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A B S T R A C T   

Stable isotopes of precipitation are important natural tracers in hydrology, ecology, and forensics. The spatially 
explicit predictions of oxygen and hydrogen isotopes in precipitation are obtained through different interpolation 
techniques. In the present study we aim to examine the performance of various interpolation techniques when 
predicting the spatial distribution of precipitation stable isotopes. The efficiency of combined geostatistical tools 
(i.e. regression kriging; RK) and various machine learning methods (including regression enhanced random forest 
methods: MRRF, RERF) are compared in interpolating the spatial variability of precipitation stable oxygen 
isotope values from two different sampling networks in Europe. To assess the performance of the models, mean 
squared error (MSE), nonparametric Kling Gupta efficiency (KGE), absolute differences and relative mean ab-
solute error metrics were employed. It was found that the combination of the different regression techniques with 
Random Forest can produce estimations with comparable accuracy in terms of descending order of overall 
average MSE, MRRF: 2.61, RK: 2.77, RERF: 2.99, RF: 3.08. The best performing combined random forest model 
variant (MRRF) outperformed regression kriging in terms of a hybrid error metric (KGE) by 7.5%. Sequential 
random rarefying the station networks showed that machine-learning methods are more capable of maintaining 
high prediction accuracy even with fewer input data. This can be a great advantage when a suitable method is 
needed to predict the stable isotope composition of precipitation for large spatial domains where the spatial 
density of data stations shows large differences.   

1. Introduction 

The ratio of heavy and light stable isotopes of the water molecule 
(18O/16O; 2H/1H) is a frequently used tool in environmental isotope 
geochemistry, specifically in hydrology, climatology and biogeochem-
istry (Coplen et al., 2000). Stable isotope composition is conventionally 
expressed as δ values in per mill (Coplen, 1994). The isotopic compo-
sition of precipitation (δp) provides an insight into the origin of water 
vapor, and the conditions attained during condensation and 

precipitation (Dansgaard, 1964). Using these variations, stable isotopes 
in meteoric water have become important natural tracers in the study of 
the water cycle (Bowen and Good, 2015; Fórizs, 2003). With the 
continuous advancement in effectiveness and availability of analytical 
tools, the spatiotemporal abundance of precipitation stable isotope 
measurements is steadily increasing (Yoshimura, 2015) providing suf-
ficient ground for the development of spatially continuous datasets of 
isotope composition. These datasets can be utilized for advanced hy-
drological applications of precipitation stable isotopes where excess 
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information can be gained from not only having point data, but spatially 
continuous information. Such applications can be found in: hydrogeol-
ogy (Bowen and Good, 2015; Clark and Fritz, 1997); limnology (Birkel 
et al., 2018; Nan et al., 2019; Tyler et al., 2022); water resource man-
agement (Bowen and Good, 2015; Gibson and Edwards, 2002); explo-
ration of changes in moisture source conditions (Amundson et al., 1996); 
animal migration studies (Hobson, 1999; Hobson and Wassenaar, 1996); 
food source traceability (Heaton et al., 2008); as well as forensic sciences 
studies (Ehleringer et al., 2008). 

To interpolate isotope monitoring data across space, a pioneering 
approach combined (i) an initial empirical model of trend driven by 
independent (geographical) parameters, and (ii) kriging of the residuals 
(Bowen and Revenaugh, 2003; Bowen and Wilkinson, 2002). Two de-
cades ago, this particular approach was tested against potential alter-
natives to interpolate δp variability and has been proven to provide 
better estimates (Bowen and Revenaugh, 2003). This method has been 
widely applied and became the “gold standard” in mapping the spatial 
distribution of δp globally (e.g. Bowen (2010); Terzer et al. (2013); van 
der Veer et al. (2009)), and regionally; e.g. Chan et al. (2012); Hatvani 
et al. (2020); Hatvani et al. (2017); Kaseke et al. (2016); Kern et al. 
(2014); Lykoudis and Argiriou (2007). 

