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Proof of Lemma 3. To shorten expressions we set A = [a,@] and z = (I,€) € Z = [liin, lmax] X E
where E is as given in Assumption 1. Let S denote the lattice of equivalence classes of measur-
able functions from A x Z into A with the pointwise order, s = § < s(a, z) > §(a, 2) for a.e. (a, 2).
Define the parametrized fixed point correspondence F(p,s) = {s € S : L(5(a, 2), (a, 2),s,p) =
0 fora.e. (a,z)}. Then s* solves (11) if and only if s* € F(p, s*).

By assumption, L(d/,(a,z),s,p) is continuous in a/, and L(a,(a,2),s,p) > 0 and
L(@,(a,z),s,p) < 0. The Mean-value Theorem therefore implies the existence of a solution
5(a, z) such that L(5(a, 2), (a,2),s,p) = 0, for all (a,z) € A x Z. By continuity in (d, a, z),
§ must be measurable in (a,z) and it is also clear that for fixed (a, z), the set of solutions
is compact. In particular, there will therefore exist (measurable) least and greatest solutions,
§Min(q, 2) < 3(a, z) < 3% (a, z) where 3 is any solution (specifically $™* and §™%* are the point-
wise minimum and maximum, respectively). Let f™"(p,s), f™*(p,s) € F(p,s) denote these
least and greatest solutions, now viewed as elements in S (hence functions of p and s). By mono-
tonicity in future savings, continuity of L in o’ and the boundary conditions, it follows from an
application of the standard “curve shifting” argument for continuous functions discussed in
Appendix B that f™%(p, s) and f™2(p, s) are increasing in s with the order ~. Because S is
chain-complete and has least and greatest elements, by the Knaster-Tarski fixed point theorem
(Granas and Dugundji (2003), Theorem 1.1) f™i(p,-) has a least fixed point s, and f™(p, )
has a greatest fixed point s*. Let s € F'(p, s) be any fixed point of F'. Then f™**(p, s) > s. Since
™% (p, ) is increasing, it maps {¢t = s} into {t > s}. Because {t > s} is chain-complete and
has least element s, there exists § = f™**(p, §) (again by the Knaster-Tarski fixed point theorem)
where, necessarily, s* = 5 = s. This shows that the greatest fixed point of f™**(p, -) is the great-
est fixed point of F'(p,-). Similarly, s, is the least fixed point of F(p,-). We conclude, as in the
lemma, that (11) has least and greatest solutions.

ok

Now let s* denote the largest fixed point given p* and consider p** > p*. As previously,
denote the largest element in F(p**, s*) by f™*(p**,s*). Again because L(-, (a,z), s*, p*) is
continuous and begins above and ends below 0, and because 0 = L(s*(a, 2), (a, 2), s*, p*)
and by assumption L(s*(a,z),(a,2),s*,p*) < L(s*(a,z),(a,2),s*, p*) whenever (a,z) €
As+, it must hold that f™**(p**,s*) > s*. By monotonicity in future savings (0 <)
L(s*(a,z),(a,z2),s* p**) < L(s*(a, 2), (a, 2),t, p**) < L(s*(a, 2), (a, z),t', p**) whenever t’ > t =
s*. Therefore f™%(p** t') = fma%(p** t) whenever t' = t (= s*). We conclude that f™*(p** .)is
a monotone self-map on {t > s*}. As above, there must then exist s** with s** = f™ma*(p** s**).

Necessarily, s** € F(p**,s*) and s** >~ s*. Because the greatest solution to the Euler equations

given p** must be greater than s**, it must be greater than s*. This establishes both the first and
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the last itemized claims of the lemma (in particular, if the Euler equations have a unique solu-
tion, then this is s* given p* and s** given p**). One proves analogously that the least solution
to the Euler equations must decrease if p** < p*. In the case where L is continuous and the
change in p is infinitesimal, the graph of F(p, -) is compact and the claim follows similarly to in

the proof of Theorem 2. m

Proof of Lemma 4 in Appendix A. From the proof of Lemma 2 we know that M%(k) =
(K : K € Fy(K,0)} where Fy(K,0) = [ AY(K) di. Fy-(-,0%) and Fy«(-,0**) are upper hemi-
continuous, convex valued, and necessarily begin above and end below the diagonal since they
are decreasing correspondences (see the proof of Lemma 2). For clarify, we first consider the
case where households’ assets distributions are uniquely determined in steady state (in princi-
ple, different assets distributions might support the same steady state).

