
Vol.:(0123456789)

Global Philosophy (2023) 33:21
https://doi.org/10.1007/s10516-023-09676-0

1 3

ORIGINAL PAPER

Should Type Theory Replace Set Theory as the Foundation
of Mathematics?

Thorsten Altenkirch1 

Received: 12 August 2021 / Accepted: 15 January 2023
© The Author(s) 2023

Abstract
Mathematicians often consider Zermelo-Fraenkel Set Theory with Choice (ZFC)
as the only foundation of Mathematics, and frequently don’t actually want to think
much about foundations. We argue here that modern Type Theory, i.e. Homotopy
Type Theory (HoTT), is a preferable and should be considered as an alternative.

Keyword  Type theory · Foundations of mathematics · Set theory · Intuitionism ·
Structuralism

1  Introduction

Set theory is usually traced back to Cantor who used sets in an informal way giv-
ing rise to what is called naïve set theory. Nowadays, we usually refer to axiomatic
set theory which was formulated by Zermelo and Fraenkel and which is referred to
as Zermelo-Fraenkel Set Theory or short ZFC. When saying Set Theory1 we mean
ZFC.

Type Theory was introduced by Per Martin-Löf (Martin-Löf 1975) and there are
several incarnations. The early Extensional Type Theory (ETT) (Martin-Löf 1984)
gave way to Intensional Type Theory (ITT) (Nordström et al. 1990) but recently,
heavily influenced by Voevodsky and concepts from Homotopy Theory, Homotopy
Type Theory (HoTT) (The Univalent Foundations Program 2013) was developed.2
When saying Type Theory we mean HoTT.

 *	 Thorsten Altenkirch
	 txa@cs.nott.ac.uk

1	 University of Nottingham, Nottingham, UK

1  I am capitalising both Set Theory and Type Theory when referring to specific theories with this name
not in the sense of a set theory or a type theory.
2  Since not everybody wants to read the whole book, introductory presentations of HoTT include (Alten-
kirch 2019; Ahrens and North 2019; Grayson 2018).

http://crossmark.crossref.org/dialog/?doi=10.1007/s10516-023-09676-0&domain=pdf
http://orcid.org/0000-0002-6582-5025

	 Global Philosophy (2023) 33:21

1 3

 21   Page 2 of 13

In Set Theory all mathematical objects are viewed as sets and we write a ∈ A to
mean that a is an element of the set A. Since in modern Set Theory we don’t use
urelements, a is a set again, a process that only stops at the empty set {}The same
element can occur in different sets and two sets are equal iff they have the same ele-
ments (axiom of extensionality).

Set Theory is usually based on classical logic, formally it is presented in the
framework of first order predicate logic. Set Theory can be viewed as an alternative
to higher order logic where the quantification over predicates is replaced by quanti-
fying over sets, corresponding to predicates. There are alternative set theories which
use intuitionistic predicate logic as the framework but they all have in common that
we first fix the logic as a framework and then formulate the set theory within this
logic.

Type Theory is based on the idea that all mathematical objects belong to a type
and can only be understood as elements of a given type. This corresponds to mathe-
matical practice where we conceive of a statement quantifying over all natural num-
bers as only talking about those while in Set Theory this is represented by quantify-
ing over all sets and singling out those which are elements of a particular one, the set
of natural numbers. In Type Theory an element can only be an element of one type3
hence we cannot talk about elements in isolation which means we cannot reason
about representations. This discipline enables a high degree of extensionality which
is realised by Voevodsky’s univalence axiom entailing that isomorphic structures are
equal.

Types have elements which we write as a : A meaning a is an element of type A.
While superficially similar to the set-theoretic a ∈ A it is fundamentally different.
Saying a : A is part of the static structure of a mathematical text,4 only texts which
use types consistently make sense. In particular we cannot ask whether a : A because
this is an aspect of our text not the subject we are talking about. We say that a : A is
a judgement not a proposition.

The formal presentation of Type Theory also requires another judgement which
is called definitional or judgemental equality. E.g. when we define n ∶ ℕ as n ∶≡ 3
we also know that (1, 2, 3) ∶ ℕn but to see this we need to exploit the fact that n ≡ 3
statically. Again a ≡ b is a judgement which is a static property of a mathematical
text not a predicate. Judgemental equality also reflects the computational character
of Type Theory, e.g. we know that all (closed) natural number expressions can be
reduced to a numeral, e.g. 3 + 4 ≡ 7 . Type Theory also introduces propositional
equality but it makes sense to distinguish the static judgemental equality from the
usual propositional equality. Indeed being equal by definition is a common phrase in
mathematics.

