ௠ܪ
(31)

When the temperature is marginally higher than the glass transition temperature, the activation

energy of viscosity is low because amorphous materials are melted and have most of their

joining bonds broken, facilitating flow.

The definition of the time-temperature shift factor is the same as (23) which implies the time

effect on the test can be replaced by the temperature effect. In order to distinguish it from the

time-temperature shift factor defined by Miyano [22], the time-temperature shift factor in this

paper is defined as

்ܾ = ்ܾ
బ
(ܶ) =

ݐ

ᇱݐ
(32)

As shown in (27), as the temperature increases, the viscosity reduces. This is equivalent to

increasing the test time according the damage model presented earlier. Then the time-

temperature shift factor ்ܾ can be described temperature-dependent viscosity changes as

்ܾ = ்ܾ
బ
(ܶ) =

ݐ

ᇱݐ
=
ߟ

ᇱߟ
(33)

where ᇱߟ is the viscosity at the reference temperature ଴ܶ and ்ܾ can be obtained from (28) or

(30) as

்ܾ =
ߟ

ᇱߟ
=
ܶ

଴ܶ
݁
ொ
ோ
ቀ
ଵ
்
ି
ଵ

బ்
ቁ

(34)

with ܳ taking the value ܳு or ܳ௅ according to the temperature. Thus

log்ܾ =
ܳ

2.303ܴ
൬

1

ܶ
−

1

଴ܶ
൰+ log

ܶ

଴ܶ
(35)
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The term log
்

బ்
arises from the temperature dependency of the pre-exponential factor in (28)

and (30) compared with the constant pre-exponential factor assumed by Miyano [22]. In this

paper the time-temperature shift factor is defined by (34) and (35) whilst incorporating the

damage model (27) and the temperature effect upon viscosity (28). This is a further

interpretation and extension of TTSP which was originally developed for use with the stress

relaxation test [32]. By comparing the time-temperature shift factor ்ܽ defined by Miyano (25)

[22] with (35), it can be seen that the values of ்ܽ and ்ܾ are approximately equal as the value

of log
்

బ்
is close to 0.

6. Application

6.1. Determination of the parameters in the Wiechert model

Measurements were undertaken of the time and temperature dependence of the relaxation

modulus and tensile strength in the transverse direction of the UD composite of T700 carbon

fibre and VTM 264-1 resin produced by Cytec Industries Inc. The volume fractions of the fibre

and resin are 65% and 35% respectively. The curing cycle was 80C for 5 hours followed by

120C for 1 hour. The glass transition temperature Tg is 120C. The specimen for the stress

relaxation tests is illustrated in Figure 3 (ASTM D3039/D3039M – 14).

In order to obtain the relaxation modulus, tensile stress relaxation tests were carried out from

50C to 120C in steps of 10C. The results are summarized in Figure 4 (a). The overlapped

curves in Figure 4 (b) depict the relaxation modulus when the reference temperature is 50C,

and are plotted by taking the shift factor determined by (35). The activation energy is

298.4 kJ/mol which is obtained by calculating the shift factor from the testing times for the

same stress relaxation test carried out at 80C and 90C respectively.

The parameters of the relaxation modulus can be obtained from Figure 4 (b) in terms of the

elasticity and viscosity coefficients of the Wiechert model. The relaxation times ௝߬ are set from

10-3 to 1011 in steps of one order of magnitude to cover the full time scale in Figure 4 (b). Then

the Young’s moduli of the springs ௝݇ are extracted from the relaxation curve using a simple

least squares solution (Appendix A) or by using constrained least squares (MATLAB function

lsqnonneg) so that none of the stiffnesses or viscosities in the Wiechert model is negative. The
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resulting parameters are shown in Table 1 and the master curve of the resulting relaxation

modulus is plotted in Figure 4 (b) by using the Wiechert model and compared against with the

master curve plotted from the raw data.

The time-shifted experimental relaxation modulus curves in Figure 4(b) generally show very

good overall agreement with the master curve, especially in the range 70-90C, which includes

the range of temperatures used for obtaining the activation energy used for predicting the

master curve. Indeed, it is very encouraging that the master curve fits the time-shifted data

well over most of the wide temperature range, given that it uses a single activation energy to

make its predictions over that range. However there are some puzzling differences both at low

temperatures e.g. 50C and 60C (where there is a physically unrealistic increase in the

measured value of modulus over long timescales) and at higher temperatures e.g. 110C and

120C (where the fit is less good and the modulus does not drop as much as expected with

time). It is believed that the unexpected increase in experimental modulus at 50C and 60C

is due to hygrothermal shrinkage as moisture is lost during the test at elevated temperature.

