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We study the classical cubic-lattice double dimer model, consisting of two coupled replicas of the close-
packed dimer model, using a combination of theoretical arguments and Monte Carlo simulations. Our results
establish the presence of a ‘synchronization transition’ at a critical value of the coupling, where both replicas
remain disordered but their fluctuations become strongly correlated. We show that this unconventional transition,
which has neither external nor spontaneous symmetry breaking, is continuous and belongs to the 3D inverted-
XY universality class. By adding aligning interactions for dimers within each replica, we map out the full phase
diagram including the interplay between columnar ordering and synchronization. We also solve the coupled
double dimer model exactly on the Bethe lattice and show that it correctly reproduces the qualitative phase
structure, but with mean-field critical behavior.

I. INTRODUCTION

Confinement phase transitions bring together a number
of important concepts in modern condensed matter physics.
These include fractionalized excitations [1, 2], i.e., emergent
objects that cannot be constructed from finite combinations
of the elementary constituents; non-Landau phase transitions
[3, 4], where a description in terms of a symmetry-breaking
order parameter is not sufficient to describe the critical behav-
ior; and topological order [5], loosely defined as structure that
is detectable only through global measurements.

Such transitions are known to exist in classical dimermodels
[6, 7], in which the degrees of freedom are dimers, objects that
occupy the bonds of a lattice subject to a close-packing con-
straint: Each site is touched by exactly one dimer. Introducing
a pair of empty sites – defects in the constraint referred to as
monomers – one can distinguish phases by the effective in-
teractions induced between the monomers by the background
dimer configurations. A confinement transition separates a
phase where these interactions are confining, i.e., the poten-
tial grows without bound with increasing distance, from one
where they are not, and so the monomers can be separated to
infinity with finite free-energy cost [2].

Known examples of confinement transitions in classical
dimer models can be divided into two types. The first, where
confinement occurs simultaneously with spontaneous symme-
try breaking, includes the well-studied case of the columnar-
ordering transition in the dimer model on the cubic lattice [8]
and the corresponding square-lattice transition [9, 10]. The
second type is where symmetry is broken externally, and in-
cludes the Kasteleyn transition in the honeycomb-lattice dimer
model [11] and its generalizations to three dimensions (3D)
[12, 13], as well as the ‘1GS’ variant of the cubic dimer model
studied by Chen et al. [14].

Here, we demonstrate the existence of a ‘pure’ confine-
ment transition, with neither spontaneous nor external sym-
metry breaking, in the double dimer model [15–17], compris-
ing two coupled replicas of the close-packed dimer model. In
this paper we focus on the cubic lattice, and confirm using
Monte Carlo (MC) simulations the presence of a synchroniza-
tion transition at a finite ratio of temperature T to the coupling
between replicas. Subsequent work will address the case of
the square lattice.

To understand the transition, consider overlaying any pair
of dimer configurations and deleting all dimers that coincide.
As illustrated in Fig. 1, the result is a gas of directed loops,
referred to as the ‘transition graph’ and corresponding to the
set of dimer rearrangements that take one configuration to the
other [11, 18]. A coupling that favors overlapping dimers then
amounts to an energy cost per unit loop length. This makes
possible a loop proliferation (or ‘condensation’) transition, be-
tween a phase at low T with only sparse short loops and one
at high T with a finite density of boundary-spanning loops, as
a result of competition between energy and entropy [19, 20].
(See Sec. II for a precise definition.) In terms of the dimers, the
proliferation of loops amounts to a phase transition between
replicas being mostly synchronized and mostly independent,
which we will refer to as a ‘synchronization transition’.
An equivalent characterization is provided by the concept

of confinement: Consider first removing a single dimer in one
replica, leaving an adjacent pair of monomers, and then rear-
ranging dimers to separate the monomers to arbitrary distance