Mathematicians often consider ZFC as the only foundation of mathematics, and
frequently don’t actually want to think much about foundations. We argue here that

3  I am here presenting a particular pure form of Type Theory. They are extensions which allow subtyp-
ing, which is usually an attempt to recover features of Set Theory. I prefer to view these sort of develop-
ments as notational conveniences as opposed to foundational features.
4  The static structure of a text corresponds to the static semantics of a program in the sense of computer
science. It covers aspects like syntax but also correct use of variables and typing.

1 3

Global Philosophy (2023) 33:21 	 Page 3 of 13  21

modern Type Theory, i.e. HoTT, is a preferable and should be considered as an
alternative.

1.1 � Related Work

In Maddy (2019) the author develops a set of criteria for possible foundations and
compares set theory, category theory and homotopy Type Theory using these cri-
teria. First of all it seems rather misleading to include category theory as a possi-
ble foundation because while it provides essential guidance (one of the criteria) it
requires another foundation to explain what basic constructions are intuitively per-
missable.5 Indeed categorical guidance can be misleading since it would suggest that
symmetric cartesian closed categories would be a good concept but you need to go
beyond category theory to see that only preorders satisfy this condition. However,
category theory fits very well with HoTT, indeed universal properties have unique
solutions in HoTT, while they are only unique up to isomorphism in Set Theory.
Maddy in loc.cit., footnote 28, admits that she is not sure what these thinkers take
to be wrong with ZFC, where the thinkers seem to refer to Voevodsky and others.
It is the purpose of this paper to explain what we think is wrong with ZFC and can
be addressed by using HoTT. Maddy also argues that she thinks that HoTT would
need to adopt the axiom of choice to be able to encode the classical theory of sets6—
which is in my experience a common reaction of philosophers who are only too
willing to give in to intimidation by classical mathematicians and let them define the
yardsticks of mathematics. Her conclusion is that there is no problem with set theory
and that the only advantage HoTT would have to offer is proof checking. While it is
doubtful that this even correct (there are proof systems based on classical mathemat-
ics), it is also misleading. What we try to argue in this paper is that the fundamental
point of HoTT is conceptual, the fact that it lends itself to implementation is a wel-
come additional benefit.

Homotopy Type Theory has attracted some attention in the philosophy commu-
nity: (Awodey 2014) explains why HoTT is important for structural mathematics;
(Ladyman and Presnell 2015, 2016) give a philosophical explanation of the identity
types in HoTT and (Corfield 2020) how an extension of HoTT namely modal HoTT
can be used in natural sciences especially in physics. In the present paper we attempt
to argue speccifically what advantages HoTT has over Set Theory. To keep the pres-
entation self-contained we explain the basic ideas of HoTT but in an informal way
avoiding the complex formal structure of type theory. A novelty of our paper is that
in section 5 we argue that constructivity and structuralism are just two sides of the
same coin.

5  Indeed in loc.cit, Maddy complains: I don’t know what Voevodsky finds lacking in category-theoretic
foundations – perhaps that it fails to provide a Generous Arena?
6  In loc.cit, p.29: But to get even to ETCS, we have to add the axiom of choice, where ETCS stands for
The Elementary Theory of the Category of Sets

	 Global Philosophy (2023) 33:21

1 3

 21   Page 4 of 13

2 � The Role of Logic

Type Theory does not rely on predicate logic as a framework but introduces logic
using the propositions as types explanation—in this sense logic is an emergent
aspect of Type Theory not a prerequisite. In constructive thinking we acknowledge
that mathematical constructions are taking place in our minds and that we commu-
nicate them using shared intuitions. From this point of view it is not the notion of
truth which is fundamental but the notion of evidence or proof. A proposition is
given by saying what we need as evidence to accept that the proposition holds. In
the context of Type Theory we can do this by assigning to every proposition the type
of evidence for this proposition. This is also called the Curry-Howard equivalence
but this is based on the assumption that we already have a logic and a Type Theory
and then observe a formal relationship between the two, while I define logic by the
translation.7

The translation of propositional connectives into type theoretic connectives is
rather straightforward, for example we translate implication P ⇒ Q as the function
type P → Q between the associated types of evidence which I denote by the same
letters here8 . The idea is that evidence for P implies Q is a function which maps evi-
dence for P into evidence of Q—function types are a primitive concept of Type The-
ory9. Similar we can translate ∀x ∶ A.P(x) by the dependent function type10 denoted
as Πx ∶ A.P(x) , the idea is that evidence for a universally quantified statement is a
(dependent) function that assigns to every element a : A evidence for P(a). Negation
¬P we interpret as saying that P is impossible means P implies falsum ( P ⇒ False )
where falsum ( False ) is interpreted as the empty type.

