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Abstract
Mathematicians often consider Zermelo-Fraenkel Set Theory with Choice (ZFC) 
as the only foundation of Mathematics, and frequently don’t actually want to think 
much about foundations. We argue here that modern Type Theory, i.e. Homotopy 
Type Theory (HoTT), is a preferable and should be considered as an alternative.

Keyword  Type theory · Foundations of mathematics · Set theory · Intuitionism · 
Structuralism

1  Introduction

Set theory is usually traced back to Cantor who used sets in an informal way giv-
ing rise to what is called naïve set theory. Nowadays, we usually refer to axiomatic 
set theory which was formulated by Zermelo and Fraenkel and which is referred to 
as Zermelo-Fraenkel Set Theory or short ZFC. When saying Set Theory1 we mean 
ZFC.

Type Theory was introduced by Per Martin-Löf (Martin-Löf 1975) and there are 
several incarnations. The early Extensional Type Theory (ETT) (Martin-Löf 1984) 
gave way to Intensional Type Theory (ITT) (Nordström et  al. 1990) but recently, 
heavily influenced by Voevodsky and concepts from Homotopy Theory, Homotopy 
Type Theory (HoTT) (The Univalent Foundations Program 2013) was developed.2 
When saying Type Theory we mean HoTT.
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1  I am capitalising both Set Theory and Type Theory when referring to specific theories with this name 
not in the sense of a set theory or a type theory.
2  Since not everybody wants to read the whole book, introductory presentations of HoTT include (Alten-
kirch 2019; Ahrens and North 2019; Grayson 2018).
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In Set Theory all mathematical objects are viewed as sets and we write a ∈ A to 
mean that a is an element of the set A. Since in modern Set Theory we don’t use 
urelements, a is a set again, a process that only stops at the empty set {}The same 
element can occur in different sets and two sets are equal iff they have the same ele-
ments (axiom of extensionality).

Set Theory is usually based on classical logic, formally it is presented in the 
framework of first order predicate logic. Set Theory can be viewed as an alternative 
to higher order logic where the quantification over predicates is replaced by quanti-
fying over sets, corresponding to predicates. There are alternative set theories which 
use intuitionistic predicate logic as the framework but they all have in common that 
we first fix the logic as a framework and then formulate the set theory within this 
logic.

Type Theory is based on the idea that all mathematical objects belong to a type 
and can only be understood as elements of a given type. This corresponds to mathe-
matical practice where we conceive of a statement quantifying over all natural num-
bers as only talking about those while in Set Theory this is represented by quantify-
ing over all sets and singling out those which are elements of a particular one, the set 
of natural numbers. In Type Theory an element can only be an element of one type3 
hence we cannot talk about elements in isolation which means we cannot reason 
about representations. This discipline enables a high degree of extensionality which 
is realised by Voevodsky’s univalence axiom entailing that isomorphic structures are 
equal.

Types have elements which we write as a : A meaning a is an element of type A. 
While superficially similar to the set-theoretic a ∈ A it is fundamentally different. 
Saying a : A is part of the static structure of a mathematical text,4 only texts which 
use types consistently make sense. In particular we cannot ask whether a : A because 
this is an aspect of our text not the subject we are talking about. We say that a : A is 
a judgement not a proposition.

The formal presentation of Type Theory also requires another judgement which 
is called definitional or judgemental equality. E.g. when we define n ∶ ℕ as n ∶≡ 3 
we also know that (1, 2, 3) ∶ ℕn but to see this we need to exploit the fact that n ≡ 3 
statically. Again a ≡ b is a judgement which is a static property of a mathematical 
text not a predicate. Judgemental equality also reflects the computational character 
of Type Theory, e.g. we know that all (closed) natural number expressions can be 
reduced to a numeral, e.g. 3 + 4 ≡ 7 . Type Theory also introduces propositional 
equality but it makes sense to distinguish the static judgemental equality from the 
usual propositional equality. Indeed being equal by definition is a common phrase in 
mathematics.