Let £* be the greatest equilibrium. If the population’s mean asset holdings increase at £*,
then Fy«(k*,6**) > k* and there therefore exists K € Fy-(K,0™) with K > k*. Since K €
MO (k*) & K € Fp(K,0%), it follows that the market correspondence shifts up at k*. This
argument also applies if k* is the least equilibrium since F is decreasing in K.

To see that an increase in mean asset holdings is also necessary for the market correspon-
dence to shift up, use that if there does not exist ke Fy« (k*,0*) with k > k*, then because
Fi(K,0") is convex valued with least and greatest selections that are decreasing in K, there
isnota K € Fj«(K,60*) with K > k*, and so the population’s mean asset holdings does not
increase as 0* changes to **.

If households’ steady-state asset distributions are not uniquely determined from k, one one
considers instead the greatest mean asset holdings: Ai’i(k‘) = sup{E[d] : @’ € Sﬁ)’gk% R(k)(di)},
and define the greatest aggregate asset holdings across the agents (given 6 and the steady state
k): A%(k) = [ Ai’i(k:) di. Then the change in environment from 6* to §** shifts the market
correspondence up at k* if and only if k* < A% (k*) (see the proof of Proposition 4). Trivially
the left-hand side of this inequality, k¥, is the aggregate asset holding across the households
at the steady state k*. So, the necessary and sufficient condition is that the greatest aggregate
asset holding after the change in environment is above the aggregate asset holdings before the

change. m

Proof of Proposition 2. We can ignore the parameter €' from the general model and take z* = [’
(as in the previous proof we also suppress the transfers 7% = 0, and from now on household
indices are omitted). Fixing throughout steady-state prices w and R determined by the initial

capital-labor ratio £*, a behavioral household with assets a and labor endowment ! will save

C-2



sBeb-(4: 1) = o/ where a’ solves
—d((1+ R)a+wl —a') + max{§(1 + R) /u'((l + R)a'+ (A1)
W — sBh (/. 1)) % (dW |w), v/ (1 + R)a + wl — @)} = 0

The rational households’ time-stationary saving function sN¢°“"(a;1) is determined similarly
except that y; is replaced with the true distribution ;1 defined in the text prior to the propo-
sition. We consider only the “optimistic” case where pufj,(-|w) first-order stochastically domi-
nates pyy (-|w) (the “pessimistic” case is proved analogously). Because the left-hand side of (A1)
must decline if pyy (-|w) is replaced with ujj, (-|w) (u' is decreasing), it immediately follows from
Lemma 3 that s2¢% (a; 1) < sN¢o¢l(g; 1), that is, behavioral households who overestimate their fu-
ture labor incomes will save less than rational households (all else equal). Observe that whether
behavioral households over- or underestimate future labor incomes at other wage levels than w
is not relevant to this argument. The rest of the proof proceeds as in Proposition 1 and can be

omitted. m

Proof of Proposition 3. Let R = (1 — 7)R — 1 where R = f(k*) is the rental rate in the initial
steady state £* (i.e., before the change in the capital income tax 7). w is the corresponding wage
rate as given by (1). A rational households with assets a and labor endowment ! will in the

initial steady state save sN°°?!(a; [, w, R) = a’ where a’ solves
— ' ((1+ R)a+wl —d') + max{§(1 + R) /u’((l + R)d +W (A2)
=Nl (/1 o, )y (AW ), o (1 + R)a+wl — )} = 0,

and pw (Alwy) = p{l € [lmin, lmax] : wpl € A} is the true distribution of labor income (here
A is any Borel subset of R ).** By Theorem 1 in Light (2020), sN°°°!(a; 1, w, R) is increasing in
R whenever y > 1. Let x denote the smallest value for which the rational households will
increase their aggregate savings given w, R and the specific tax reduction 7** < 7*. Then if
X > X, because R = (1 — T)R, it immediately follows that the rational households” direct effect
is positive (given the initial steady state prices, in particular, given w and R). To determine the
behavioral households’ saving function we consider again (A2) except with uy; (-|w, 7) replacing
pw . If the behavioral households are “pessimistic”, it is immediate that the left-hand side of (A2)
will be increasing faster as a function of a’ than it will if households are rational (this is because