⋆⋆ ⋆ ⋆

⋆ ⋆

⋆⋆

⋆ ⋆ ⋆ ⋆

⋆⋆ ⋆

overlapping
dimers

directed
loop

FIG. 1. An example configuration of the double dimer model, in
which two replicas of the close-packed dimer model (shown in black
and white) are defined on the same lattice. Although we consider a
cubic lattice, illustrations are shown on the square lattice for clarity.
If overlapping dimers are deleted, the result is a gas of directed loops
(red). According to Eq. (1), parallel pairs of nearest-neighbour dimers
within each replica (marked with a star, ⋆) contribute +J to the en-
ergy, and overlapping dimers contribute +K to the energy. Hence,
the energy of this configuration is E = 15J + 9K .
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R. In terms of the overlap between the two replicas, this nec-
essarily produces an open string joining the pair. The con-
dition that loops proliferate is equivalent to the entropy of a
long string overcoming its energy cost (∝ R) [21] and hence
that such a monomer pair is deconfined [2]. Note that a double
pair of monomers, one in each replica, is instead deconfined in
both phases, including in the limit of perfect synchronization
between the layers.

As is apparent from the nature of the two phases, the syn-
chronization transition on the cubic lattice is an unusual exam-
ple of a classical transition in 3D with no local order param-
eter. We argue theoretically that the transition, if continuous,
belongs in the inverted-XY universality class, and demonstrate
usingMC results that this is indeed the case. It can therefore be
seen as an unusual example of a scalar Higgs transition, similar
to the 1GS model [14] and the helical-field transition in spin
ice [22, 23], but without any external symmetry breaking.

Previous studies of the double dimer model have focused on
the square lattice, and particularly on the cases where the cou-
pling between replicas is either infinite [15] or vanishing [17].
Damle et al. [16] have showed that certain matrix elements in
a quantum dimer model can be related to the partition function
of an interacting double dimer model.

A related transition between low- and high-overlap phases
has been observed in paired replicas of plaquette spin mod-
els [24, 25]. While there are many similarities between these
transitions, it should be noted that the plaquette models have
no analogue of the confinement criterion, and the boundary is a
first-order line terminating at a critical endpoint. Recent work
on the bilayer Kitaev model [26] has also observed a transition
from a spin liquid to a phase where spins on the two layers pair
into singlets.

Outline

In Sec. II we define the double dimer model, including
couplings between and within replicas, and present theoreti-
cal arguments for its phase structure and critical properties.
We then describe, in Sec. III, the MC method that we use,
which extends the standard worm algorithm. Our numerical
results, including a detailed study of the critical properties of
the synchonization transition, are presented Sec. IV. Finally,
in Sec. V, we show that the double dimer model, including
coupling between replicas, can be solved exactly on the Bethe
lattice. We conclude in Sec. VI with a brief discussion of anal-
ogous synchronization transitions in other systems and of pos-
sible experimental realizations.

II. MODEL

We consider the double dimer model, consisting of two
replicas � ∈ {1, 2} of the dimer model, both defined on an
L × L × L cubic lattice with periodic boundaries. Denoting
by d(�)l the dimer occupation number (equal to zero or one) of

replica � on bond l, the configuration energy can be written as
E = J

[

N (1)
∥ +N (2)

∥

]

+K
∑

l
d(1)l d(2)l , (1)

where N (�)
∥ denotes the number of parallel pairs of nearest-

neighbour dimers [8–10] in replica �. An example configura-
tion is shown in Fig. 1.
When J < 0, the first term favors parallel alignment of

dimers within each replica. It is minimized by configurations
with columnar order, as illustrated in Figs. 2(a)–(c), which
break translation and rotation symmetries. A suitable order pa-
rameter is the ‘magnetization’M (�), a vector for each replica
� with components

M (�)
� = 2

L3
∑

r
(−1)r�d(�)r,� , (2)

where r, � denotes the bond between sites r and r+�� (with ��a unit vector in direction � ∈ {x, y, z}). On the cubic lattice,
there are six such configurations for each replica withM (�) =
±��.The second term in Eq. (1) couples the two replicas, by
counting the number of bonds that are occupied in both. We
mainly focus on the case K < 0, where the effect is to favor
overlapping dimers; a fully synchronized example, minimiz-
ing this term, is shown in Fig. 2(d).
The dimer configurations are subject to the close-packing

constraint n(�)r = 1, where
n(�)r =

∑

�

[

d(�)r,� + d
(�)
r−�� ,�

]

(3)

is the number of dimers at site r. This constraint is applied
separately to each replica �, and so the partition function

Z =
∑

c(1)∈ℭ0
c(2)∈ℭ0

e−E∕T (4)

sums, for each �, over the setℭ0 of all configurations that obey
n(�)r = 1 for all r. (We set kB = 1.)