This effect will also be present at higher temperatures, but will be less significant compared

with the viscoelastic effects. At temperatures approaching the final curing temperature (120C),

in addition to possible imperfect modelling of the temperature dependency with a single

Arrhenius equation and activation energy which may account for imperfect fit in that region, it

is likely that the high temperature tests lasting 1.5 hours will take the composite closer to

complete cure. This will involve completing any reaction that was left incomplete at the end

of the one-hour 120C curing phase, and any such curing will lead to a small amount of

shrinkage which appears to make the relaxation-related extensions smaller than expected.

6.2. Determination of the parameters for the damage evolution law

Damage evolution in the transverse direction of the UD composites is represented by (21). The

damage parameters ℎ and ߣ can be determined from the stress-strain curve at a given

temperature by making use of the Arrhenius equation. A constant strain rate test was designed

at 0.1mm/min for transverse UD composite at 90C in order to obtain the stress-strain curve

shown in Figure 5. The damage parameters ℎ and ߣ can then be obtained by linearizing the

difference between prediction without damage evolution (the dashed line in Figure 5) and

experimental data (red line in Figure 5) as shown in Appendix B. The parameters ℎ and ߣ are
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obtained by fitting the experimental data to equation (21) based on a least squares

approximation as 2.7381 and 0.0117 respectively.

6.3. Stress-strain curves prediction and comparison

After obtaining the purely viscoelastic properties described by the parameters in the Wiechert

model in Table 1, the damage evolution parameters ℎ, ߣ and the activation energy ܳ, the stress-

strain curve may be extracted for any loading rate and any temperature using equations (21)

and (35). Figures 6 and 7 show sample stress-strain curves comparing the model predictions

(solid line) with the experimental data. If the specimens fail at the maximum stress, then the

transverse strength of the UD composites can be predicted by (21) and (22). Figure 8 shows

the strength of transverse UD composite compared with the predictions against experiments

for a range of loading rates at 50C. Limitations on availability of testing resources mean that

only a single specimen was tested at each value of shifted time in order to plot Figures 6 and 7,

so the results in Figure 8 (corresponding to the failure points in Figures 6 and 7) should be

regarded only as illustrative of the trend shown, rather than for quantitative comparison

between theory and experiment or to produce definitive data for design. A much more

comprehensive programme of tests would clearly be needed to establish the degree of

consistency of the trend noted.

The strain range of the prediction is obtained by assuming that the material fails at the

maximum stress which is determined by (22). It can be seen from Figures 6 and 7 that, when

the temperature is below 110C, the specimens failed before the strain reached the value

associated with the stress determined by (22). With increasing temperature, the strain range

and the strength start to approach the predicted value. This is due to the fact that increased

temperature reduces the brittleness of materials and hence their sensitivity to defects. On the

other hand, the experimental data fit the prediction very well in the range of actual testing strain.

This demonstrates that the damage model presented in this paper satisfactorily predicts the

behaviour of viscoelastic material during deformation. However, as shown in Figure 8, this

damage model still does not seem to predict the final failure of the specimens well since the

specimens usually tend to fail before the maximum stress predicted by (22). It should be noted

that this is foreseeable due to the brittle nature of transverse direction of UD composites, the

failure of which is dictated by the weakest link. Fortunately, transverse failure usually features
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local failure in laminated composites where the presence of such local failure does not usually

result in global failure of the laminate.

When the temperature approached 110 C, the prediction did not fit the experimental data,

implying that the Arrhenius equation does not apply well for the VTM 264_1 resin system

(Figure 4) at a temperature close to the glass transition temperature Tg (120 C). Furthermore,

the damage evolution law will also be affected by the low viscosity at elevated temperatures.

These factors limit the temperatures for reliable application of the theory.

7. Conclusion

A matrix cracking damage model including damage representation and damage evolution for

linear viscoelastic UD composites has been formulated in this paper. The CDM damage

representation of Li et al. [2] has been extended to incorporate the effects of damage and

viscoelasticity. A damage evolution law for viscoelastic materials has been proposed using a

one-dimensional Wiechert model. The TTSP approach can then be employed to associate the

effects of temperature on the viscosity with the time reduction, laying the foundations for

accelerated testing on fatigue or creep. The whole process of using this damage model to predict

the properties of a UD composite during deformation is demonstrated in this paper through an

example, and the results have been compared with experimental data. The stress-strain curve

predictions fit the experimental data very well in the range of actual testing strain with one

exception which is discussed and justified. In terms of failure and strength prediction, a

noticeable discrepancy is present without fundamentally undermining the value of the present

model.
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Appendices

A. The Identification of the Relaxation Modulus

When modelling a viscoelastic material using experimental data, the Wiechert model can be

employed as an approximation as presented in equations (14) and (15). The constants involved

can be obtained by fitting the experimental data to the function of (ݐ)௥௘௟ܧ as defined in (14).