Wi (+|w, T) is first-order stochastically decreasing in 7 and u’ is decreasing). In particular, by

#Because the labor endowment shocks are i.i.d., we have s™°° (a’; 1, w, R) = §(a’; W, w, R) for some function .
Because we condition on the prices w and R, it is therefore not necessary to take the distribution of I’ separately into
account in the expected (marginal) utility term of the Euler equation.
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Lemma 3, the behavioral households must (also) increase savings if the capital income tax is
reduced. The first statement of the proposition now follows from Theorem 1 (the steady-state is
unique; see Light (2020) and especially Section 3.3. concerning ex-ante heterogeneity as in our
model).

Next consider the “optimistic” case. Since nothing changes for the rational households, their
direct effect remains positive assuming x > x. Because all functional forms involved are contin-
uous and because pf}, (-|w, 7) is first-order stochastically increasing in 7 and «’ strictly decreas-
ing, when Y is sufficiently close to x, the behavioral households’ savings must decrease as 7* is
reduced to 7**. So the behavioral households’ direct effect will be negative. The average direct
effect across all households equals the a-weighted average of the rational and the behavioral
households. But since ¥ is the break-even value where the rational households’ direct effect is
zero, and the behavioral households’ direct effect becomes negative as x | X, and is bounded
away from 0, it follows that if x is close enough to x then the average direct effect must be neg-
ative. The statement of the proposition now follows from Theorem 1 as in the previous case.

Proof of Proposition 4. The notation is the same as in the proof of Proposition 3. Because the
intertemporal elasticities of substitution (IES) are greater than 1, that proof is identical when
the behavioral subset is pessimistic, establishing that the decline in the capital income tax from
T* to 7** increases the steady-state capital-labor ratio. We are again assuming full depreciation
to simplify expressions. Then, the (after-tax) market rate of interest increases from R’ = (1 —
T™)R* —1to R* = (1 — 7*)R*™ — 1 > R?, and the equilibrium wage rate increases from w’ =
w((1+R%)/(1—7%)) tow® = w((1+R*))/(1—7**)) > w® where w((1+R)/(1—7)) = f((f) " ((1+
R)/A—7)—f'((fH)7"HA+R)/A-m)))(f)"H(1+R)/(1—7)) (this follows from (1)-(2) in view
of the fact that labor is not taxed).

To prove the first claim in the proposition, note, first, that because any household i €
[0,1] has x; > 1 and is either rational, or behavioral and “pessimistic”, its savings function
s'(a;1,w, R) is increasing in R and decreasing in w (see Light (2020) and Acikgoz (2018) and
the proof of Proposition 3 for the relationship between the rational and behavioral cases). Sec-
ond, let us set B > 0 sufficiently small and then select any (measurable) subset of households
J C [0,1] with u(J) < B. Then the equilibrium interest and wage rate increases (R* — R® > 0
and w® —w® > 0) will be arbitrarily close to those of a hypothetical (or limit) economy consisting
only of the households in [0, 1]\J subject to the same before and after capital income tax rates
(see the proof of Proposition 3 for the continuity arguments involved in this claim).