The translation of disjunction and existential quantification depends on what
exactly we mean by a proposition. Here there has been a historic change mainly
since the introduction of HoTT. In ITT we identified types and propositions which
leads to some strange artefacts. For example we would denote a subset {x ∶ A ∣ P(x)}
as the type of dependent pairs (a, p) where a : A and p : P(a) (this is written as
Σx ∶ A.P(x))11 . Now the embedding from the subset into A is given by the first

7  The propositions as types explanation is also related to the Brouwer-Heyting-Kolmogorov (BHK)
semantics which introduces untyped realisers of propositions.
8  To be more precise we can introduce an operation Prf which assign to every proposition P te type of its
proofs Prf(P) and then we stipulate that Prf(P ⇒ Q) ≡ Prf(P) → Prf(Q).
9  We explain a function as black box where we can input elements of the domain and which outputs ele-
ments of the codomain. While we have no access to the mechanism (hence the box is black) the only way
to actually construct a function is via effective means. However, the theory works as well if we believe in
some sort of magic, like that everything is decidable (the principle of the excluded middle). Formally, the
properties of functions are represented by the laws of Λ-calculus and the principle of functional exten-
sionality.
10  The dependent function type is a generalisation of the usual function type where the codomain can
vary over the domain. This corresponds to the cartesian product of a family of sets in Set Theory, hence
the use of Π
11  The justification for this notation is similar as before, in Set Theory the type of dependent pairs cor-
responds to an infinite sum hence Σ.

1 3

Global Philosophy (2023) 33:21 	 Page 5 of 13  21

projection �1 ∶ {x ∶ A ∣ P(x)} → A12. However, it turns out that this is not in general
an injection since we can have different proofs p for the same element a. Also the
naive translation of existential statements uses again dependent pairs, i.e. evidence
for ∃x ∶ A.P(x) is given by a pair (a, p) with a : A and p : P(a), we write this type
as Σx ∶ A.P(x) as before. However, this interpretation of existence gives rise to an
apparent proof of the axiom of choice: if we know that for all x : A there exists a
y : B such that a certain relation R(x, y) holds then we can extract the witness and its
justification from the proof. More precisely we can define

However, this type theoretic axiom of choice hardly corresponds to the axiom of
choice as it is used in Set Theory. Indeed, it is not an axiom but just a derivable fact.

In HoTT we say a proposition is a type with at most one element. The idea here
is that a proposition should not contain any additional information, its only purpose
is to assert something. As a consequence of univalence we obtain that two propo-
sitions are equal if they are logically equivalent—this is often called propositional
extensionality. The embedding from a subset to a set ( �1 ∶ {x ∶ A ∣ P(x)} → A ) is
now an injection because there is at most one proof that the proposition P(a) holds.
To translate disjunction and existence we use propositional truncation, that is to any
type A we introduce a proposition ||A|| which corresponds to the proposition that A
is inhabited.13 That is if there is an element a : A we obtain an element of ||A|| but
we cannot distinguish them anymore. Now we can say that a proof of existence, i.e.
evidence for ∃x ∶ A.P(x) is the propositional truncation of the naive translation, i.e.
||Σx ∶ A.P(x)|| . Given this interpretation the translation of

is not provable since we extract an element from a propositional truncation which is
clearly wrong because here all elements have been identified. And indeed this for-
mulation of the axiom of choice has the power of the classical axiom, in particular
we can derive the excluded middle using Diaconescu’s construction.