The procedure is illustrated through a relaxation problem as follows.

a) In equation (14), choose ௘݇ = =ݐ)௥௘௟ܧ 0) = 0 since the overlapped curve (Figure 4

(b)) approaching 0 when the testing time is more than 1011 sec.

b) Choose sufficient number of values of ௝߬ (j=1, 2,…, n) as sampling point across the

range from 10-3 to 1011 sec. Here ݊= 15.

c) For each sampling point, equation (14) gives an equation for the spring constants ௝݇

involved in the Wiechert model. Considering all ݉ equations so obtained, an

overdetermined system is obtained, which can be solved using least squares as

illustrated below.

෍ ௝݇݁

൬ି
௧
ఛೕ
൰

ଵହ

௝ୀଵ

= (௜ݐ)௥௘௟ܧ − ௘݇, ݅= 1, … 15 (A-1)

For the system =ݔܣ ܾ the least squares formula is obtained from the problem

min
௫
−ݔܣ‖ ‖ܾ (A-2)

the solution of which can be written with the normal equations

=ݔ ்ܾܣଵି(ܣ்ܣ) (A-3)

where ܶ indicates a matrix transpose, provided ܣ்ܣ is non-singular.

Applying it to the present problem, one has

௝݇ = (்ܳܳ)ିଵ்ܳܧ (A-4)

where
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ܳ =
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and

ܧ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
(ଵݐ)௥௘௟ܧ − ௘݇

(ଶݐ)௥௘௟ܧ − ௘݇

(ଷݐ)௥௘௟ܧ − ௘݇

(ସݐ)௥௘௟ܧ − ௘݇

(ହݐ)௥௘௟ܧ − ௘݇

(଺ݐ)௥௘௟ܧ − ௘݇

⋮
⋮ ⎦

⎥
⎥
⎥
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⎥
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(A-6)

B. Identification of Parameters of Damage Evolution Law

In the damage evolution law for the matrix of the UD composites, the damage is driven by the

strain. The Weibull distribution of the defects is given as (17). Then

ߪ = ݁ିቀ
ఢ
ఒ
ቁ
೓

௘ߪ
(B-1)

where

௘ߪ = ෍ ቈ݇ ௝߬ ௝− ௝݇߬ ௝ −ቆ݌ݔ݁
ݐ

௝߬
ቇ቉

௝

(B-2)

Applying a logarithm transformation to both sides of (B-1) twice,

ℎln߳− ℎlnߣ− lnቀln
௘ߪ
ߪ
ቁ= 0 (B-3)

Substituting experimental values for ln߳ and lnቀln
ఙ೐

ఙ
ቁ in (B-3), one obtains a series of

simultaneous equations for ℎ and ℎlnߣ as the unknowns. The least squares method can be

employed to determine them before the value of ℎ and ߣ can be obtained.
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As an example of application, ߪ in (B-3) can be extracted from the nonlinear experimental

curve (red) and ௘ߪ can be extracted from the straight line (blue) in Figure 5.

൭
ln ଵ߳ −1
⋮ ⋮

ln ௠߳ −1
൱ቀ

ℎ
ℎlnߣ

ቁ=

⎝

⎜
⎛

ln൬ln
௘భߪ
ଵߪ
൰

⋮

ln൬ln
௘೘ߪ
௠ߪ

൰
⎠

⎟
⎞ (B-4)

The least square solution for ℎ and ℎlnߣ is obtained as

ቀ
ℎ

ℎlnߣ
ቁ= ቀ

2.7381
−12.1721

ቁ (B-5)

Then the solution of ℎ and ߣ is

ቀ
ℎ
ߣ
ቁ= ቀ

2.7381
0.0117

ቁ (B-6)



Figure 1: The Wiechert model (adapted from [16]).

Figure 2: The representative volume element showing (a) defects and (b) cracks into which

the defects develop

Figure 3: Dimensioned drawing of stress relaxation test specimen.



(a) (b)

Figure 4: Relaxation modulus at the reference temperature (50 C) (a) measured as a function

of time and (b) described by the Wiechert model compared with master curve of raw data

plotted against reduced time

Figure 5: Stress-strain curve of UD composite at 90 C compared with prediction without

damage evolution



Figure 6: Sample comparisons of model with damage evolution vs. experiment at 1mm/min

Figure 7: Sample comparisons of model with damage evolution vs. experiment at

0.1mm/min.



Figure 8: Strength of transverse UD composites at various loading rates plotted against

shifted time.



Table 1: values of and࢐࢑ ࢐࣎

௝݇(MPa) ௝߬(ݏ)

1 166.16 10-3

2 134.45 10-2

3 0 10-1

4 127.59 1

5 60.331 10

6 270.04 102

7 125.21 103

8 278.8 104

9 140.82 105

10 725.03 106

11 586.34 107

12 1116.9 108

13 1687.6 109

14 1190.2 1010

15 921.53 1011
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Figure 6: Sample comparisons of model with damage evolution vs. experiment at 1mm/min

Figure 7: Sample comparisons of model with damage evolution vs. experiment at

0.1mm/min.



Figure 8: Strength of transverse UD composites at various loading rates plotted against

shifted time.