Machine learning approaches (random forests and similar tech-
niques) are increasingly used to extract patterns and insights from the 
ever-increasing stream of geospatial data (Reichstein et al., 2019), 
becoming a frequently used tool in geosciences for interpolating envi-
ronmental variables (Hengl et al., 2018). Examples of the application of 
machine learning methods in deriving isoscapes are scarce and are 
related to e.g. bioavailable strontium (Bataille et al., 2020; Funck et al., 
2021); on sulfur isotopes in human remains (Bataille et al., 2021); ni-
trogen and carbon stable isotopes in particulate matter from the 
Northwest Atlantic Continental Shelf (Oczkowski et al., 2016); and 
continental studies on the isotopic composition of shallow groundwater 
(Stahl et al., 2020). An especially relevant work related to the present 
study is the precipitation isoscape derived by gradient boosting (Nelson 
et al., 2021). 

There have been comparative studies on the performance of different 
interpolation techniques in relation to mapping geochemical and 
meteorological data, including stable isotope values. In these compari-
sons regression kriging (RK) has performed better than basic interpo-
lation techniques such as triangulation or inverse distance weighting 
(Bowen and Revenaugh, 2003; Li et al., 2011). Moreover, machine 
learning algorithms seemed to perform similarly (Hengl et al., 2018), or 
even better than combined geostatistical tools (Bataille et al., 2018; Li 
et al., 2011; Zandi et al., 2022). Nevertheless, random forest interpola-
tion has not yet been applied to map the spatial structure of precipitation 
stable isotopes. 

With the vast number of possible methods to apply when interpo-
lating environmental variables, benchmarks are needed to be able to 
decide which particular approach suits best the data at hand. Thus, the 
present study aims to compare the performance of combined geo-
statistical tools (i.e., regression kriging) and various machine learning 
(ML) methods (including the novel Regression Enhanced Random Forest 
methods) in interpolating the spatial variability of precipitation oxygen 
stable isotopes (δ18O) from two different sampling networks in Europe. 

2. Materials and methods 

2.1. Used data and preprocessing 

In the course of the research the efficiency of interpolation methods 
were tested on two datasets chosen to provide sufficient data for inter-
polation and to enable independent validation of results. Daily precip-
itation stable isotope observations from the United Kingdom (Dataset 1), 
and monthly data from Germany and its surroundings (Dataset 2) were 
used. 

The daily precipitation stable isotopic data (Dataset 1) was acquired 

from three consecutive days between 23 and 25 January 2012 by Tyler 
et al. (2016) conducted in the frame of the British Isotopes in Rainfall 
Project (BIRP). BIRP included 67, 68, and 67 stations providing data 
parallel for 23rd, 24th, and 25th of January, respectively, which is an 
exceptionally high spatial coverage, although for just a short amount of 
time. Out of the three days, 23 January was the most variable and 25 the 
least (Fig. S1). 

In the case of Dataset 2, a subdomain of Central Europe was selected 
covering various physiographic conditions. The backbone of Datatset 2 
is the German sampling network of stable water isotopes in precipitation 
(Stumpp et al., 2014) which had the highest number of active stations (n 
= 30) in 1998. Hence monthly data from this year was chosen for the 
methodological comparison of the present study. This dataset was 
extended with additional monitoring stations from the neighboring 
countries within a 10 km band in order to stretch out the interpolated 
maps across the entirety of Germany (Fig. 1A). The only exception was 
Groeningen (NL), 30 km from the German border in the NW. Altogether 
10 stations from the Austrian national network (Umweltbundesamt, 
2019) and two stations from the Global Network for Isotopes in Pre-
cipitation (GNIP; (IAEA, 2019) were included to improve the spatial 
coverage for Dataset 2 representing the Central European domain 
(Fig. 1). Out of the four months the values of January (representing 
winter) were the most variable and July (representing summer) the 
least. Median values were highest in the summer (Fig. S1). 

To account for seasonal hydrometeorological differences and keep 
the number of cases assessed from Dataset 1 and 2 comparable, not all of 
the twelve months, but the central month of every season (January, 
April, July, October) was considered from Dataset 2 alongside the three 
days of Dataset 1. 

In Dataset 1 the distances between the stations are mostly (~50%) 
spread between 160 and 430 km (median = 339 km), while in Dataset 2 
the range is considerably wider (~60% of the distances between 230 and 
600 km; median = 383 km) reinforcing the visual impression (Fig. 1A) 
that Dataset 1 is much more densely populated (Fig. 1B) than Dataset 2 
(Fig. 1C). Nevertheless, clustering can be observed in both cases to a 
different extent. In Dataset 1 the eastern and north-eastern parts were 
scarcely covered with no data on the coastlines, while the southern parts 
of England and Wales were most densely sampled. In Dataset 2, the high 
spatial abundance of stations in the south (primarily due to the inclusion 
of stations from the Austrian national network data) is noteworthy 
(Fig. 1). 