Mathematicians often consider ZFC as the only foundation of mathematics, and 
frequently don’t actually want to think much about foundations. We argue here that 

3  I am here presenting a particular pure form of Type Theory. They are extensions which allow subtyp-
ing, which is usually an attempt to recover features of Set Theory. I prefer to view these sort of develop-
ments as notational conveniences as opposed to foundational features.
4  The static structure of a text corresponds to the static semantics of a program in the sense of computer 
science. It covers aspects like syntax but also correct use of variables and typing.
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modern Type Theory, i.e. HoTT, is a preferable and should be considered as an 
alternative.

1.1 � Related Work

In Maddy (2019) the author develops a set of criteria for possible foundations and 
compares set theory, category theory and homotopy Type Theory using these cri-
teria. First of all it seems rather misleading to include category theory as a possi-
ble foundation because while it provides essential guidance (one of the criteria) it 
requires another foundation to explain what basic constructions are intuitively per-
missable.5 Indeed categorical guidance can be misleading since it would suggest that 
symmetric cartesian closed categories would be a good concept but you need to go 
beyond category theory to see that only preorders satisfy this condition. However, 
category theory fits very well with HoTT, indeed  universal properties have unique 
solutions in HoTT, while they are only unique up to isomorphism  in Set Theory. 
Maddy in loc.cit., footnote 28, admits that she is not sure what these thinkers take 
to be wrong with ZFC, where the thinkers seem to refer to Voevodsky and others. 
It is the purpose of this paper to explain what we think is wrong with ZFC and can 
be addressed by using HoTT. Maddy also argues that she thinks that HoTT would 
need to adopt the axiom of choice to be able to encode the classical theory of sets6—
which is in my experience a common reaction of philosophers who are only too 
willing to give in to intimidation by classical mathematicians and let them define the 
yardsticks of mathematics. Her conclusion is that there is no problem with set theory 
and that the only advantage HoTT would have to offer is proof checking. While it is 
doubtful that this even correct (there are proof systems based on classical mathemat-
ics), it is also misleading. What we try to argue in this paper is that the fundamental 
point of HoTT is conceptual, the fact that it lends itself to implementation is a wel-
come additional benefit.

Homotopy Type Theory has attracted some attention in the philosophy commu-
nity: (Awodey 2014) explains why HoTT is important for structural mathematics; 
(Ladyman and Presnell 2015, 2016) give a philosophical explanation of the identity 
types in HoTT and (Corfield 2020) how an extension of HoTT namely modal HoTT 
can be used in natural sciences especially in physics. In the present paper we attempt 
to argue speccifically what advantages HoTT has over Set Theory. To keep the pres-
entation self-contained we explain the basic ideas of HoTT but in an informal way 
avoiding the complex formal structure of type theory. A novelty of our paper is that 
in section 5 we argue that constructivity and structuralism are just two sides of the 
same coin.

5  Indeed in loc.cit, Maddy complains: I don’t know what Voevodsky finds lacking in category-theoretic 
foundations – perhaps that it fails to provide a Generous Arena?
6  In loc.cit, p.29: But to get even to ETCS, we have to add the axiom of choice, where ETCS stands for 
The Elementary Theory of the Category of Sets
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2 � The Role of Logic

Type Theory does not rely on predicate logic as a framework but introduces logic 
using the propositions as types explanation—in this sense logic is an emergent 
aspect of Type Theory not a prerequisite. In constructive thinking we acknowledge 
that mathematical constructions are taking place in our minds and that we commu-
nicate them using shared intuitions. From this point of view it is not the notion of 
truth which is fundamental but the notion of evidence or proof. A proposition is 
given by saying what we need as evidence to accept that the proposition holds. In 
the context of Type Theory we can do this by assigning to every proposition the type 
of evidence for this proposition. This is also called the Curry-Howard equivalence 
but this is based on the assumption that we already have a logic and a Type Theory 
and then observe a formal relationship between the two, while I define logic by the 
translation.7

