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Abstract: 

Rapid development of freeform surfaces faces the challenges of not only higher form accuracy and smoother surface 

finishing, but also high machining efficiency and lower manufacturing cost. Combining diamond turning and roll-to-

roll embossing technologies is a promising solution to fulfil these requirements. This paper presents a generic method 

to design and machine freeform surfaces on precision rollers. The freeform surface designed on the flat substrate is 

first transferred onto the cylindrical roller surface. The freeform-patterned roller surface is then diamond turned using 

the toolpath generated by a purposely developed toolpath generator. With the proposed method, the complex freeform 

surfaces designed on flat substrate can be transferred to and precisely machined on the cylindrical roller surfaces. A 

cutting experiment has been conducted to demonstrate the capability of the proposed method. In the experiment, a 

sinusoidal surface was designed and diamond turned on a precision roller. The results demonstrate that the proposed 

method is accurate and effective. The proposed method provides guidance for the design and precision manufacturing 

of freeform-patterned surfaces on precision rollers.  

Keywords: Ultra-precision machining, Freeform patterned surfaces, Diamond turning, Roll-to-roll, Precision 

surface measurement  

1. Introduction 

Precision freeform surfaces [1] and structured surfaces [2] are widely used in various consumer products such as 

digital cameras [3] and 3D displays [4], and applications in advanced optics [5] and bio-medical parts [6]. Future 

needs for these surfaces are not only high accuracy and fine surface finishing, but also high-volume and low-cost 

manufacturing. However, direct manufacturing of these kinds of surfaces using precision machining technologies such 

as lithography [7], single point diamond turning [8], and ion beam machining [9], etc., are usually costly and time-

consuming. Roll-to-roll (R2R) technology [10] is one promising technology to enable the cost- and time-effective 

production of freeform and structured surfaces, having successfully mass-produced components in LCD backlit panels 

[4], microlens arrays [11] and cylindrical lenses [12]. Manufacturing of the precision rollers, a key component of the 

R2R system, is critical for the R2R industry. Precision machining of such rollers has been demonstrated using beam 

pen lithography [13], combining of cylindrical photolithography, isotropic chemical etching, electropolishing methods 

[14], femtosecond laser exposure and the chemical wet-etching process [15], and the UV micro-stamping method [11]. 

However, most of these methods require expensive and complex manufacturing processes. There is a trend to machine 

freeform and structured patterns onto precision rollers using mechanical methods such as precision turning [16] and 

milling [17], which benefit from relatively simpler processes and lower cost.  

Single point diamond turning is a promising technology which is capable of achieving high form accuracy and 

fine surface finishing. While most of the studies are focused on face turning [18-21], machining of precision rollers 

has received relatively little attention. Moreover, most studies on precision roller machining have applied task-

specified methods to machine specific types of surfaces. Lu et al. [22] developed a fast tool servo system to machine 

sinusoidal grid surface on a roller, where the sinusoidal grid was machined by simply correlating the motion of the 

fast tool servo with the rotation of the roller and the motion of the z axis. The accuracy of the machined surface was 

difficult to ensure without precise synchronization of the two motions.  Kong et al. [23] machined a wavy micro-

structured pattern on precision rollers using a single point diamond turning machine. Two-dimensional sinusoidal 

patterns with wavy cycles were machined on the roller with the proposed method. However, this method is only 

suitable for machining 2D sinusoidal patterns. It is difficult to apply this method to machine 3D freeform patterns on 
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precision rollers. Li et al. [24] machined a V-shaped cylindrical grating on the roller surface, where the diamond tool 

cut in the z axis direction while the workpiece rotated incrementally. This method is also limited to 2D patterns and 

cannot be directly used to machine 3D-patterned surfaces. With the help of an additional B-axis, Huang et al. [25] 

machined a radial Fresnel lens on precision rollers using diamond turning technology. However, the proposed method 

had very low efficiency. With an additional A-axis, Zhang et al. [26] improved the efficiency by proposing a swinging-

rotating diamond shaping (SDS) process. The method applies a specific design of the Fresnel lens on precision rollers. 

Huang et al. [27] proposed a diamond turning method to machine a microlens array on rollers, where the coordinates 

of the cutting tool tip were calculated for every single lenslet with a minimum distance method. On the whole, most 

of the above research studies are limited to specific tasks and the developed methods are difficult to be applied to 

freeform patterned surfaces with arbitrary designs, which require the capability to generate generic toolpaths.  