By the principle of the excluded middle14 we mean

ac ∶ (∀x ∶ A.∃y ∶ B.R(x, y)) → ∃f ∶ A → B.∀x ∶ A.R(x, f (x))

ac(f) = (�a.�1(f (a)), �a.�2(f (x)))

(∀x ∶ A.∃y ∶ B.R(x, y)) → ∃f ∶ A → B.∀x ∶ A.R(x, f (x))

∀P ∶ Prop.P ∨ ¬P

12  Here �1 ∶ Σx ∶ A.B(x) → A is defined as �1(a, b) ≡ a and �2 ∶ Πp ∶ Σx ∶ A.B(x).B(�1(p)) with
�2(a, b) ≡ b.
13  Formally, ||A|| can be defined as a higher inductive type with two constructors | − | ∶ A → ||A|| and
is − prop ∶ ∀xy ∶ ||A||.x = y.
14  The term excluded middle doesn’t actually reflect its meaning. Excluded clearly is a negative state-
ment, hence we should render it is saying It cannot be that a proposition is neither true nor false, which
can be translated is ¬¬(P ∨ ¬P) , which is constructively provable. A better term for the universal asser-
tion of P ∨ ¬P , would be universal decidability or magicae nigrae in latin.

	 Global Philosophy (2023) 33:21

1 3

 21   Page 6 of 13

Here I write Prop for all propositional types, i.e. types with at most one element and
P ∨ Q is the translation of disjunction using propositional truncation, ie. ||P + Q||15
. Actually in this particular example we don’t need to truncate because it can never
happen that both P and ¬P hold. Clearly there is no function which assigns to every
proposition either a proof of it or a proof of its negation. We don’t even need to
appeal to the undecidability of our logic but observe that we cannot look into a prop-
osition due to propositional extensionality. Hence excluded middle seems to suggest
that we can decide any proposition without even looking at it!

However, we can justify excluded middle by a different translation of the con-
nectives and a different explanation what is a proposition. That is we can interpret
P ∨class Q as the statement that not both are false ¬(¬P ∧ ¬Q) and similar we can
explain existence ∃classx ∶ A.P(x) by saying it is not the case that P is always false,
i.e. ¬(∀x ∶ A.¬P(x)) . Note that we don’t need any truncation because negated state-
ments are always propositions. Moreover the translations are valid in classical logic
anyway. However, to obtain the correct behaviour of the connectives, in particular
to justify reasoning by cases and the elimination rule of the existential, we need to
limit propositions to the negative ones, i.e. to the ones for which proof by contradic-
tion holds, that is we define Propclass = {P ∶ Prop ∣ ¬¬P → P} . So for example if
we know P ∨ Q and P → R and Q → R we can conclude ¬¬R and if R is negative we
also know R. Similar reasoning justifies the rule of existential elimination. Moreover
the remaining connectives preserve the property of being negative. What I present
here is just the usual negative translation.

We may think that there is no difference between propositions as types with at
most one element and negative propositions because in neither case can we extract
information. However, while the axiom of choice is unprovable in both cases, the
axiom of unique choice is provable for the type theoretic interpretation of proposi-
tions, that is

where ∃!x ∶ A.P(x) means unique existence which can be defined as

This can be proven in Type Theory because the statement of unique existence is
already a proposition anyway and hence we can extract the witness. However, using
the negative translation we cannot justify unique choice.

auc ∶ (∀x ∶ A.∃!y ∶ B.R(x, y)) → ∃f ∶ A → B.∀x ∶ A.R(x, f (x))

auc(f) = (�a.�1(f (a)), �a.�2(f (x)))

∃x ∶ A.P(x) ∧ ∀y ∶ A.P(y) ⇒ x = y.

15  Here A + B is the coproduct or binary sum in Type Theory corresponding to disjoint union in Set
Theory. It can be defined as A + B = Σb ∶ Bool.P(B) with P(true) ≡ A and P(false) ≡ B.

1 3

Global Philosophy (2023) 33:21 	 Page 7 of 13  21

3 � Representation

To illustrate the difference between Set Theory and Type Theory let’s look at the
representation of numbers, starting with the natural numbers. In Set Theory natu-
ral numbers are encoded using only sets, the most common encoding is due to
von Neumann:

However, there are many alternative ways, e.g. the following is due to Zermelo:

So for example the number 3 is represented as {{}, {{}}, {{}, {{}}} using von Neu-
mann’s encoding and as {{{}}} in Zermelo’s. The axiom of infinity uses one particu-
lar representation to introduce the existence of the infinite set of natural numbers,
e.g. von Neumann’s, and using the axiom of replacement we can deduce that the
alternative representation, e.g. Zermelo’s also forms a set.