The translation of propositional connectives into type theoretic connectives is 
rather straightforward, for example we translate implication P ⇒ Q as the function 
type P → Q between the associated types of evidence which I denote by the same 
letters here8 . The idea is that evidence for P implies Q is a function which maps evi-
dence for P into evidence of Q—function types are a primitive concept of Type The-
ory9. Similar we can translate ∀x ∶ A.P(x) by the dependent function type10 denoted 
as Πx ∶ A.P(x) , the idea is that evidence for a universally quantified statement is a 
(dependent) function that assigns to every element a : A evidence for P(a). Negation 
¬P we interpret as saying that P is impossible means P implies falsum ( P ⇒ False ) 
where falsum ( False ) is interpreted as the empty type.

The translation of disjunction and existential quantification depends on what 
exactly we mean by a proposition. Here there has been a historic change mainly 
since the introduction of HoTT. In ITT we identified types and propositions which 
leads to some strange artefacts. For example we would denote a subset {x ∶ A ∣ P(x)} 
as the type of dependent pairs (a,  p) where a  :  A and p  :  P(a) (this is written as 
Σx ∶ A.P(x))11 . Now the embedding from the subset into A is given by the first 

7  The propositions as types explanation is also related to the Brouwer-Heyting-Kolmogorov (BHK) 
semantics which introduces untyped realisers of propositions.
8  To be more precise we can introduce an operation Prf which assign to every proposition P te type of its 
proofs Prf(P) and then we stipulate that Prf(P ⇒ Q) ≡ Prf(P) → Prf(Q).
9  We explain a function as black box where we can input elements of the domain and which outputs ele-
ments of the codomain. While we have no access to the mechanism (hence the box is black) the only way 
to actually construct a function is via effective means. However, the theory works as well if we believe in 
some sort of magic, like that everything is decidable (the principle of the excluded middle). Formally, the 
properties of functions are represented by the laws of Λ-calculus and the principle of functional exten-
sionality.
10  The dependent function type is a generalisation of the usual function type where the codomain can 
vary over the domain. This corresponds to the cartesian product of a family of sets in Set Theory, hence 
the use of Π
11  The justification for this notation is similar as before, in Set Theory the type of dependent pairs cor-
responds to an infinite sum hence Σ.
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projection �1 ∶ {x ∶ A ∣ P(x)} → A12. However, it turns out that this is not in general 
an injection since we can have different proofs p for the same element a. Also the 
naive translation of existential statements uses again dependent pairs, i.e. evidence 
for ∃x ∶ A.P(x) is given by a pair (a, p) with a : A and p : P(a), we write this type 
as Σx ∶ A.P(x) as before. However, this interpretation of existence gives rise to an 
apparent proof of the axiom of choice: if we know that for all x  : A there exists a 
y : B such that a certain relation R(x, y) holds then we can extract the witness and its 
justification from the proof. More precisely we can define

However, this type theoretic axiom of choice hardly corresponds to the axiom of 
choice as it is used in Set Theory. Indeed, it is not an axiom but just a derivable fact.

In HoTT we say a proposition is a type with at most one element. The idea here 
is that a proposition should not contain any additional information, its only purpose 
is to assert something. As a consequence of univalence we obtain that two propo-
sitions are equal if they are logically equivalent—this is often called propositional 
extensionality. The embedding from a subset to a set ( �1 ∶ {x ∶ A ∣ P(x)} → A ) is 
now an injection because there is at most one proof that the proposition P(a) holds. 
To translate disjunction and existence we use propositional truncation, that is to any 
type A we introduce a proposition ||A|| which corresponds to the proposition that A 
is inhabited.13 That is if there is an element a : A we obtain an element of ||A|| but 
we cannot distinguish them anymore. Now we can say that a proof of existence, i.e. 
evidence for ∃x ∶ A.P(x) is the propositional truncation of the naive translation, i.e. 
||Σx ∶ A.P(x)|| . Given this interpretation the translation of

is not provable since we extract an element from a propositional truncation which is 
clearly wrong because here all elements have been identified. And indeed this for-
mulation of the axiom of choice has the power of the classical axiom, in particular 
we can derive the excluded middle using Diaconescu’s construction.