While single point diamond turning is promising for the manufacture of freeform and micro-structured patterns on 

precision rollers, there are relatively few studies that focus on the development of a generic machining method for 

diamond turning of these kinds of freeform-patterned surfaces, i.e., given a designed surface with shape geometry of 

any degree of complexity, it can be transferred to the precision rollers, or the freeform patterns can be directly designed 

on the precision rollers, and be diamond machined as long as the tool geometry can meet the requirement. To fill this 

research gap, this paper presents a generic method starting from surface design to toolpath generation for diamond 

turning of freeform-patterned surfaces on precision rollers. Given a designed freeform surface with an arbitrary shape 

based on a flat substrate, the associated design on the roller surface can be determined and the toolpath can be 

generated using the purposely developed toolpath generator. The method is generic and can be used to machine 

complex freeform surfaces on the rollers. The details of the method are presented, and an experiment was conducted. 

The results demonstrate the effectiveness of the proposed method. The influences of the tool geometries are also 

discussed.  

2. Diamond Machining of Freeform Patterned Rollers 

The generic method for diamond machining of freeform surfaces on precision rollers consists of two parts. The first 

part is the design of freeform surfaces on rollers and the second part is toolpath generation. In most applications in the 

R2R industry, functional freeform surfaces are designed based on a flat substrate; hence, the first part aims to transfer 

the flat substrate-based freeform surfaces onto the cylindrical roller substrate. It should also be noted that the freeform 

patterned roller can also be designed directly based on the cylindrical surface. The roller substrate is then diamond 

turned with a helix-shaped toolpath, and a toolpath generator is purposely developed to generate the multi-axis motion 

for the precision diamond turning machine tool. The details of the method are given in the following sections. 

2.1 Design of freeform patterned surfaces on rollers 

Generally, the functional freeform surfaces are designed on a flat substrate using cartesian coordinates. The design of 

the freeform-patterned roller surface is used to transfer the freeform surfaces onto the cylindrical roller surface using 

cylindrical coordinates, as shown in Fig. 1.  

 

Fig. 1. Design of freeform surfaces on rollers, (a) freeform surface on flat substrate, (b) transferred to a cylindrical roller 

surface, and (c) transferred to the cylindrical coordinates of the machine tool 

Fig. 1(a) shows the designed freeform pattern on a flat substrate in the f f fx y z   coordination system, where 

the colormap represents the height in the z direction. The designed  freeform pattern is then transferred onto a roller 

substrate as shown in Fig. 1(b), in the r r rx c r   (also r r rx y z  ) coordination system, where the lateral direction (

fx ), vertical direction ( fy ) and height direction ( fz ) as shown in Fig. 1(a) are transferred to the length direction ( rx



), circumferential direction ( rc ) and radial distance ( rr ) (colormap) of the roller in Fig. 1(b), respectively. Ideally, 

the circumferential length of the cylinder (in Fig. 1(b)) should be equal to the length in the fy  direction (in Fig. 1(a)). 

Hence, the radius of the roller rR  is determined by Eq. (1).  

/ 2
fr yR L         (1) 

where 
fyL is the length of the designed freeform surface in the fy  direction.  

Given any point P on the surface, the relationship of its coordinates ( rPx , rPc , rPr ) in the cylindrical coordinate 

system ( r r rx c r  ) and its coordinates ( fPx , fPy , fPz ) in the Cartesian coordinate system ( f f fx y z  ) are 

determined by Eq. (2).  
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where rR  is the designed radius of the roller. The transferred point on the roller surface can also be represented by the 

Cartesian coordinate system r r rx y z   and its coordinates rPy  and rPz  can be determined by Eq. (3). 
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To be consistent with the coordinates of the diamond turning machine, the data of the surface is then transferred 

to the format as shown in Fig. 1(c), which is in the cylindrical coordinate system ( c c cz x c  ) along the cylindrical 

axis ( cz ), radial distance ( cx ) and azimuth ( cc ) according to the axes of the machine tool, i.e. z, x and c axes, 

respectively. Hence, the same surface point on the roller can be represented in the c c cz x c   coordinate system, and 

is determined by:  
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In the above calculation, a larger rR  is possible which results in a gap in the roller surface, which can be filled 

with additional data. However, a smaller rR needs to be avoided since it introduces an overlap between parts of the 

designed surface. When the flat substrate is designed to be transferred to the cylindrical substrate, special attention 

should be paid to avoid surface discontinuity in the wrap-around region, which may affect the dynamics of the 

machining process.    