Now given B > 0 sufficiently small, we take a (measurable) subset of the households J C
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[0,1] with u(J) < B and keep their preferences and biases fixed. Because the increase in the
market interest rate in the limit economy with households [0, 1]\ J is small relative to the increase
in the wage rate, the aggregate stationary equilibrium asset holdings of all households in .J must

decline when the capital income tax is reduced.
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Figure 6: Blue curves show the demand for capital from the production side, & = (f/)~1((1 +
R)/(1 — 7)), before (solid) and after (dashed) the reduction in the capital income tax rate from
7" to 7, 7* > 7**. The red curves show the supply of savings from the household side, k =

s(R,w((1+R)/(1—7))), wherew((1+ R)/(1—7)) = f((f)"H((L+ R)/1—7)) = f((f) (1 +
R)/(1 =) (f)"1((1 + R)/(1 — 7)). The figure depicts an economy where the large fraction of
households [0, 1]\J has very elastic savings supply.

To see that we can ensure the previous (relative) price changes in the limit economy, note
from the Euler equation (A2) in the proof of Proposition 3 that we can choose ,u;?,’i “the biases™)
and x;, i € [0,1]\J, such that these households exhibit arbitrarily high stationary savings supply
elasticity (for example, we could impose that they are all rational and have IESs sufficiently close
to 1). Therefore, provided that f’ is decreasing (f strictly concave), the interest rate increase can
be made arbitrarily small relative to the change in the wage rate in the limit economy.*4

The main idea of this argument is summarized in the “Aiyagari diagram” in Figure 6 which
illustrates the market outcome given B > 0 and some J C [0, 1] with u(B) < B or, alternately,
it illustrates the outcome in the limit economy (when B is small, these are approximately the
same). This finishes the proof of of the first claim in the proposition.

The second claim is proved analogously by choosing the biases and intertemporal elasticities
of substitutions for households in [0, 1]\J that ensure that the increase in the wage rate is now

small relative to the increase in the after-tax interest rate, and we omit the details. m

#In particular, the increase in the wage rate is fully pinned down by the change in the capital-labor ratio, and can
be lower-bounded by choosing f suitably given the preferences and biases of the households in [0, 1]\ J.
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Proof of Proposition 5. Under the conditions imposed on page 28, the value function W
is unique and strictly concave, and time-stationary savings is characterized by a Generalized

Euler Equation (GEE): s(a; 1) = a’ where a’ solves

—u'((l—l—R)a—i—wl—a’)—)\U’((l—i—R)a—l—wl—a')+max{5(1—|—R)/u’((l—i—R)a’—i—wl'—s(a’;l’))—i—
M ((1+ R)a' +wl' — s(a’;1") — W' ((1+ R)a’ +wl’ — a)p(dl’),

(14 R)a+wl —a) + MW ((1+ R)a+wl—a)} =0.

Itis easily verified that the conditions of Lemma 3 are satisfied — in particular, the left-hand side
of the GEE is increasing in “future savings” s(a’;!’) because u + Av is concave. The statements
in the proposition now follow straight-forwardly from Lemma 3. It is useful to rewrite the GEE

as follows:

max{d(1 + R) /u’((l + R)d' +wl' — s(a’;1")) + W' (1 + R)a’ + wl’ — s(a’;1"))
X' ((1+ R)d +wl' —a)u(dl') — v (1 + R)a+wl —a') — \'((1 + R)a + wl — a’)

' (14 R)a+wl—a)+ ' (1+R)a+wl—a) —u'(14+ R)a+wl—a') — M (1+ R)a+wl—a')} = 0.

For any (a,l), if the second term is (weakly) larger than the first term, then o’ = s(a;l) = a.
When o’ = s(a;1), an increase in A will therefore weakly increase the left-hand side if (13) holds,
and if (13) holds with the inequality reversed, the left-hand side must decline.** The condi-
tion in Lemma 3 therefore holds if (13) holds for all (a,!) € u* where ;* is the initial steady-state
distribution. Hence the households’ direct responses to an increase in \ are positive. The propo-
sition’s statement now follows from our main Theorems 1-3.

If (13) holds with the inequality reversed, the direct responses are instead negative and the
(least and greatest) steady-state capital labor ratio(s) must instead decrease.