A. Loop picture

On a bipartite lattice, such as the cubic lattice, configura-
tions may be represented by a ‘magnetic field’, defined on the
bonds of the lattice [2, 27]. Specifically, bond r, � is assigned
the field

B(�)r,� = �r
[

d(�)r,� −
1
q

]

, (5)

where �r = (−1)rx+ry+rz = ±1 depending on the sublattice
and q is the coordination number.
The close-packing constraint for the dimers is equivalent to

the condition that the (magnetic) ‘charge’, given by the lattice
divergence of B(�)r,�,

Q(�)r =
∑

�

[

B(�)r,� − B
(�)
r−�� ,�

]

, (6)
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(a) (b) (c) (d)
FIG. 2. Example ground states of the double dimer model of Eq. (1), illustrated for the square lattice but applying also to the cubic lattice. (a)–
(c) Columnar configurations, which minimize the energy for J < 0, K = 0. In each replica � ∈ {1, 2} (white and black dimers, respectively),
the dimers are arranged in columns, maximizing the number of parallel plaquettesN (�)

∥ and hence minimizing the energy. For K = 0, the two
replicas are uncoupled and so all three arrangements have equal energy. For J < 0, K < 0 configuration (a), the columnar & synchronized
ground state, maximizes the overlap and hence minimizes the energy. Configurations (b) and (c) are columnar & antisynchronized, with replica
magnetizations antiparallel and perpendicular respectively; both have zero overlap between replicas and so are degenerate ground states for
J < 0, K > 0. (d) Example of a fully synchronized configuration, one of an extensive number of ground states for J = 0, K < 0. Each replica
is disordered, but the overlap between their configurations is maximal, minimizing the energy.

is zero on every site. The normalization of B(�)r,� is chosen so
that removing a dimer (and so breaking the close-packing con-
straint) leaves a pair of monomers on opposite sublattices with
Qr = ±1.When the two replicas are overlaid, the result can be inter-
preted as a set of directed loops. To see this, consider the rel-
ative magnetic field B(−)r,� = B(1)r,� − B

(2)
r,�, which takes values

on each bond of ±1 or 0. The former is interpreted as a loop
element directed along ±��, while the latter means that the
dimers overlap and is interpreted as the absence of a loop el-
ement. Since the relative field is clearly also divergenceless,
these elements indeed form a set of closed loops. Note that
swapping the two replicas switches the direction of each loop.

Given themagnetic fieldB(�)r,�, it is possible to define a vector
flux�(�) by

Φ(�)� = 1
L
∑

r
B(�)r,� (7)

= 1
L
∑

r
�rd

(�)
r,� , (8)

which is equivalent to the sum of the magnetic fields on links
crossing a surface normal to ��. It is therefore invariant underlocal dimer rearrangements; in fact, with periodic boundary
conditions (PBCs), changes in flux are only possible by shift-
ing dimers around a loop encircling the whole system. For
example, adding a loop in B(−)r,� that spans the system once in
direction � increases the relative flux Φ(−)� = Φ(1)� − Φ(2)� by
one.

B. Phase diagram

The phase diagram of the double dimer model, Eq. (1), ob-
tained using the MC method detailed in Sec. III, is shown in

Sync.

Columnar &
Synchronized

Coulomb

Col.
*

-2.0 -1.5 -1.0 -0.5 0.0
-0.8

-0.6

-0.4

-0.2

0.0

FIG. 3. Phase diagram for the double dimer model of Eq. (1) on
the cubic lattice, in the (J∕T ,K∕T ) plane. Dots show points where
the phase boundary has been determined using MC simulations, and
thick grey lines are guides to the eye. The orange region, labeled
‘Sync.’ is the synchronized phase. The pink line labeled ‘Col.’ is
the (unsynchronized) columnar phase, known to occur at K = 0,
whilst the purple region, labeled ‘∗’, is the columnar & antisynchro-
nized phase. Red dots represent first-order transitions, whilst green
and white dots represent continuous transitions, in the tricritical and
inverted-XY universality classes, respectively.