The first step in data preprocessing was to numerically check the δ 
values for potential database errors (e.g. typos, sign errors) (IAEA, 
1992). This was done by local indicator of spatial association (LISA) 
which is used to identify “outliers” as in Anselin’s Moran scatterplot, 
(Anselin, 1995) and Supplement Sect. 1. It highlighted if nearby values 
were exceptionally dissimilar, although it is expected that the closer the 
sites are the more the values measured at them resemble each other 
(Tobler, 1970). 

A second-order stable isotope variable is d-excess defined as d =
δ2H – 8 × δ18O (Dansgaard, 1964). In the present case it is used for 
detecting outlying values in the dataset. If a monthly δ18O value 
appeared to be an outlier according to the LISA statistics, the corre-
sponding d- excess value was explored as well, similarly to (Hatvani 
et al., 2023). For example, very negative d-excess values, occasionally 
even lower than − 10 ‰ were interpreted as an indication of evaporative 
enrichment of the sample (Bowen et al., 2018) and it was discarded from 
the evaluation if no neighboring stations reported similarly extreme d- 
excess values for the given month. With this procedure the January 
value at Goerlitz (Fig. S2A) and the April value at Berlin (Fig. S2B) were 
discarded leaving January and April with 40, and July & October with 
41 data points in the Dataset 2, while Dataset 1 remained unchanged. 

2.2. Methods applied 

After data preprocessing the efficiency of a classical geostatistical 
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method and three additional machine learning tools were explored in 
interpolating and replicating precipitation stable isotope variability. 

Multiple regression kriging (RK; (Hengl et al., 2007)) is one of the 
most basic and widely used geostatistical interpolation techniques 
relying on both spatial autocorrelation and covariate information 
(Sekulić et al., 2020); for details see Sect. 2.2.1. Secondly, a machine 
learning method: random forest (Breiman, 2001) in regression exercises 
was applied, which was chosen for its previous application for interpo-
lating isotope data (e.g. Bataille et al. (2018)) and other environmental 
variables (Hengl et al., 2018). Lastly, machine learning methods com-
bined with regression analysis (i) multiple regression random forest 
(MRRF; Sect. 2.2.2; (Sekulić et al., 2020)) and (ii) regression enhanced 
random forest (RERF; Sect. 2.2.2; (Zhang et al., 2019)) were used. For a 

summary see Table S1. 
The investigations were conducted uniformly in Web Mercator pro-

jection (EPSG: 3857) since variography should be performed on a metric 
scale (Hatvani et al., 2021). 

2.2.1. Regression kriging 
Over large scale distances, trend-like predisposition of stable iso-

topes in precipitation were documented (Dansgaard, 1964; Rozanski 
et al., 1993) which could mask the local spatial autocorrelation patterns. 
Regression kriging (RK) is specifically a tool which accounts for these 
trend-like processes in its (multiple) regression component with 
geographic and climatic variables as the independent predictors, and the 
primary precipitation stable oxygen isotope values as the dependent 

Fig. 1. Spatial distribution of precipitation stable isotope monitoring sites used to test the performance of a classical geostatistical approach and machine learning 
methods (A). Dataset 1: Stations reporting 23rd, 24th, and 25th of January 2012 in the British Isotopes in Rainfall Project (Tyler et al., 2016) Dataset 2: selected GNIP 
stations (green) ANIP stations (red) active in 1998. Histogram of the distances between the precipitation monitoring stations in Dataset 1 (B) and Dataset 2 (C). The 
bin width was chosen following Scott (1979). Basemap: © OpenStreetMap contributors. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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variables. 
The spatial variability determined by multiple regression used to 

define an initial grid. Second, a residual grid is created using universal 
kriging (Cressie, 1990; Hengl et al., 2007) and its weight function - 
theoretical semivariograms (Matheron, 1965) - fitted on to the residuals 
of the multivariate regression model; finally, the initial and residual grids 
are summarized to obtain the final predicted δ18 Ô. 