By the principle of the excluded middle14 we mean

ac ∶ (∀x ∶ A.∃y ∶ B.R(x, y)) → ∃f ∶ A → B.∀x ∶ A.R(x, f (x))

ac(f ) = (�a.�1(f (a)), �a.�2(f (x)))

(∀x ∶ A.∃y ∶ B.R(x, y)) → ∃f ∶ A → B.∀x ∶ A.R(x, f (x))

∀P ∶ Prop.P ∨ ¬P

12  Here �1 ∶ Σx ∶ A.B(x) → A is defined as �1(a, b) ≡ a and �2 ∶ Πp ∶ Σx ∶ A.B(x).B(�1(p)) with 
�2(a, b) ≡ b.
13  Formally, ||A|| can be defined as a higher inductive type with two constructors | − | ∶ A → ||A|| and 
is − prop ∶ ∀xy ∶ ||A||.x = y.
14  The term excluded middle doesn’t actually reflect its meaning. Excluded clearly is a negative state-
ment, hence we should render it is saying It cannot be that a proposition is neither true nor false, which 
can be translated is ¬¬(P ∨ ¬P) , which is constructively provable. A better term for the universal asser-
tion of P ∨ ¬P , would be universal decidability or magicae nigrae in latin.
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Here I write Prop for all propositional types, i.e. types with at most one element and 
P ∨ Q is the translation of disjunction using propositional truncation, ie. ||P + Q||15 
. Actually in this particular example we don’t need to truncate because it can never 
happen that both P and ¬P hold. Clearly there is no function which assigns to every 
proposition either a proof of it or a proof of its negation. We don’t even need to 
appeal to the undecidability of our logic but observe that we cannot look into a prop-
osition due to propositional extensionality. Hence excluded middle seems to suggest 
that we can decide any proposition without even looking at it!

However, we can justify excluded middle by a different translation of the con-
nectives and a different explanation what is a proposition. That is we can interpret 
P ∨class Q as the statement that not both are false ¬(¬P ∧ ¬Q) and similar we can 
explain existence ∃classx ∶ A.P(x) by saying it is not the case that P is always false, 
i.e. ¬(∀x ∶ A.¬P(x)) . Note that we don’t need any truncation because negated state-
ments are always propositions. Moreover the translations are valid in classical logic 
anyway. However, to obtain the correct behaviour of the connectives, in particular 
to justify reasoning by cases and the elimination rule of the existential, we need to 
limit propositions to the negative ones, i.e. to the ones for which proof by contradic-
tion holds, that is we define Propclass = {P ∶ Prop ∣ ¬¬P → P} . So for example if 
we know P ∨ Q and P → R and Q → R we can conclude ¬¬R and if R is negative we 
also know R. Similar reasoning justifies the rule of existential elimination. Moreover 
the remaining connectives preserve the property of being negative. What I present 
here is just the usual negative translation.

We may think that there is no difference between propositions as types with at 
most one element and negative propositions because in neither case can we extract 
information. However, while the axiom of choice is unprovable in both cases, the 
axiom of unique choice is provable for the type theoretic interpretation of proposi-
tions, that is

where ∃!x ∶ A.P(x) means unique existence which can be defined as

This can be proven in Type Theory because the statement of unique existence is 
already a proposition anyway and hence we can extract the witness. However, using 
the negative translation we cannot justify unique choice.

auc ∶ (∀x ∶ A.∃!y ∶ B.R(x, y)) → ∃f ∶ A → B.∀x ∶ A.R(x, f (x))

auc(f ) = (�a.�1(f (a)), �a.�2(f (x)))

∃x ∶ A.P(x) ∧ ∀y ∶ A.P(y) ⇒ x = y.