Fig. 3. In this section we define the phases shown and explain
how the phase structure can be understood theoretically. In
Sec. IV we describe how the phase boundaries, as well as the
critical properties at each, are determined in the simulations.
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1. Independent replicas

We first review the phase structure for K = 0, where the
two replicas act as independent (single) dimer models. For
K = J = 0, the cubic dimer model exhibits a Coulomb
phase [2, 27], in which the dimers are disordered and their
correlations take a dipolar form. A single phase transition
at (J∕T )c = −0.597 separates this from a low-temperature
phase with nonzero columnar order parameter ⟨M⟩ ≠ 0 [8].
The transition is apparently continuous with critical exponents
compatible with the tricritical universality class. Theoretical
arguments [14, 28, 29], however, suggest that the critical prop-
erties should be described by the so-called noncompact ℂℙ1
theory (see Sec. II C), and additional interactions [30, 31] in-
deed modify the exponents to values compatible with this uni-
versality class [32].

Besides the order parameter ⟨M⟩, the Coulomb and colum-
nar phases can be distinguished either through the flux or
through the effective interactions between monomers. Con-
sider first the latter, which involves introducing a test pair of
monomers with opposite charge into the background of close-
packed dimers. In the case of the double dimer model, the
pair can be inserted into either replica; we choose replica 1,
and define the monomer distribution function as

Gm(r+ − r−) =
1
Z

∑

c(1)∈ℭ(r+,r−)
c(2)∈ℭ0

e−E∕T . (9)

The set ℭ(r+, r−) contains all configurations with charge dis-
tribution Qr = �r,r+ − �r,r− , i.e., with monomers of opposite
charge at sites r± (e.g., holes on opposite sublattices). The ef-
fective interaction Um is defined by Gm(R) = e−Um(R)∕T , and
can be interpreted as the free-energy cost associated with the
imposed charge distribution. (Translation symmetry, assum-
ing PBCs, implies Gm and Um depend only on the displace-
ment R = r+ − r−.)For K = 0, the replicas are independent, and so Gm re-
duces to the monomer distribution function for the single
dimer model. In the Coulomb phase for small |J |∕T , Um is a
Coulomb potential at large separation,Um(r+, r−) ∼ Um(∞)−
�∕(4�|r+ − r−|), where � (the ‘flux stiffness’) and Um(∞) arefinite (positive) constants [2]. In the low-temperature phase,
separating themonomers necessarily disrupts the columnar or-
der along a string joining them [consider Figs. 2(a)–(c)], and so
has a free-energy cost proportional to distance [2]. This quali-
tative distinction, between a confining interaction (preventing
separation to infinite distance) at low T and deconfinement at
high T , provides an alternative characterization of the phase
transition.

In practice, it is convenient to use the confinement length �,
defined by

�2 =
∑

R|R|2Gm(R)
∑

R Gm(R)
, (10)

which represents the root-mean-square separation of the test
monomers. In the Coulomb phase, Gm(R) → e−Um(∞)∕T > 0

for large separation, and so � ∼ L. In the columnar phase, by
contrast, Um(R) grows without limit as |R| → ∞, Gm(R) →
0, and so � is an L-independent constant.
A related criterion for the phases can be expressed in terms

of the flux�(�). The mean flux vanishes by symmetry in both
phases, while the variance,Var�(�) = ⟨|�(�)|2⟩, scales differ-
ently with system size in the two: In the Coulomb phase, flux
fluctuations are large, Var�(�) ≈ L∕� [27]. In the colum-
nar phase, the variance is exponentially small in L, because
shifting dimers along a loop spanning the system disturbs the
columnar order and hence costs energyE ∼ JL [33]. Because
the two replicas are independent, the variances of the total and
relative flux�(±) = �(1)±�(2) are identical, and equally serve
to distinguish the two phases.