In RK, the employed multiple regression and geographic variables 
used to explain stable isotope variance in the regions were:  

• latitude, longitude (in Web Mercator EPSG: 3857);  
• digital elevation model obtained from Amazon Terrain Tiles (AWS, 

2021) downloaded via R using the elevatr package v0.3.4, 
get_elev_raster function (Hollister, 2021), setting the zoom (z) 
level to 5, resulting in the effective spatial resolution of 2.446 ×
2.446 km. Amazon Terrain Tiles provides open elevation data by 
aggregating, standardizing, and tiling multiple source datasets into 
common web mapping and desktop GIS formats and dimensions;  

• minimum-, maximum-, and mean temperature; precipitation amount 
obtained from the ERA5 reanalysis (Copernicus Climate Change 
Service, 2017). ERA5 provides hourly estimates of a large number of 
atmospheric, land and oceanic climate variables at a 30 km spatial 
resolution. Daily and monthly aggregates of the hourly fields are 
available as well. In the study, the meteorological variables were 
extracted from the daily aggregates for Dataset 1, and monthly ag-
gregates for Dataset 2;  

• geodetic distance from the coast, calculated in R using the spatial 
coordinates with the gdistance function of the rgeos package 
version 0.5–9 (Bivand and Rundel, 2021). Being the dominant wind 
direction and moisture source pathway (Tyler et al., 2016), it could 
have been a viable approach to consider the distance from the 
Atlantic Ocean in the case of Dataset 1. However, this would have 
violated the general applicability of the present exercise and 
comparability of the results from Datasets 1 and 2. 

The multiple regression model was constructed by backward elimi-
nation in a stepwise process (O’Brien, 2007) of the possible predictors 
considering significance, adj. R2, and the variance inflation factor (VIF) 
applied in numerous similar studies, e.g. (Hatvani et al., 2020; Hatvani 
et al., 2017). In this study only the δ18 Ô values at the validation stations’ 
locations are used and not the whole grid. The semivariograms were 
fitted to the data with least squares fitting in all cases resulting in the fit 
of a spherical model (Fig. S3). 

Out of the possible predictors in Dataset 1, latitude, longitude and 
minimum temperature were found to be applicable. In Dataset 2 altitude 
was also a significant predictor in certain months, however it was dis-
carded, considering (i) its strong covariance with temperature, and (ii) a 
uniform set of environmental variables for both datasets when con-
structing a multiple regression model assuming that the environmental 
variables driving precipitation stable isotope composition should be the 
same in neighboring regions. Yet their relative importance may vary 
over time/seasonally. In July an alternative version of regression model 
was derived since in this particular case precipitation was also found to 
be a meaningful predictor in minimizing the effect of geographical 
factors influencing the raw δp records. All obtained models were sig-
nificant (p < 0.093) and VIF was negligible (VIF < 4.935), while the 
average adj. R2 varied between 0.3 and 0.5 peaking at 0.37 in the case of 
Dataset 1 (Fig. S4A) and between 0.1 and 0.8 in a quite equally 
distributed way in the case of Dataset 2 (Fig. S4B). 

2.2.2. Random forest 
Random forest (RF) is a nonparametric method well-known for 

solving prediction problems. Its predictions in regression problems are 
based on the average results of the random decision trees which use 
bootstrap sampling (bagging) to eliminate the possibility of over-fitting. 

Biau and Scornet (2016); Breiman (2001); Prasad et al. (2006). In RF, 
each tree is built using a subset of the original data set, which is used to 
derive the tree partition and to make the tree prediction (Biau and 
Scornet, 2016). Once the observations are selected, a recursive parti-
tioning is performed of the covariates space. In each cell, a number mtry 
of variables are selected uniformly at random among all covariates 
(Fig. S5; Scornet (2017)). Then, the procedure selects the split mini-
mizing the quadratic risk of the tree estimate at each step using the out- 
of-bag observations to evaluate the trained algorithm (Breiman, 1996; 
Prasad et al., 2006), being repeated until each cell contains less than a 
prespecified number, nodesize, of observations. After tree partition has 
been completed, the prediction at a new point is computed by averaging 
observations falling into the cell of the new point. Then each one of the 
trees in the forest gives a prediction, and the forest prediction is simply 
the average of the predicted values. Therefore, the key tuning parame-
ters of the RF algorithm are mtry and node.size (Biau and Scornet, 
2016; Breiman, 2001; Scornet, 2017). The specific parametrization of 
the random forest methods used here are shown in Fig. S6. 