We can formulate properties that distinguish the two representations, for exam-
ple in von Neumann’s encoding we have that n ⊆ n + 1 which fails in Zermelo’s,
e.g. 1 ⊈ 2 if we use Zermelo’s encoding. This statement is not really a statement
about numbers but about their encoding, we say it is not structural. Mathema-
ticians would normally avoid non-structural properties, because they entail that
results are may not be transferable between different representations of the same
concept. However, frequently non-structural properties are exploited to prove
structural properties and then it is not clear whether the result is transferable.

In Type Theory natural numbers are an example of an inductive type, defined
by the constructors. Following Peano we say that natural numbers are gen-
erated from 0 ∶ ℕ and suc ∶ ℕ → ℕ (the successor, suc(n) means n + 1 ). To
define functions out of the natural numbers we use an elimination principle
that allows us to perform dependent recursion, that is given a family of types
indexed by the natural numbers M ∶ ℕ → Type and an element z : M(0) and
s ∶ Πn ∶ ℕ.M(n) → M(suc(n)) we can define a function f ∶ Πn ∶ ℕ.M(n) with the
definitional equalities f (0) ≡ m(0) and f (suc(m)) ≡ s(n, f (n)) . The elimination
principle allows us to define function like addition but also to derive properties,
e.g. that addition forms a commutative monoid exploiting the propositions as
types explanation.

0 = {}

1 = {0}

2 = {0, 1}

⋮ ⋮

n = {0, 1,… , n − 1}

0 = {}

1 = {0}

2 = {1}

⋮ ⋮

n = {n − 1}

	 Global Philosophy (2023) 33:21

1 3

 21   Page 8 of 13

The definition of the natural numbers precisely identifies the structural properties
of the type: it is equivalent to stating that ℕ is an initial algebra, a natural number
object, in the language of category theory. And because we cannot talk about ele-
ments in isolation it is not possible to even state non-structural properties of the
natural numbers. Indeed, we cannot distinguish different representations, for exam-
ple using binary numbers instead.

Both in Set Theory and in Type Theory we can go on and construct more elabo-
rate sets/types of numbers, e.g. ℤ,ℚ,ℝ,ℂ . In Set Theory we can talk about subsets,
e.g. we may want to stipulate that ℕ ⊆ ℤ but it turns out that this doesn’t hold for the
most natural choice of encodings.16. Yes, we can start with the biggest number class
we want to represent and then define the other ones as subsets via comprehension.

In Type Theory the notion of a subset doesn’t make sense in general for types.
We can observe that we have a canonical embedding function between the different
number types, e.g. ℕ → ℤ and we can agree notationally that we can omit this func-
tion when it is clear from the context that we use a natural number when an integer
was required.

While we don’t have a notion of subset on types, we can talk about subsets of a
given type A which are just propositionally valued functions P ∶ A → Prop . Given
any two of such subsets we can define P ⊆ Q as ∀x ∶ A.P(x) → Q(x) in Type Theory.
This means we can actually play the same trick as in Set Theory and define our
number classes as subsets of the largest number class we want to consider and we
have indeed the subset relations we may expect.

Hence Type Theory allows us to do basically the same things as Set Theory as
far as numbers are concerned (modulo the question of constructivity) but in a more
disciplined fashion limiting the statements we can express and prove to purely struc-
tural ones.

One criteria for foundation might be minimality: we need as few basic constructs
as possible. One may think at the first glance that Type Theory is somehow less
minimalistic, while in Set Theory we only need {…} to represent all mathematical
concepts there seems to be quite a menagerie of type constructors: Π-types, Σ-types,
equality types and so on. However, to be fair we should compare the axioms of Set
Theory with the basic constructions of Type Theory. And indeed while in applied
Type Theory we may introduce a lot of apparently unrelated types we can often
reduce them to a basic collection. So for example most inductive constructions can
be reduced to the type of well-founded trees or W-types. However, it s fair to admit
that the program to reduce very advanced type theoretic constructions, e.g. Higher
Inductive Types (HITs) to basic combinators is subject of current research. This can
be compared to reducing advanced set theoretic principles to basic axioms.

16  E.g. we may represent integers as equivalence classes of pairs of natural numbers with the same dif-
ference, i.e. (a, b) = (c, d) if a + d = c + b.