2.2 Toolpath generation   

After the designed surface is transferred into the representation format associated with the motion axes of the machine 

tool, the locus of the diamond tool can then be determined using the toolpath generator described as follows. The 

toolpath generator is purposely built to determine the motion trajectory of the centre of the diamond tool, where the 

trajectory is generated in a helix shape along the freeform-patterned cylindrical surface. Motion along the trajectory 

is determined by keeping the diamond tool oriented tangent to the roller surface at every sampling position, as shown 

in Fig. 2 (the helix is shown in a large pitch for better visualization). As shown in Fig. 1(b), the workpiece rotation is 

equivalent to the cutting plane of the diamond tool rotating in the reverse direction shown in Fig. 2(a).  It is assumed 

that the cutting edge of the diamond tool is a perfect circle, so the centre locations of the diamond tool in each cutting 

plane can be determined by offsetting the designed surface profile on the roller by a distance of r, where r is the radius 

of the cutting edge of the diamond tool, as shown in Fig. 2(b).  

In the turning process, the workpiece is rotated by the spindle in the c direction and the diamond tool feeds in the 

z direction, together with the location of cutting determined in the x direction. Hence, the turning process is a c-z-x 3-

axes servo motion process. As the workpiece rotates around the c axis, the actual coordinate of the diamond tool in 

the z axis zA is determined by: 

/ 360A it Az P c        (5) 

where itP is the pitch of the helix and Ac  is the actual angle of the workpiece (spindle).  



 

  

Fig. 2. Toolpath generation, (a) cutting process with helix toolpath (b) profile view at cutting plane  

As the workpiece rotates, the cutting plane rotates in the reverse direction. The cross section of the freeform-

patterned roller surface and the cutting plane can be determined as shown in Fig. 2(b). The cross section is a profile 

presented as discrete points in the c cz x  plane, and it can be determined by the intersection data of the designed 3D 

roller surface and the cutting plane. Corresponding points of the offset profile in c cz x  plane ( , )tp tpz x can then be 

determined by:  
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where r  is the tool radius, 
cpxd  and 

cpzd are the components in the cx  and cz directions for the unit normal vector at 

every point on the profile, respectively. 
cpxd  and 

cpzd  can be determined by:  
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where 
cpxG  and 

cpzG  are the numerical gradients of the profile in the x and z directions, respectively. nf  is the 

normalized factor. The gradients can be determined by:  
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Finally, the actual position of the tool centre in the x direction is determined by interpolating the offset profile.  

3. Experiment verification and discussion  

3.1 Roller with sinusoidal patterns  

To evaluate the effectiveness of the proposed method, a freeform patterned surface was designed, as shown in Fig. 3. 

The freeform patterned surface is defined by: 

 0.02 sin(5 ) cos(10 / 3) 0.04z x y        (10) 

where [0,6.28]x  ( [0,2 ] ) mm and [0,18.84]y  ( [0,6 ] ) mm. The substrate is the flat surface on the x-y plane 

with 0z  .  
The freeform patterned surface is then transferred to the roller surface with a radius of R , where 6 / 2 3R   

mm. In this design, the number of periods of sinusoidal patterns in the y direction (in Fig. 3) is 10. As a result, it forms 

a continuous sinusoidal pattern on the cylindrical surface as shown in Fig. 4, where the colormap represents the radial 

distance (RD).  
 



 
Fig. 3. Designed sinusoidal patterns on a flat substrate  

  
Fig. 4. Sinusoidal patterned roller surface  

The material of the workpiece in this experiment was brass. The rough blank was prepared to have a slightly larger 

radius of 3.01 mm. The rough blank was first machined to have a smooth surface and then followed by the slow tool 

servo (STS) turning. While the designed surface had the length of 6.28 mm in the x direction, the machining area 

could be chosen to be a shorter length, and it was chosen to be 5.5 mm in this experiment. The STS turning consists 

of rough and fine machining processes. In rough turning, the step resolution of the c axis was 1º and the pitch for every 

revolution was 0.1 mm. In fine turning, the step resolution of the c axis was 0.1º and the pitch of the helix was 0.005 

mm. For each machining cycle, the x axis of the machine tool was offset by a distance equal to the depth of cut. The 

material was then removed layer by layer to obtain the designed radius of 3 mm. The tool radius of the diamond tool 

used in the experiment was determined to be 1.417567 mm. The machine tool was a Moore Nanotech 450FG ultra-

precision machine. The machining parameters are summarised in Table 1.  