The proof is similar in the case where we reduce a and v is convex, because in this case
both terms on the left-hand side of the GEE must decline (recall that, by assumption, u + v
is concave). If we reduce a and v is concave, then the first term will increase and the second
term will decrease. So households who are not borrowing constrained will raise savings while
households whose marginal utility of savings is strictly negative at the borrowing limit may
fully exhaust the (loosened) borrowing constraint. The statement in the proposition follows.
Note here that — unlike in the model with no temptation — when there is significant temp-

tation, borrowing constraints will frequently not bind for any household (corresponding to no

Note that when (13) holds, an increase in may cause some households to come off the borrowing constraint, and
when (13) holds with the inequality reversed, additional households may be further tempted and become borrowing
constrained when the temptation intensity increases.
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one falling prey to temptation). In particular, savings will often not take the form of a “renewal
process” (e.g., see Deaton (1991)) in the model with temptation, something which is already
clear from the deterministic version of the model considered by Gul and Pesendorfer (2004) (in
this case, consumption stationarity implies §(1+ R) > 1; see Gul and Pesendorfer (2004), p.137).

Proof of Proposition 6. Denote market prices given the initial tax 7* by w and R, so that 1+ R =
(1—7*) R under full depreciation. Time-stationary savings is given by the GEE: s(a; ) = a’ where

a’ solves
u'((lT)Ra+wla')U’((lT)RawLwla/)wLmax{(S(lT)R/u/((lT)Ra/+wl/3(a’;l/))+
V(1= 7)Ra' +wl' — s(a’;1)) — ' (1 — 7)Ra’ + wl’ — a)p(dl’),
u'((1—=7)Ra+wl —a)+v'((1—7)Ra+wl —a)} =0.

The condition in the proposition is found by simply differentiating the left-hand side with re-
spect to 7 and evaluate at 7%, which ensures the conclusion in either direction via Lemma 3 and
our main theorems. The details can be omitted. Note that given the above GEE, the most precise
approach (if and only if, given explicit functional forms) would solve numerically and explic-
itly verify Definition 5 for the specific tax change. This type of “blended” numerical-qualitative

analysis is discussed more in Section 4.5 in the paper. m

Proof of Proposition 7. As in the text, we fix an initial capital-labor ratio £* and associated
steady-state prices w and R. s is a TSSF if for almost every a and [, s(a, ) =  where z solves the
GEE —v/((14+ R)a+wl—z)—v'((1+ R)a+wl —z) + max{d(1+ R) [« ((1+ R)z+wl' — s(z, "))+
V(1 4+ R)x + wl’ — s(z,l) — V' ((1 + R)x + wl’ — a)u(dl'),u'((1 + R)a + wl — a) + v'((1 +
R)a+wl—a)} = 0. The assumptions of Lemma 3 clearly hold and — holding the future savings
function s(z, ) fixed and considering only the initial invariant distribution — the left-hand side
of this expression increases when p is replaced with p* where 11* is a mean-preserving spread
of p if and only if (16) holds (note that in (16) we have set y = (1 + R)a + wl and inserted the
consumption function). So a mean-preserving spread to the perceived labor endowments shifts
the GEE up in the sense of Lemma 3. The conclusions of the proposition now follow from our

main results as in the previous proofs (the details can be omitted). m

Proof of Proposition 8. Let ¢! denote the discount factor at date t. At each date t, both the naive
(8 < 1) and the rational households believe that P(¢. = §) = 1 for 7 > t. By Definition 1, both