1 3

Global Philosophy (2023) 33:21 	 Page 9 of 13  21

4 � Univalence and Equality

Type Theory doesn’t allow us to make statements about representations because we
cannot talk about elements in isolation. This means that we cannot observe inten-
sional properties of our constructions. This already applies to Intensional Type
Theory, so for example we cannot observe any difference between two functions
which are pointwise equal. However, on the other hand in ITT we cannot prove them
to be equal either. This is a consequence of the way the equality type is treated in
ITT. That is for any element a : A there is a canonical element of the equality type
refl(a) ∶ a = a . Now consider f , g ∶ ℕ → ℕ with

Using induction it is easy to show that f (x) = g(x) for all x ∶ ℕ . However, the only
proof of f = g would need to be canonical (since we have no other assumptions) i.e.
refl(h) but this would require that h ≡ f ≡ g and f and g are clearly not definitionally
equal.

Hence in ITT while we cannot distinguish extensionally equal functions we do
not identify them either. This seems to be a rather inconvenient incompleteness of
ITT, which is overcome by HoTT. In HoTT a type doesn’t just have elements but
also it comes with an equality type that tells what is the type of evidence that two
objects are equal. In the case of function type this evidence is equivalent to func-
tional extensionality. Another example is propositional extensionality: two proposi-
tions are equal if and only if they are logically equivalent. By incorporating these
principles Type Theory is as extensional as Set Theory but it turns out it is much
better.

This is a consequence of the fact that we cannot observe the representations of
objects. What does this mean for types: what can we observe about a type? Now we
can observe the cardinality of a type, e.g. whether it has two elements or whether it
is countably infinite but nothing else. Hence extensionally two types with the same
number of elements should be considered equal. This may appear counterintuitive
on the first glance because it entails for example that ℤ = ℕ . But then can you write
a property of a type that distinguished ℤ from ℕ ? You may say that addition behaves
differently for the two but you just have the type and no operation on them. Indeed,
if we talk about the algebraic structure, e.g. we consider them as commutative
monoids, then they are not equivalent because we can distinguish them.

It is a consequence of the univalence principle that two isomorphic types are
equal17 where by isomorphic I mean that there a functions in both directions which
when composed are equal to the identity. So basically two types are equal if there is
a one-to-one correspondence between their elements. This also applies to algebraic

f (x) = x + 0

g(x) = 0 + x

17  The actual statement of univalence is slightly different and uses the notion of an equivalence which
refines isomorphism in a setting where equality is not always propositional. A function f ∶ A → B is an
equivalence if for any b : B there is a unique a : A and p ∶ f (a) = b . Since equivalence is reflexive there
is an obvious function from equality of two types to their equivalence. Univalence states that this func-
tion is an equivalence.

	 Global Philosophy (2023) 33:21

1 3

 21   Page 10 of 13

structures like the aforementioned commutative monoids. While the monoids asso-
ciated to ℤ and ℕ are not isomorphic we cannot distinguish different representations
of the same algebraic structure, e.g. using unary or binary numbers to represent ℕ .
And indeed it is a consequence of univalence that isomorphic algebraic structures
are equal.

This reflects mathematical practice to view isomorphic structures as equal. How-
ever, this is certainly not supported by Set Theory which can distinguish isomorphic
structures. Yes, indeed all structural properties are preserved but what exactly are
those. In HoTT all properties are structural, hence the problem disappears.

There is a price to pay for this elegance. We usually expect that equality is a prop-
osition but this ceases to hold when we say that evidence for equality of types is iso-
morphism because there is usually more than one isomorphism between isomorphic
types.18 The conclusion is that equality of structures in general is not a proposition
but a structure itself.

What is equality actually? I said that every type comes with a notion of equality,
with an equality type but what are the properties of equality types. If equality were
just a proposition then it would be easy: equality is just an equivalence relation (i.e.
reflexive, symmetric and transitive) and every function has to preserve it. This view
is called the setoid interpretation and it is a useful easy case of the actual story.19
But since we have types and we can iterate the construction of equality types, i.e. we
get a whole infinite tower of equalities, the answer is a bit more involved. The first
step up from equivalence relations are groupoids, these are categories where every
morphism corresponding to an equality type has an inverse. Or more naively, it is
the combination of an equivalence relation and a group.20 However, we need to iter-
ate this process any number of times arriving at weak infinity groupoids. They are
called weak because all the properties don’t hold strictly but only upto higher equal-
ity.21 This is where Homotopy theory comes in helpful because these structures have
been investigated and they can be defined as simplicial sets with the Kan property
or more exactly Kan fibrations for dependent types. Actually in the context of Type
Theory it turns out that cubical sets are technically better behaved.22