15  Here A + B is the coproduct or binary sum in Type Theory corresponding to disjoint union in Set 
Theory. It can be defined as A + B = Σb ∶ Bool.P(B) with P(true) ≡ A and P(false) ≡ B.
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3 � Representation

To illustrate the difference between Set Theory and Type Theory let’s look at the 
representation of numbers, starting with the natural numbers. In Set Theory natu-
ral numbers are encoded using only sets, the most common encoding is due to 
von Neumann:

However, there are many alternative ways, e.g. the following is due to Zermelo:

So for example the number 3 is represented as {{}, {{}}, {{}, {{}}} using von Neu-
mann’s encoding and as {{{}}} in Zermelo’s. The axiom of infinity uses one particu-
lar representation to introduce the existence of the infinite set of natural numbers, 
e.g. von Neumann’s, and using the axiom of replacement we can deduce that the 
alternative representation, e.g. Zermelo’s also forms a set.

We can formulate properties that distinguish the two representations, for exam-
ple in von Neumann’s encoding we have that n ⊆ n + 1 which fails in Zermelo’s, 
e.g. 1 ⊈ 2 if we use Zermelo’s encoding. This statement is not really a statement 
about numbers but about their encoding, we say it is not structural. Mathema-
ticians would normally avoid non-structural properties, because they entail that 
results are may not be transferable between different representations of the same 
concept. However, frequently non-structural properties are exploited to prove 
structural properties and then it is not clear whether the result is transferable.

In Type Theory natural numbers are an example of an inductive type, defined 
by the constructors. Following Peano we say that natural numbers are gen-
erated from 0 ∶ ℕ and suc ∶ ℕ → ℕ (the successor, suc(n) means n + 1 ). To 
define functions out of the natural numbers we use an elimination principle 
that allows us to perform dependent recursion, that is given a family of types 
indexed by the natural numbers M ∶ ℕ → Type and an element z  :  M(0) and 
s ∶ Πn ∶ ℕ.M(n) → M(suc(n)) we can define a function f ∶ Πn ∶ ℕ.M(n) with the 
definitional equalities f (0) ≡ m(0) and f (suc(m)) ≡ s(n, f (n)) . The elimination 
principle allows us to define function like addition but also to derive properties, 
e.g. that addition forms a commutative monoid exploiting the propositions as 
types explanation.

0 = {}

1 = {0}

2 = {0, 1}

⋮ ⋮

n = {0, 1,… , n − 1}

0 = {}

1 = {0}

2 = {1}

⋮ ⋮

n = {n − 1}
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The definition of the natural numbers precisely identifies the structural properties 
of the type: it is equivalent to stating that ℕ is an initial algebra, a natural number 
object, in the language of category theory. And because we cannot talk about ele-
ments in isolation it is not possible to even state non-structural properties of the 
natural numbers. Indeed, we cannot distinguish different representations, for exam-
ple using binary numbers instead.

Both in Set Theory and in Type Theory we can go on and construct more elabo-
rate sets/types of numbers, e.g. ℤ,ℚ,ℝ,ℂ . In Set Theory we can talk about subsets, 
e.g. we may want to stipulate that ℕ ⊆ ℤ but it turns out that this doesn’t hold for the 
most natural choice of encodings.16. Yes, we can start with the biggest number class 
we want to represent and then define the other ones as subsets via comprehension.

In Type Theory the notion of a subset doesn’t make sense in general for types. 
We can observe that we have a canonical embedding function between the different 
number types, e.g. ℕ → ℤ and we can agree notationally that we can omit this func-
tion when it is clear from the context that we use a natural number when an integer 
was required.