groups correctly anticipate their future selves’ saving function conditional on these beliefs. For
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the rational households, the belief is correct (the objective distribution is degenerate i.i.d. with
unit mass at §). For the naive households, it is incorrect (the objective distribution has unit mass
at (36, 362,...)). In both cases, denoting the current discount factor by ¢, € {34,4}, the Euler
equationis —u/((1+ R)a+wl —a’) + max{e;(1+ R) [« ((1+ R)a'+wl' — s(a’; 1, 8))p(dl’), v/ (1 +
R)a + wl —a)} = 0, where (a,l,¢;) € [a,a] X [lmin, lmax] X {89,0}, and @’ = s(a;l,¢) is the
solution given ¢; where, as usual, we have fixed w and R at their initial steady-state values (and
suppressed them). For the rational households, ¢, = §, so this is the benchmark Euler equation
and it immediately follows by Lemma 3 that their saving function s(a’; ', §) is increasing in 0
(= €) because the Euler equation’s left-hand side is increasing in ¢;. For the naive households,
the Euler equation (also) takes s(+;I’, §) as given but now ¢; = 4. It follows, again from Lemma
3, that the resulting saving function is increasing in 3.4 In particular, rational households must
save more than naive households for alla and [, 3 < 1 and § < 1. The naive households’ saving
function is also increasing in §: the Euler equation’s left-hand side increases both because 36
(= &) increases when ¢ increases and because when ¢ increases, s(a’;!’,d) increases and the
Euler equation satisfies “Monotonicity in Future Savings”. The rest of the proposition is similar

to the last part of the proof of Proposition 1 and can therefore be omitted. m

The Sophisticated Quasi-hyperbolic Model with Vanishing Endowment Uncertainty (Sec-
tion 4.4)

All households have quasi-hyperbolic CRRA preferences with rate of risk aversion v > 0 and
date t labor endowment I; = I; 4+ [ where [ € Ry and I; ~ pu(-). u(-) is i.i.d. with mean zero and
compact support. Whenever we say that /; is almost degenerate below, what we mean is that
p and the degenerate measure with unit mass on 0 is sufficiently small in the Levy-Prokhorov
metric. The borrowing constraint is zero (it can be ignored in steady state as will become clear).
Capital is taxed at the rate 7, and tax receipts are rebated back to households lump-sum. There
is full depreciation for notational simplicity, hence given the pre-tax rental rate of capital R;, the
after-tax interest rate is Ry = (1 — 7)R; — 1.

The generalized Euler equation is

(Cr(ye)) " = (1 —1)RS / (1+ (8 = DCLYe1)) (Cr(yes1) " uldlysr), (A3)

where y; = (1 — 7)Ray +w - (I + 1) + Ti, yrr1 = (1 — 7)Rlys — Cr(ye)] +w - (1 + lys1) + Trgr, as
is total wealth inclusive of expected discounted future labor income, and C- the consumption

function. Note that in terms of the paper’s general notation, (s(as; [ +1s, w, R, T?) =) s(as; [+1;) =

“Note that in this application of Lemma 3, the future saving function is fixed, hence the GEE trivially exhibits
monotonicity in future savings.
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(1—7)Rag+w-(14+1;) + T, — Cr(0Ray +w- (I41;) +T;) where R = §R—1. The consumption-saving
model is Harris and Laibson (2001).
We first roll the deterministic component of labor income into assets using R as discount

rate: The original budget equation is

at+1:Rat+w-(lA+lt)+7'R-(kt—at)fct

Inserting a; = a; + (wl)/(R — 1), we get
¢+ apy1 = Rag+w -l + 7R - (ke — ay)
where k; = ky+(wl)/(R—1) (so that ky, = [ @ di). It clearly makes no difference to us whether we
work in the original units or in these “tilde” units because we get to keep all of the variables in
(wl)/(R—1) fixed in our all-else equal analysis. Further, since we one only inserts ¢; and ¢; 1 into
the Euler condition, this looks exactly the same as above except now y; = Ray+w-l,+7R- (l%t —ay)
and yp 1 = R[yt —Cr(y)] +w - liy1 + TR - (];t+1 — [y+ — C=(yt)]). The “trick” is then to rewrite
the GEE as follows:
~ v - g

(m . gi(;t)cwym)) (- / (14 (8- DO (yern) (am gféy;+gf<yt>]>> wdier)
To clarify, all that has happened at this point is that the GEE has been divided through with

(Cr(R- [yt — Cr(y)]))". Consider the term in the large parenthesis on the right-hand side which,

defining ; = y; — C-(y:), we can write

Co(R- [y — C-w)) ) _ Cr(R - 1) !
Cr(Yt+1) Cr(Rijy +w - le + 7R (kg1 — D)) 7

Probabilistically, this is a random variable whose distribution converges to a degenerate

distribution with unit mass at 1 if the random variable I/ converges to a random variable with a
degenerate distribution. Hence the previous term will be approximately equal to 1 . To see this,
note that since C; is continuous, as lz 1 becomes degenerate, R-gt ~ R?)t—i—w-lz 11 +7R- (];t+1 —Tt)
(in probability) where it is also used that households’ are homogenous if I/ 41 is degenerate and
that we are considering a steady state (these imply that next period assets g, will be close to the
mean assets I;:t = ];:t+]_).