18  One can force equality to be a proposition by truncating it. However, this means that we loose impor-
tant properties such as the ability to always replace equals by equals.
19  Setoids have been used to justify extensional principles, see (Altenkirch 1999; Altenkirch et al. 2019).
20  A one object groupoid is a group while a groupoid where every homset is propositional is an equiva-
lence relation.
21  Ladyman and Presnell (2015) provide a philosophical justification of path induction. However,
they seem to miss the point that path induction is nothing but a way to express that equality is a higher
groupoid, that is the natural generalisation of an equivalence relation to a proof-relevant seeting.
22  In Cohen et al. (2016) cubical sets are used to provide a constructive explanation of the univalence
axiom. This semantics gives rise to cubical Type Theory, which is now implemented in cubical agda.
Vezzosi et al. (2021). Cubical Type Theory can be understood as a refinement of HoTT.

1 3

Global Philosophy (2023) 33:21 	 Page 11 of 13  21

5 � Structuralism and Constructivity

We may think that the constructive nature of Type Theory which comes from the
propositions as types approach to logic is rather orthogonal to its support of struc-
tural mathematics which stems from the fact that elementhood is treated stati-
cally. Indeed, we can add classical principles like the unrestricted axiom of choice
(and hence excluded middle) to HoTT and still have univalence. So are these two
aspects orthogonal, can we just have univalence but don’t embrace constructive
Mathematics?

While this is possible in principle, I would argue that there is indeed a connection
between these two aspects. Univalence forces us to revisit the notion of equality and
accept that equality isn’t always a proposition. It is this step which at the same time
renders many applications of choice unnecessary. Choice in conventional mathemat-
ics becomes necessary because we only talk about propositions, and hence choices
need to be hidden in propositions. When we later need to refer to the choices we
have just hidden, we need to use the axiom of choice. In Type Theory we can indeed
exploit the fact that our constructions may be types and not propositions and the
choices are explicit.

A simple example for this phenomena is the way categories are treated in HoTT.
Categories are a generalisation of preorders but indeed we prefer to deal with par-
tial orders where the equivalence introduced by the order coincides with equality.
Can we do the same for categories? Indeed in HoTT we can introduce the notion of
a univalent category23 , where isomorphism and equality of objects are equivalent
(i.e. isomorphic). And indeed most categories that arise from semantic considera-
tions – like the category of sets, or categories of algebraic structure – are univalent.
In contrast the counterpart to univalent categories in a classical setting are skeletal
categories, which are very rare and unless we use of the axiom of choice.

6 � Conclusions

Axiomatic Set Theory was developed in the 1930ies and then it constituted consid-
erable progress in making the foundations of mathematics precise. However, much
has happened since and it is time to reconsider the foundations of mathematics, in
particular in light of a shift of major applications of mathematics from natural sci-
ence to computer science and related disciplines.

From the viewpoint of computer science, it seems almost preposterous to think
that all mathematical concepts can be adquately represented as sets, which corre-
spond to a type of trees where we ignore order and multiplicity of subtrees. This
encoding seems to be not very different than the insight that all structures in com-
puting can be represented as a sequence of 0s and 1s. Indeed, it seems to me that set
theory is something like the machine language of mathematics, but it doesn’t share
the redeeming feature that in computing we need to translate everything in machine

23  In the terminology of the HoTT book, ordinary categories are called precategories and univalent cat-
egories are called categories.

	 Global Philosophy (2023) 33:21

1 3

 21   Page 12 of 13

language. Mathematics which is a construction of our mind doesn’t need a machine
language it should rather reflect our basic intuition.

Set Theory enables us to ask stupid questions, like Are the integers a subset of the
rationals? or Is 2 a subset of 3? Mathematicians tell me that they just don’t ask these
questions so they don’t really need a better language. This reminds me, who worked
as a programmer in the 1980ies, of the attitude of some of my colleagues who didn’t
see the need for high-level languages because they knew how to do the right thing
on the machine level.