While we don’t have a notion of subset on types, we can talk about subsets of a 
given type A which are just propositionally valued functions P ∶ A → Prop . Given 
any two of such subsets we can define P ⊆ Q as ∀x ∶ A.P(x) → Q(x) in Type Theory. 
This means we can actually play the same trick as in Set Theory and define our 
number classes as subsets of the largest number class we want to consider and we 
have indeed the subset relations we may expect.

Hence Type Theory allows us to do basically the same things as Set Theory as 
far as numbers are concerned (modulo the question of constructivity) but in a more 
disciplined fashion limiting the statements we can express and prove to purely struc-
tural ones.

One criteria for foundation might be minimality: we need as few basic constructs 
as possible. One may think at the first glance that Type Theory is somehow less 
minimalistic, while in Set Theory we only need {…} to represent all mathematical 
concepts there seems to be quite a menagerie of type constructors: Π-types, Σ-types, 
equality types and so on. However, to be fair we should compare the axioms of Set 
Theory with the basic constructions of Type Theory. And indeed while in applied 
Type Theory we may introduce a lot of apparently unrelated types we can often 
reduce them to a basic collection. So for example most inductive constructions can 
be reduced to the type of well-founded trees or W-types. However, it s fair to admit 
that the program to reduce very advanced type theoretic constructions, e.g. Higher 
Inductive Types (HITs) to basic combinators is subject of current research. This can 
be compared to reducing advanced set theoretic principles to basic axioms.

16  E.g. we may represent integers as equivalence classes of pairs of natural numbers with the same dif-
ference, i.e. (a, b) = (c, d) if a + d = c + b.
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4 � Univalence and Equality

Type Theory doesn’t allow us to make statements about representations because we 
cannot talk about elements in isolation. This means that we cannot observe inten-
sional properties of our constructions. This already applies to Intensional Type 
Theory, so for example we cannot observe any difference between two functions 
which are pointwise equal. However, on the other hand in ITT we cannot prove them 
to be equal either. This is a consequence of the way the equality type is treated in 
ITT. That is for any element a : A there is a canonical element of the equality type 
refl(a) ∶ a = a . Now consider f , g ∶ ℕ → ℕ with

Using induction it is easy to show that f (x) = g(x) for all x ∶ ℕ . However, the only 
proof of f = g would need to be canonical (since we have no other assumptions) i.e. 
refl(h) but this would require that h ≡ f ≡ g and f and g are clearly not definitionally 
equal.

Hence in ITT while we cannot distinguish extensionally equal functions we do 
not identify them either. This seems to be a rather inconvenient incompleteness of 
ITT, which is overcome by HoTT. In HoTT a type doesn’t just have elements but 
also it comes with an equality type that tells what is the type of evidence that two 
objects are equal. In the case of function type this evidence is equivalent to func-
tional extensionality. Another example is propositional extensionality: two proposi-
tions are equal if and only if they are logically equivalent. By incorporating these 
principles Type Theory is as extensional as Set Theory but it turns out it is much 
better.

This is a consequence of the fact that we cannot observe the representations of 
objects. What does this mean for types: what can we observe about a type? Now we 
can observe the cardinality of a type, e.g. whether it has two elements or whether it 
is countably infinite but nothing else. Hence extensionally two types with the same 
number of elements should be considered equal. This may appear counterintuitive 
on the first glance because it entails for example that ℤ = ℕ . But then can you write 
a property of a type that distinguished ℤ from ℕ ? You may say that addition behaves 
differently for the two but you just have the type and no operation on them. Indeed, 
if we talk about the algebraic structure, e.g. we consider them as commutative 
monoids, then they are not equivalent because we can distinguish them.