2. Coupled replicas

Consider now J = 0 and nonzero coupling K < 0 between
replicas. In the ensemble defined by Eq. (9), B(2)r,� is diver-
genceless while B(1)r,� has nonzero divergence at r+ and r−.
This implies the presence of an open string in B(−)r,� that runs
between these two sites, and along which the two replicas dif-
fer. In the limit K∕T → −∞, the string will take the shortest
possible path, resulting in an energy proportional to separation
and hence a confining effective interaction Um. Comparing
this limit with the case where K = 0 (and J = 0), it fol-
lows that there must be a confinement transition, a qualitative
change in the large-separation form of Um, between the two.
In our results, shown in Fig. 3, we indeed find such a transition
at a critical coupling (K∕T )c = −1.400.At temperatures above this point, where the entropy of the
open string overcomes its energy cost, closed loops ofB(−)r,� are
also free-energetically favorable. As a result, loops spanning
the system boundaries, which cost an energy E ∼ KL and
are hence suppressed exponentially in L at low temperatures,
‘proliferate’ at the transition. Because these loops change the
relative flux�(−), the high-temperature phase has Var�(−) ≈
L∕�−, as at K = 0 but with a modified flux stiffness �−. Bycontrast, the variance of the total flux, Var�(+), is large (≈
L∕�+) in both phases, because identical loops in both replicascosts zero energy [consider Fig. 2(d)]. The behavior of the flux
variances in the different phases is summarized in Tab. I.
While confinement and the flux variance thereby provide

precise definitions of the phases, we also expect loop prolif-
eration to reduce the overlap∑l d

(1)
l d(2)l between the replicas.

We therefore refer to the low-T , high-overlap phase as ‘syn-
chronized’ and the high-T , low-overlap phase as ‘unsynchro-
nized’, although the overlap is nonzero in both phases and so
does not provide an order parameter in the strict sense.
It should be noted that the energy ∝ K associated with

each element of a directed loop (or open string) is not the
only contribution to its free-energy cost. In regions devoid of
loops, overlapping dimers can be rearranged without changing
the loop configuration. (For example, in the configuration of
Fig. 1, flipping the parallel pair of overlapping dimers around
the bottom-left plaquette in both replicas does not create a new
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Coulomb Columnar Synchronized
Var�(−) Large Small Small
Var�(+) Large Small Large

� Large Small Small

TABLE I. Behavior in different phases of the double dimer model of: the variance of the flux difference, �(−) = �(1) −�(2); the variance of
the total flux,�(+) = �(1)+�(2); and the confinement length, �. ‘Small’ means Var�(±) decreases exponentially with linear system size L and
� is independent of L, while ‘Large’ means Var�(±) ∼ L and � ∼ L. In the columnar & (anti)synchronized phases, these observables behave
as in the columnar phase.

directed loop). To leading order, this results in an entropy that
scales with the number of overlapping dimers. Since the in-
troduction of a directed loop reduces this number, and so the
entropy, at finiteK∕T we expect an additional free-energy cost
per unit length of loops, which can be thought of as renormal-
izing K∕T towards more negative values [34].

The arguments for the phase structure can be straightfor-
wardly extended to include both J∕T and K∕T . At large neg-
ative J∕T andK = 0, both replicas are columnar ordered, but
the relative orientations of the two magnetizations M (1) and
M (2) are arbitrary. Infinitesimal negative K∕T is sufficient to
split this degeneracy extensively and therefore to synchronize
the two replicas, giving the columnar & synchronized phase,
illustrated in Fig. 2(a), with ⟨M (1)

⟩ = ⟨M (2)
⟩.

For positiveK∕T , any pair of columnar configurations with
distinct magnetizations has zero overlap and hence minimal
energy. There is an accidental degeneracy, between antipar-
allel (M (1) = −M (2)) and perpendicular (M (1) ⋅M (2) = 0)
magnetizations in the two replicas, illustrated in Figs. 2(b) and
(c) respectively, which can be resolved by order by disorder
[35, 36]. The elementary fluctuations, which involve flipping
a single pair of parallel dimers around a plaquette, cost en-
ergy +6|J | in both cases, but additionally may cost energy
+2K in the case of perpendicular magnetization. The free en-
ergy is therefore lower in the antiparallel arrangement, sug-
gesting that this is selected by order by disorder. Our MC re-
sults (see Sec. IVD) are indeed consistent with a phase where
⟨M (1)

⟩ = −⟨M (2)
⟩, which we refer to as columnar & antisyn-

chronized.
Comparison with the single dimer model further allows

some quantitative details of the phase boundaries to be in-
ferred: The critical point separating the Coulomb and colum-
nar phases for K = 0 is clearly (J∕T )c = −0.597 as for
the single dimer model. Similarly, when K∕T → −∞, the
two replicas are perfectly synchronized, and behave as a sin-
gle dimer model with effective interaction Jeff = 2J . The
critical temperature for columnar ordering is therefore given
by 1

2 (J∕T )c = −0.299 in this limit. As shown in Fig. 3, the
critical value of J∕T closely approximates this limiting value
already for K∕T = −2.