A weakness of the algorithm is that the prediction is in the form of a 
weighted average of responses in the training set, and the results can 
only be obtained within the range of the response variable, resulting in 
prediction bias (Zhang and Lu, 2012). Specifically, the bias can be quite 
large in the extrapolation problems we typically encounter in spatial 
analysis. To get around the problem of extrapolation, RF is combined 
with regression analysis (Zhang et al., 2019). In the present study LASSO 
regression combined with RF, called Regression Enhanced Random 
Forest (RERF) (Zhang et al., 2019), and common multivariate regression 
combined with RF, called multiple regression random forest (MRRF) are 
employed. 

RERF is a semiparametric prediction approach. Predictions of the 
RERF are derived from the sum of the LASSO regression and the RF 
prediction for the LASSO regression residual. LASSO regression employs 
a coefficient estimate derived from a penalized least squares estimator as 
opposed to the linear regression model’s standard least squares esti-
mator. For a given tuning parameter, the L1-penalization of LASSO 
regression enables variable selection for a large number of covariates 
(Tibshirani, 1997), excluding those predictors that resulted in a coeffi-
cient equal to zero (Fig. S6: LASSO regression-right column), thereby 
improving prediction, or one can provide the set of predictors the LASSO 
regression can rank. However, LASSO regression assumes the linear 
regression model, which has a potentially limited structure, limiting its 
prediction ability to data with a complex structure. In other words, bias 
can be anticipated when applying only LASSO regression. Therefore, in 
the RERF approach, the random forest method is applied to the residual 
of the LASSO regression to correct the possible bias (Zhang et al., 2019). 
Each method of LASSO regression and RF method has distinct tuning 
parameters, which certainly affect both LASSO regression and RF per-
formance. Therefore, selecting a tuning parameter combination that 
reduces the overall prediction error would be reasonable. In this 
instance, a tuning parameter was chosen using cross-validation, a reli-
able approach for estimating the prediction error (Zhang et al., 2019). 
Note that a grid search algorithm was applied when choosing the 
combination of tuning parameters. Using RERF higher prediction per-
formance is expected (smaller errors) than with ordinary RF, especially 
in the case where extrapolation is needed. In MRRF the same multiple 
regression model was applied to complement the RF as with RK, the 
predictors were manually chosen. 

2.3. Validation statistics 

For validation purposes 15% of the available data were randomly 
retained while ensuring that these test stations are not closer to each 
other than 50 km to avoid clustering of the validation points. This 
random selection was repeated ten times for each day investigated from 
Dataset 1 and each month from Dataset 2 to provide ensembles to better 
depict the performance of the compared methods. 
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In the validation process ordinary and hybrid error metrics were used 
to explore the performance of the different methods in replicating the 
actual measured δ18O values. Two ordinary metrics, the mean standard 
error (MSE; Eq. (1)) and the relative mean absolute error (RMAE) were 
calculated, out of which the former is highly suggested to be included in 
such studies to make it comparable to others (Li and Heap, 2008). 

MSE =
1
N

∑N

i=1
(δ̂i − δi)

2 (1)  

where N is the number of data points, ̂δ i the value returned by the model 
and δi the actual value for data point i. To complement this metric and 
make the results comparable with studies in which the primary variables 
are in a different measurement unit or resolution RMAE was also 
calculated (Supplement Sect. 2, Fig. S7) due to its scale independency 
(Li and Heap, 2008). Lastly the newly developed non-parametric version 
of the Kling-Gupta efficiency (KGE) was used (Pool et al., 2018) as a 
hybrid error metric, since ordinary KGE implicitly assumes data 
normality and the absence of outliers (Clark et al., 2021). The KGE can 
take values between -∞ and 1, with 1 indicating a perfect agreement 
between the simulations and observations and the lower the KGE gets, 
the less accurate the estimation is compared to the observations (Gupta 
et al., 2009; Knoben et al., 2019). 