It is a consequence of the univalence principle that two isomorphic types are 
equal17 where by isomorphic I mean that there a functions in both directions which 
when composed are equal to the identity. So basically two types are equal if there is 
a one-to-one correspondence between their elements. This also applies to algebraic 

f (x) = x + 0

g(x) = 0 + x

17  The actual statement of univalence is slightly different and uses the notion of an equivalence which 
refines isomorphism in a setting where equality is not always propositional. A function f ∶ A → B is an 
equivalence if for any b : B there is a unique a : A and p ∶ f (a) = b . Since equivalence is reflexive there 
is an obvious function from equality of two types to their equivalence. Univalence states that this func-
tion is an equivalence.
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structures like the aforementioned commutative monoids. While the monoids asso-
ciated to ℤ and ℕ are not isomorphic we cannot distinguish different representations 
of the same algebraic structure, e.g. using unary or binary numbers to represent ℕ . 
And indeed it is a consequence of univalence that isomorphic algebraic structures 
are equal.

This reflects mathematical practice to view isomorphic structures as equal. How-
ever, this is certainly not supported by Set Theory which can distinguish isomorphic 
structures. Yes, indeed all structural properties are preserved but what exactly are 
those. In HoTT all properties are structural, hence the problem disappears.

There is a price to pay for this elegance. We usually expect that equality is a prop-
osition but this ceases to hold when we say that evidence for equality of types is iso-
morphism because there is usually more than one isomorphism between isomorphic 
types.18 The conclusion is that equality of structures in general is not a proposition 
but a structure itself.

What is equality actually? I said that every type comes with a notion of equality, 
with an equality type but what are the properties of equality types. If equality were 
just a proposition then it would be easy: equality is just an equivalence relation (i.e. 
reflexive, symmetric and transitive) and every function has to preserve it. This view 
is called the setoid interpretation and it is a useful easy case of the actual story.19 
But since we have types and we can iterate the construction of equality types, i.e. we 
get a whole infinite tower of equalities, the answer is a bit more involved. The first 
step up from equivalence relations are groupoids, these are categories where every 
morphism corresponding to an equality type has an inverse. Or more naively, it is 
the combination of an equivalence relation and a group.20 However, we need to iter-
ate this process any number of times arriving at weak infinity groupoids. They are 
called weak because all the properties don’t hold strictly but only upto higher equal-
ity.21 This is where Homotopy theory comes in helpful because these structures have 
been investigated and they can be defined as simplicial sets with the Kan property 
or more exactly Kan fibrations for dependent types. Actually in the context of Type 
Theory it turns out that cubical sets are technically better behaved.22

18  One can force equality to be a proposition by truncating it. However, this means that we loose impor-
tant properties such as the ability to always replace equals by equals.
19  Setoids have been used to justify extensional principles, see (Altenkirch 1999; Altenkirch et al. 2019).
20  A one object groupoid is a group while a groupoid where every homset is propositional is an equiva-
lence relation.
21  Ladyman and Presnell (2015) provide a philosophical justification of path induction. However, 
they seem to miss the point that path induction is nothing but a way to express that equality is a higher 
groupoid, that is the natural generalisation of an equivalence relation to a proof-relevant seeting.
22  In Cohen et al. (2016) cubical sets are used to provide a constructive explanation of the univalence 
axiom. This semantics gives rise to cubical Type Theory, which is now implemented in cubical agda.
Vezzosi et al. (2021). Cubical Type Theory can be understood as a refinement of HoTT.
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5 � Structuralism and Constructivity

We may think that the constructive nature of Type Theory which comes from the 
propositions as types approach to logic is rather orthogonal to its support of struc-
tural mathematics which stems from the fact that elementhood is treated stati-
cally. Indeed, we can add classical principles like the unrestricted axiom of choice 
(and hence excluded middle) to HoTT and still have univalence. So are these two 
aspects orthogonal, can we just have univalence but don’t embrace constructive 
Mathematics?

While this is possible in principle, I would argue that there is indeed a connection 
between these two aspects. Univalence forces us to revisit the notion of equality and 
accept that equality isn’t always a proposition. It is this step which at the same time 
renders many applications of choice unnecessary. Choice in conventional mathemat-
ics becomes necessary because we only talk about propositions, and hence choices 
need to be hidden in propositions. When we later need to refer to the choices we 
have just hidden, we need to use the axiom of choice. In Type Theory we can indeed 
exploit the fact that our constructions may be types and not propositions and the 
choices are explicit.