Table 1 Machining parameters of the freeform patterned roller 

 Rough machining Fine machining 

Machine tool  Moore Nanotech 450FG  

Workpiece material Brass  

Resolution of c axis 1º 0.1º 

Pitch 0.1 mm 0.005 mm 

Cutting length in z direction 5.5 mm 

Tool material Single crystal diamond  

Tool radius 1.417567 mm 

Tool rake angle  0º 

Tool clearance angle 12.5º 

Tool opening angle  100º 

 



With regard to rough machining, for example, the characteristics of the toolpath is shown in Fig. 5. During the 

machining process, the diamond tool moves from 0.5 mm to 6 mm in the z direction, corresponding to the 5.5 mm 

cutting length. The angles in the c axis ranged from 0-359º in every revolution. The x axis motion adapts to the 

freeform-structured pattern of the roller and thus is the most heavily-loaded axis, as shown in Fig. 5. Fig. 6 shows the 

toolpath around the workpiece.  

 
Fig. 5. Characteristics of the toolpath generated, (a) for motions of z, x, c axes, and (b) enlarged view of motion of the x 

axis  

 
Fig. 6. 3D views of the designed surface and toolpath (for rough machining), (a) the overall view, and (b) enlarged view   

The machining process is shown in Fig. 7(a). The machined workpiece was measured by a Zygo NexView 

coherence scanning interferometer (CSI) with a 20× objective, as shown in Fig. 7(b). An area of approximately 4 mm 

× 0.8 mm along the cylindrical surface was measured and the measurement result is shown in Fig. 8. A cross sectional 

profile of the surface is also shown in Fig. 8. The result shows a perfect sinusoidal shape and the enlarged view shows 

that the surface is smooth. The surface roughness was also analysed. Fig. 9 shows the surface micro-topography after 

form removal. The result shows that the surface roughness Sa was 7 nm. The measured surface was further evaluated 

quantitatively by matching  the designed surface with the measured surface using the iterative closest point (ICP) 

method [28] as shown in Fig. 10. Fig. 10(a) shows the registration result and Fig. 10(b) shows the error map. The root-

mean-square (RMS) value and the peak-to-valley (PV) value of the error map were 0.267 µm and 4.9 µm, respectively. 

A relatively large PV value was caused by pits and chips on the surface, as shown in the enlarged views in Fig. 10(b). 

On the whole, the machined workpiece had sub-micrometre form accuracy.   

 
Fig. 7. Snapshots of (a) diamond turning process, and (b) measurement process  



  
Fig. 8. Measurement results of the machined workpiece  

 
Fig. 9. Surface micro-topography after form removal 

 
Fig. 10. Characterization result of the measured surface, (a) registration result, and (b) error map 

3.2 Roller with a microlens array  

Another experiment was conducted to fabricate a microlens array on a precision roller. The microlens array was 

designed with rectangular apertures to increase the fill factor [29,30]. In this experiment, the microlens array was 

directly designed on the roller instead of designing the microstructure patterns on a flat surface. The microlenses were 

designed as ellipsoids and the surface was determined by:   
2 2 2

2 2 2
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x y z

a b c
          (11) 

where a = b = 0.505 mm and c = 1.01 mm are the length of the principal semi-axes of the ellipsoid. The original radius 

of the roller was designed to be 3 mm and the ellipsoid was imprinted on the roller surface in the lateral direction 

along the cylindrical axis with a distance of 100 µm from the roller surface and in the circumference direction along 

the roller surface with a 3.75º angular distance, i.e. the microlenses overlapped and resulted in rectangular apertures 

of approximately 100 µm × 200 µm, while the depth of the microlens was approximately 5 µm. The designed 

microlens array-patterned roller is shown in Fig. 11.  