To test how sensitive the prediction performance under reduced data 
availability, the training data in both datasets were randomly rarefied 
one-by-one. In Dataset 1, 46 stations were excluded this way, corre-
sponding to ~ 79% of the training set), while in Dataset 2, 27 stations 
were left out at the end corresponding similarly to ~ 79% of the training 
set. The models were recalculated using the reduced training sets and 
the results were compared to the previously used validation stations (see 
above). Due to high demand in computational resources in the case of 
RERF, the rarefaction was carried out at a lower resolution, i.e. pairs of 
stations were removed in one step. For even more specifics the reader is 
referred to the used R code Supplement section 4. 

2.4. Software used 

Variography was conducted using the gstat package, version 2.0–9 
(Pebesma, 2004). The LASSO regression was calculated using the 
glmnet package (Friedman et al., 2010) and the RF, MRRF, RERF 
models are grown using 500 decision trees each and the specific 
parameter values for e.g. node.size and mtry were determined by the 
tune function of randomForestSRC package, version 3.1.1 (Ishwaran 
et al., 2021; Ishwaran et al., 2008) in R (R Core Team, 2019). 

3. Results and discussion 

3.1. Importance of predictors 

The importance of the predictors was assessed for all models: RF, RK 
& MRRF, and RERF. It should be noted that no uniform metric yet exists, 
therefore, the comparison is done using the relative importance of the 
predictors for each approach for both datasets. The following metrics 
were applied: variable importance for RF (Fig S6: left column), adjusted 
R2 for RK & MRRF (Fig. S6: middle column), and normalized LASSO 
regression coefficient using the Agresti and Coull (1998) method for 
RERF (Fig. S6: right column). 

The geographical position of the stations (X, Y coordinates) are 
generally considered to be important predictors (Bowen and Wilkinson, 
2002; Dansgaard, 1964; Rozanski et al., 1993) and indeed in the case of 
Dataset 1 are among the strongest first two predictors in the case of the 
linear (Fig. S6B, E, H) and among the strongest four in the case of the 
non-linear approaches (Fig. S6: Dataset 1 left and right columns). On the 
contrary, precipitation seems unimportant in the case of the linear 
models (Fig. S6: middle column and sect. 2.2.1.). In the meanwhile 
precipitation leads the set of predictors regarding their importance in 

the case of RF and RERF (Fig. S6A, C) on 23 Jan, and can also be 
considered meaningful on 25 January (Fig. S6G, I) suggesting a non- 
linear relationship with δ18O in precipitation. Tmin was the leading 
variable in the case of RK and MRRF (Fig. S6B) on 23 January and taken 
as important on 24 January (Fig. S6E). It was also among the most 
important predictors in the case of all approaches on 25 January 
(Fig. S6G-I). In the case of Dataset 2, we first focus on altitude which is 
traditionally an important predictor in the region (Kern et al., 2014; 
Siegenthaler and Oeschger, 1980) it takes the leading role in the non- 
linear methods. July is a special case (see Sect. 2.2.1) in which both 
the nonlinear approaches (e.g. Fig. S6P, S) and even multiple regression 
(Fig. S6R) considered precipitation as an important predictor. 

3.2. Comparison of the interpolation schemes 

The MSE values ranged from 2.43 to 6.36 and for the KGE values 
stood above 0.7 without any remarkable differences considering the RK, 
RF, MRRF, and RERF methods in case of the daily data (Dataset 1, 
Fig. 2A, C). In case of the Dataset 2, the MSE values ranged from 0.52 to 
2.69 (Fig. 2B). Relatively larger errors occurred for January and 
October, but generally smaller errors were seen compared to Dataset 1. 
The KGE values for Dataset 2 (Fig. 2B, D) were usually also above 0.7, 
the exceptions are the traditional methods (RK) in July considering both 
variants. 

The performance of the two ML approaches (MRRF and RERF) was 
comparable, with MRRF producing somewhat smaller MSE (Fig. 2A, B) 
and bigger nonparametric KGE values (Fig. 2C, D) closer to one indi-
cating better predictions. In contrast, the standard RF method produced 
the highest MSE among all methods in Dataset 1 peaking on 23 January, 
MSE = 6.4. This was the date when the data range was greatest (Fig. S1) 
(Hashimoto et al., 2019). 