A simple example for this phenomena is the way categories are treated in HoTT. 
Categories are a generalisation of preorders but indeed we prefer to deal with par-
tial orders where the equivalence introduced by the order coincides with equality. 
Can we do the same for categories? Indeed in HoTT we can introduce the notion of 
a univalent category23 , where isomorphism and equality of objects are equivalent 
(i.e. isomorphic). And indeed most categories that arise from semantic considera-
tions – like the category of sets, or categories of algebraic structure – are univalent. 
In contrast the counterpart to univalent categories in a classical setting are skeletal 
categories, which are very rare and unless we use of the axiom of choice.

6 � Conclusions

Axiomatic Set Theory was developed in the 1930ies and then it constituted consid-
erable progress in making the foundations of mathematics precise. However, much 
has happened since and it is time to reconsider the foundations of mathematics, in 
particular in light of a shift of major applications of mathematics from natural sci-
ence to computer science and related disciplines.

From the viewpoint of computer science, it seems almost preposterous to think 
that all mathematical concepts can be adquately represented as sets, which corre-
spond to a type of trees where we ignore order and multiplicity of subtrees. This 
encoding seems to be not very different than the insight that all structures in com-
puting can be represented as a sequence of 0s and 1s. Indeed, it seems to me that set 
theory is something like the machine language of mathematics, but it doesn’t share 
the redeeming feature that in computing we need to translate everything in machine 

23  In the terminology of the HoTT book, ordinary categories are called precategories and univalent cat-
egories are called categories.
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language. Mathematics which is a construction of our mind doesn’t need a machine 
language it should rather reflect our basic intuition.

Set Theory enables us to ask stupid questions, like Are the integers a subset of the 
rationals? or Is 2 a subset of 3? Mathematicians tell me that they just don’t ask these 
questions so they don’t really need a better language. This reminds me, who worked 
as a programmer in the 1980ies, of the attitude of some of my colleagues who didn’t 
see the need for high-level languages because they knew how to do the right thing 
on the machine level.

The basic tenants of Type Theory are this: mathematical concepts are represented 
as types, where every type comes with a static notion of elementhood and an equal-
ity type. Objects are equal if they represent the same mathematical object, in par-
ticular we view objects as equal if they satisfy the same properties – this is just 
paraphrasing Leibniz24. A consequence of this is that equalities aren’t always propo-
sitions because they may be me more than one way that two objects can be equal. 
Logic emerges in Type Theory, as the propositions as types explanation, which 
replaces the philosophically difficult concepts of truth with the notion of evidence 
which can be expressed as a type.

As far as constructivity is concerned, I would like to quote Frank Pfenning who 
recently said in a lecture I have lost the ability to understand classical logic. I share 
the same problem, specifically with the boolean explanation of logic: it seems to me 
that we cannot assign a boolean to every formula in arithmetic. Now I understand 
that assign here seems to refer to a classical function. However, and this may be 
because I am computer scientist, it seems to me a strange abuse of the word assign-
ment if you have one but cannot tell me what is the output for a given input.

It seems to me that the classical approach can only succeed by an intensive pro-
cess of brain-washing, replacing naive concepts, like function, which rather elabo-
rate replacements. It seems that many mathematicians think that this process is nec-
essary for them to continue their leading edge research in modern mathematics. That 
may well be so, but maybe we shouldn’t give up the hope that there is the possibility 
for a more naïve form of mathematics which favours explainability over latest fash-
ion research.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

24  Here I disagree with the analysis in Ladyman and Presnell (2016) who look for an internal representa-
tion of Leibniz’s principle which naturally fails. We need to look atthe philosophical idea of identifying 
an object with its properties which leads to the notion of extensionality realized in HoTT.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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