Now we can just test-and-verify (in fact, this is familiar from the CRRA case with no uncer-
tainty), that the limit GEE is solved by a linear consumption function, C;(y) = C.(y)z where
the MPC (0C;(y)/0y = CL(y)) is constant given the tax. We then get

(R-(1-Cry) = (1 —7)RS (1+ (8~ 1)C1y)) Qy), (A4)

where Q(y) = (%}3(”)])) " 1 and where it has been used that under the linear functional



form

Cr(R - [yt — Cr(yr)])
CT(yt)

Note that because 2(y) is only approximately equal to 1, the solution (“the slope” CZ(y:))

=R (1- C;(yt)) :

depends on y;. But as I; approaches a degenerate distribution, the interval of solutions will
narrow towards a single point. That is why we can analyze the comparative statics with a
single application of the Implicit Function Theorem (IFT) and be sure that the resulting (strict)
inequality condition must hold for all households if it holds for one of the households.

In the application of the IFT, setting 2 = [[ (%wijt“)_”ﬂ(dl;“)], we use that the savings
function is linear and keep y fixed and treat the MPS, s = 1 — C(y), as the unknown variable.

We thus get,
YR8 ds = —Q[RO(1 + (8 — 1)[1 — 3))] dr — Q[(1 — T)RS(8 —1)] d5 .

Because (A4) holds, we can divide through with this equation and rearrange to see that ds/dr <

0 < (20).

Proof of Theorem 4 and the Corollary in Appendix B. We first prove the theorem: Consider
the greatest fixed point k¢ given some 0* € ©. To simplify notation, we take © C R (but the
argument is true in general). Since mf (k¢ ) > my (k%) = k" for 0* + € > 0 > 0%, m{ (-) begins
above the 45° line and ends below it on the interval [k} ,sup K]. Since M has convex values,
MO (-) therefore has a fixed point on this interval, and so kY > kY . This argument clearly
extends to any 6 > 6* (not necessarily in a neighborhood) since we may reach any such ¢ in a
finite number of steps (© is compact so any open cover contains a finite subcover). The more
difficult case is when 6* — ¢ < § < 6*. Assume for a contradiction that k¢ > k% . Consider
0., where § < 60, < 0*. Since 0,, > 6, it follows from the first part of the proof that k%" >
k% > kY. Note that these inequalities hold for any 6,, € (,0*). Since K is compact, we may
consider a sequence n = 0,1,2,... with 6, 1T 6* and such that lim,_, k*(6,) exists. k;i" €
Mbn (ki") for all n and M has a closed graph, hence lim,,_,« ki" e M (limy,—00 ki"). But since
limy, oo limy, oo k:g" > k;% > k;%*, this contradicts that k;%* is the greatest fixed point. The parallel
statement for the least fixed point k% is shown by a dual argument (in this case the situation
where §* — e < 6 < 0* is simple while the limit sequence argument must be used for the case

where 0% + € > 6 > 6%).
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The following corollary is immediate by combining Theorem 4 with Lemma 4, as we did in

the proof of Theorem 1:

Corollary 1 (Main Comparative Statics Result, Topological Case) Let the assumptions of Theorem
1 hold and assume in addition that © is a compact subset of an ordered topological space and that the
market correspondence MO (k) is upper hemi-continuous in (0, k). Then the greatest and least steady
states k% and kY are increasing in 0 if for all 0* € © and all 0, < 0, in a neighborhood of %, the change

in the environment from 0, to 0, raises mean savings at kY as well as at k% .
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