The error metrics calculated between the measured and predicted 
sample values are usually utilized to evaluate the performance of 
interpolation methods (Burrough et al., 1998). MSE (employed here) 
fundamentally provides estimates of the average error but does not 

Fig. 2. Mean Squared Errors (MSE; A, B) and the non-parametric version of the 
Kling-Gupta efficiency (KGE; C, D) obtained during the validation of the 
interpolated products with the different methods for Dataset 1 (A, C) and 
Dataset 2 (B, D). The empty bars in Dataset 2 represent the RK (light blue) and 
MRRF (dark blue) model MSEs and non-parametric KGE’s, where precipitation 
served as an independent variable during the multiple regression. Acronyms in 
the legend, mean RK: Regression Kriging, MRRF: multiple regression random 
forest, RERF: Regression Enhanced Random Forest and RF: Random Forest. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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provide information about the relative size of the average difference and 
the nature of differences (Willmott, 1982). Therefore, the absolute dif-
ferences between the measured and predicted values of δ18O were 
calculated for each validation-ensemble member (Sect. 2.3) and 
compiled for the observed time points in Dataset 1 (Fig. 3A) and Data-
set 2 (Fig. 3B) to get a detailed picture on the error distribution. 

The distribution of the absolute differences (Fig. 3) follows a similar 
pattern as the MSE (Fig. 2A, B). The ML methods gave a smaller inter-
quartile interval of absolute errors than RK in Dataset 2 (Fig. 3B) in 
every month, and two out of three days in Dataset 1 (Fig. 3A). The 
median of absolute differences obtained with the ML methods combined 
with regression analysis were smaller median ~ 1.6 ‰ for MRRF ~ 1.9 
‰ for RERF than the ones obtained with the common RF ~ 2.1 ‰ for RF 
in the case of Dataset 1, especially MRRF on 23 January in Dataset 1. 
However, in the case of Dataset 2, the ML methods (especially RERF) 
performed better than the geostatistical interpolation in all cases 
considering the median values (Fig. 3B). 

The inability of RF to extrapolate is a well-known problem (Hashi-
moto et al., 2019) There was a significant difference in the MSE values of 
the two datasets (Fig. 2A, B), with the range of Dataset 1 being signifi-
cantly greater than that of Dataset 2 (Fig. S1). In Dataset 2 the smaller 
range of errors may be due to the better spatial distribution of the station 
data (Fig. 1). The advantage of RF application over RK is that it can 
manifest itself in quasi-automated interpolation of environmental iso-
topic parameters, especially where the point sampling is representative 
(extrapolation minimized) (Hengl et al., 2018). 

In the future, the precision of the ML estimations could be further 
increased by including the buffer distances between the grid cells and 
the station data as a predictor - e.g. in Hengl et al. (2018) -, or by even 
adding a weight function to these predictors based on their distances 
(Sekulić et al., 2020). It should be noted that one of the main advantages 
of ML methods over classical geostatistical ones is that these require less 
knowledge about the spatial autocorrelation structure of the data which 
is a major disadvantage at the same time (Hengl et al., 2007). On the 
other hand, these ML tools such as the most recent one applied in pre-
dicting water δ18O are not able to assess the spatial autocorrelation 

structure of the monitoring network (Nelson et al., 2021), where the 
data originates from, unlike the previously mentioned geostatistical 
tools; e.g. Hatvani et al. (2021). 

3.3. Model sensitivity to decreased station density 

As a last step, the decrease in prediction potential was investigated 
with respect to artificial rarefaction of the monitoring stations (see Sect. 
2.3 for details). In the case of Dataset 1, the RERF and RF methods gave 
the highest MSE values most of the time on 23 and 25 January, while on 
24 January, the RERF predicted the best results up to a station density 
reduced by ~ 50% (Fig. 4). The performance of MRRF on 24 and 25 
January sustained its initial performance up to a substantial rarefaction 
of the station data; ca. 50–60%. The MSE in the case of RK method in-
dicates a similar pattern as MRRF on 25 January, however, increases to a 
steeper extent on 23 and 24 January (Fig. 4A) resembling the pattern of 
RF, but with lower values. 