The basic tenants of Type Theory are this: mathematical concepts are represented
as types, where every type comes with a static notion of elementhood and an equal-
ity type. Objects are equal if they represent the same mathematical object, in par-
ticular we view objects as equal if they satisfy the same properties – this is just
paraphrasing Leibniz24. A consequence of this is that equalities aren’t always propo-
sitions because they may be me more than one way that two objects can be equal.
Logic emerges in Type Theory, as the propositions as types explanation, which
replaces the philosophically difficult concepts of truth with the notion of evidence
which can be expressed as a type.

As far as constructivity is concerned, I would like to quote Frank Pfenning who
recently said in a lecture I have lost the ability to understand classical logic. I share
the same problem, specifically with the boolean explanation of logic: it seems to me
that we cannot assign a boolean to every formula in arithmetic. Now I understand
that assign here seems to refer to a classical function. However, and this may be
because I am computer scientist, it seems to me a strange abuse of the word assign-
ment if you have one but cannot tell me what is the output for a given input.

It seems to me that the classical approach can only succeed by an intensive pro-
cess of brain-washing, replacing naive concepts, like function, which rather elabo-
rate replacements. It seems that many mathematicians think that this process is nec-
essary for them to continue their leading edge research in modern mathematics. That
may well be so, but maybe we shouldn’t give up the hope that there is the possibility
for a more naïve form of mathematics which favours explainability over latest fash-
ion research.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

24  Here I disagree with the analysis in Ladyman and Presnell (2016) who look for an internal representa-
tion of Leibniz’s principle which naturally fails. We need to look atthe philosophical idea of identifying
an object with its properties which leads to the notion of extensionality realized in HoTT.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Global Philosophy (2023) 33:21 	 Page 13 of 13  21

References

Altenkirch T, Boulier S, Kaposi A, Tabareau N (2019) Setoid type theory–a syntactic translation. In:
International conference on mathematics of program construction, Springer, pp 155–196

Altenkirch T (1999) Extensional equality in intensional type theory. In: Proceedings. 14th symposium on
logic in computer science (Cat. No. PR00158), IEEE, pp 412–420

Altenkirch T (2019) Naïve type theory. In: Reflections on the foundations of mathematics, Springer, pp
101–136

Ahrens B, North PR (2019) Univalent foundations and the equivalence principle. In: Reflections on the
foundations of mathematics, Springer, pp 137–150

Awodey S (2014) Structuralism, invariance, and univalence. Philos Math 22(1):1–11
Cohen C, Coquand T, Huber S, Mörtberg A (2016) Cubical type theory: a constructive interpretation of

the univalence axiom. arXiv preprint arXiv:​1611.​02108
Corfield D (2020) Modal homotopy type theory: the prospect of a new logic for philosophy. Oxford Uni-

versity Press
Grayson D (2018) An introduction to univalent foundations for mathematicians. Bull Am Math Soc

55(4):427–450
Ladyman J, Presnell S (2015) Identity in homotopy type theory, part i: the justification of path induction.

Philos Math 23(3):386–406
Ladyman J, Presnell S (2016) Identity in homotopy type theory: part II, the conceptual and philosophical

status of identity in HoTT. Philos Math 25(2):210–245
Maddy P (2019) What do we want a foundation to do? In: Reflections on the foundations of mathematics,

Springer, pp 293–311
Martin-Löf P (1975) An intuitionistic theory of types: predicative part. In: Studies in logic and the foun-

dations of mathematics, vol 80. Elsevier, pp 73–118
Martin-Löf P, Sambin G (1984) Intuitionistic type theory, vol 9. Bibliopolis Naples
Nordström B, Petersson K, Smith JM (1990) Programming in Martin-Löf’s type theory, vol 200. Oxford

University Press, Oxford
The Univalent Foundations Program (2013) Homotopy type theory: univalent foundations of mathemat-

ics. https://​homot​opyty​pethe​ory.​org/​book, Institute for Advanced Study
Vezzosi A, Mörtberg A, Abel A (2021) Cubical agda: a dependently typed programming language with

univalence and higher inductive types. J Funct Program 31

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/1611.02108
https://homotopytypetheory.org/book

	Should Type Theory Replace Set Theory as the Foundation of Mathematics?
	Abstract
	1 Introduction
	1.1 Related Work

	2 The Role of Logic
	3 Representation
	4 Univalence and Equality
	5 Structuralism and Constructivity
	6 Conclusions
	References