 
Fig. 11. Design of microlens array on a precision roller, (a) the overall view, and (b) enlarged view 

 

The workpiece was machined by a Moore Nanotech 450FG diamond turning machine tool and the material was 

brass. A single crystal diamond tool with a tool radius of 0.074239 mm was used. The machined workpiece was 

measured using an optical microscope. The microlens array with rectangular apertures of 100 µm × 200 µm is clearly 

shown in Fig. 12(a) and the tool mark with a 4-µm pitch distance is shown in Fig. 12(b).  

 
Fig. 12. Machined workpiece measured by an optical microscope, (a) roller surface of the microlens array with rectangular apertures, and (b) 

enlarged view showing tool marks 

 

This experiment demonstrates that the method is capable of machining freeform patterns with sharp edges on the 

precision rollers, as well as continuous freeform patterned surfaces such as that shown in section 3.1. It is noted that, 

the limitation of the method is that it cannot machine surfaces with sharp corners as the proposed method is designed 

for diamond tools with circular geometries. To machine those surfaces with sharp corners, special tools with a small 

tool nose radius should be used.  

 

4. Discussion of the constraints of tool geometries  

As the diamond tool is assumed to have circular geometry, the proposed surface design and toolpath generation method 

can be used to design and manufacture complex surfaces on rollers, as long as the following restrictions caused by 

tool geometries are taken into consideration:  

1. Tool radius. The tool radius affects the minimum radius of curvature of the machined surface, especially in the 

cylindrical axis direction. The minimum radius of curvature (MR) should be determined when the surface is designed. 

The tool radius needs to be smaller than MR, as shown in Fig. 13.  



 
Fig. 13. Relationship of tool radius and radius of curvature of the machined surface in the cutting plane  

 

The radius of curvature Rc is determined by:  
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where 
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x
dz

   and 
2

2
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dz
   are the first and the second derivatives of the function of the profile in the cutting plane.  

With regard to the first experiment, for example, the minimum radius of curvature of the freeform surface was 

determined to be 2 mm and the tool radius was chosen to be 1.417567 mm.  

2. Tool clearance angle. The tool clearance angle affects the maximum surface slope of the machined surface, in 

the circumferential direction. The tool clearance angle must be larger than the maximum surface slope in the cutting 

direction, i.e.   , as shown in Fig. 14. For example, in the first experiment, the maximum surface slope of the 

workpiece in the cutting direction was determined to be 3.81º, and the clearance angle of the diamond tool was 12.5º, 

which was well above the maximum surface slope of the workpiece in the cutting direction.  

   
Fig. 14. Relationship of the tool clearance angle and the surface slope in the cutting direction  

3. Tool opening angle. The toolpath generator assumes that the cutting edge of the diamond tool is circular. 

However, the tool has a limited opening angle and this affects the maximum slope of the surface in the cylindrical 

axis direction, as shown in Fig. 15. In the first experiment, the maximum surface slope θ" for the machined workpiece 

was determined to be 5.71º. The opening angle θ for the diamond tool was 100º. The maximum acceptable surface 

slope θ' was determined to be θ/2 = 50º, which was well above the maximum surface slope of the workpiece.  



  
Fig. 15. Relationship of opening angle of the cutting tool and surface slope in the cutting plane  

It is noted that if the designed surface and the diamond tool cannot meet the requirements, either the designed 

surface or the diamond tool needs to be modified to meet the geometrical requirement. Diamond tools with sharp edge 

geometries were not within the scope of this study.  

5. Conclusion  

A generic method to design and machine freeform patterned surfaces on precision rollers is presented. The method 

first transfers the conventional freeform surface designed on the flat substrate to the cylindrical roller surface. 

Alternatively, the freeform patterns can be directly designed on the precision roller. A toolpath generator is developed 

to machine the freeform-patterned roller surfaces. Experimental results prove that the proposed method is accurate 

and effective. Influences of tool geometries are also discussed. The limitation of the proposed method is that the design 

of the toolpath generator is based on circular diamond tools rather than sharp diamond tools. Hence, it is difficult to 

generate toolpaths for surfaces with sharp corners. However, it is possible to machine surfaces with sharp convex 

edges. This limitation can be considered as part of the influence of the tool geometries. Due to the generic nature of 

the proposed method, it is expected to be widely applicable in the roll-to-roll industry, to machine freeform and 

structure-patterned precision rollers.  
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