For Dataset 2, RK performed the worst in July whether the precipi-
tation was included or excluded (Fig. 4B). In all other cases, it maintains 
good performance up to a station density reduced by 50–60%. RF and 
MRRF performed similarly well tolerating a reduction in input data to 
about 50% without any drop in performance. Afterward the error 
attributed to the interpolation performance begins to increase with a 
much steeper gradient for RF, while MRRF indicates a much more 
moderate increase. Moreover, the initial good performance of MRRF is 
sustained in January, April, and October up to even ~ 80% station 
density reduction (Fig. 4B). In the case of RERF, its prediction perfor-
mance was sustained up to ~ 50% and ~ 80% of station reduction for 
January and October, respectively. 

Regarding RK, it should be noted that the underlying theoretical 
semivariograms did not change to a great extent depending on the de-
gree of rarefaction Fig. S3 regarding their main characteristics and types 
(Cressie, 1993). This highlights the robustness of the spatial autocorre-
lation structure against rarefaction, implying that the pattern seen pre-
vails relatively independent of the chosen subset of sites. 

Overall, MRRF seems to better reproduce the spatial variability of the 

Fig. 3. Absolute differences of the measured and 
predicted values of δ18O using the different methods 
on Dataset 1 (A) and Dataset 2 (B). The outline of the 
violin plot covers the probability density of the dif-
ferences (points inside), the grey horizontal lines 
indicate the interquartile range (IQR). The data points 
are not aligned on a vertical line in order to make the 
figure less crowded. Two upright lines represent the 
data within the 1.5 IQR. The data between 1.5 times 
the IQR are indicated with a circle (outliers) as in the 
case of a box-and-whiskers plot (Kovács et al., 2012). 
In July, the violin plots for RK and MRRF are not 
horizontally symmetric, the right half (marked with 
“P”) represents the model in which precipitation was 
used in the multiple regression as an additional pre-
dictor. RK: Regression Kriging, MRRF: multiple 
regression random forest, RERF: Regression Enhanced 
Random Forest and RF: Random Forest.   
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two datasets even under circumstances with more than 50% of the sites 
not providing information. Similar conclusions were recently drawn 
regarding the robustness and less sensitivity of ML models towards 
stations density and their less dependency on expert knowledge, 
comparing their performances with linear models in high-resolution 
monthly precipitation interpolation (Zandi et al., 2022). 

4. Conclusions and outlook 

In this study, the performance of four interpolation approaches was 
compared using two datasets of precipitation δ18O to understand how 
the interpolation schemes behave under various circumstances of spatial 
distribution/organization in order to determine which interpolation 
approach to utilize for producing isoscapes of different scales. 

The results indicate that machine learning algorithms are more than 
capable of creating continuous datasets of precipitation stable isotopes 
of even superior quality than the ‘classical’ geostatistical tools, which 
were formerly considered as the gold standard in this discipline. In 
particular, machine learning methods tolerated the rarefaction of the 
dataset to a much greater extent especially above 50% of the data 
removed, indicating that they can be employed with the expectation of 
producing comparably accurate predictions if one or more stations 
become inoperable or in regions where monitoring stations are sparser 
or unevenly distributed. Moreover, machine learning tools require less 
“expert knowledge” in handling the predictors, are less sensitive to 
outliers and no stationarity assumption is needed to be followed, nor is 
there a need to deal with anisotropy or fitting variograms (Bataille et al., 
2018; Hengl et al., 2018) as in the case of regression kriging. On the 

Fig. 4. The change in mean squared error (MSE) as a function of percentage of stations removed for Dataset 1 (A) and Dataset 2 (B) for the different interpolation 
methods; RK: Regression Kriging, MRRF: Multiple Regression Random Forest, RERF: Regression Enhanced Random Forest, RF: Random Forest. The dashed lines in 
Dataset 2 – July (RK -light blue; MRRF - dark blue) represent the interpolation model, where precipitation served as an independent variable during the multiple 
regression. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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other hand, unlike regression kriging, machine learning algorithms do 
not provide overall information about the spatial autocorrelation 
structure of precipitation δ18O in the studied regions, nor is it possible to 
estimate the representativity of the assessed monitoring network. 

Based on the results, the application of a random forest algorithm is 
highly viable option for deriving isoscapes of subcontinental/continen-
tal extent, especially if the practical advantages of machine learning 
tools over their geostatistical counterparts are considered. Equipping 
these tools to take into account additional complex predictors for 
instance buffer distances (Hengl et al., 2018) or weight functions 
derived from δp values (e.g. Sekulić et al. (2020)) is expected to further 
improve their performance. 
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