C. Field theories and critical properties

A continuum description for the Coulomb phase in the sin-
gle dimer model is given by replacing the effective magnetic

field Br,� by a continuum vector field B [2, 27]. The latter is
subject to the constraint ( ⋅ B = 0, inherited from the close-
packing constraint on the dimers, and hence can be expressed
as B = ( × A in terms of the vector potential A. The contin-
uum (Euclidean) action density is then given by

SDM = 1
2
�|B|2 = 1

2
�|( ×A|2 , (11)

where � is the flux stiffness introduced in Sec. II B 1, plus ir-
relevant higher-order terms.
In the double dimer model, one can similarly introduce a

continuum magnetic field B(�) for each replica, with the same
stiffness � for each. The couplingK leads to a term �B(1)⋅B(2),
with � ∼ K , and so an effective action for the unsynchronized
Coulomb phase can be written as

DDM = 1
2
�+|B(+)|2 +

1
2
�−|B(−)|2 , (12)

whereB(±) = B(1)±B(2) and �± = 1
2 (�±�). The synchroniza-tion transition, at which fluctuations of B(−) are suppressed,

occurs when K < 0 and hence �− > �+.Confinement transitions from the Coulomb phase, such as
the synchronization and columnar-ordering transitions, can
be described by introducing ‘matter’ fields to enforce the re-
striction to discrete values [14, 37]. Condensation of these
fields then leads, by the Higgs mechanism, to suppression of
magnetic-field fluctuations. The structure of the critical the-
ory is determined by considering representations of the pro-
jective symmetry group (PSG) [38] under which the matter
fields transform.
In the case of the columnar-ordering transition in the single

dimer model, the critical theory is [14, 28, 29]
SDM,crit. = SDM + |(( − iA)z|2 + s|z|2 + u|z|4 , (13)

where s and u are real parameters and z is a two-component
complex vector (which is said to be ‘minimally coupled’ toA).
The PSG analysis shows that the field z transforms as a spinor
under real-space rotations and allows one to express the mag-
netization asM ∼ z†�z. In this description, the ordering tran-
sition occurs when s is reduced below its critical value and z
condenses, giving a nonzero magnetization and also suppress-
ing fluctuations of themagnetic field via theHiggsmechanism.
In the double dimer model, the matter field should couple

identically to both replicas. We therefore expect the critical
properties at the columnar-ordering transition in the double
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dimermodel to be the same as in the single-replica case. While
some theoretical aspects of this transition remain unresolved
[39], its properties have been well characterized numerically
[8, 30, 31].

To describe the synchronization transition, one must simi-
larly include a matter field ' whose role is to restrict B(−)r,� to
±1 or 0. Because these values are integers, the PSG is trivial
in this case [40], and so the result is a scalar Higgs theory,
DDM,crit. = DDM+|((−iA(−))'|2+s−|'|2+u−|'|4 , (14)
whereB(−) = (×A(−). We have not included a field coupling
to B(+), which would remain noncritical across the synchro-
nization transition.

In 3D, the scalar Higgs theory has a continuous transition
in the XY universality class but with an inverted temperature
axis [20]. (Amore direct route to the same critical theory starts
from the loop picture and uses the standard mapping from in-
teger loops to the XY model [19].) We therefore expect the
synchronization transition to belong to the inverted-XY uni-
versality class.

III. WORM ALGORITHM

We obtain numerical results using the MC worm algorithm
[41], in which non-local loop updates are performed. With
PBCs, loops can span the boundaries, allowing changes in flux.

A. Single loops

We begin by reviewing the standard implementation of the
worm algorithm, using single loops. As illustrated in Fig. 4,
the process is broken down into a series of local steps:

1. Choose a lattice site i = i0 and a replica � at random.
2. In the current configuration of replica �, site i is con-

nected by a dimer to a neighboring site j. Delete this
dimer, denoted by (i, j)(�).

3. Select a neighbour of j, called k, using a local detailed
balance rule (described below), and insert a new dimer
(j, k)(�).

4. If k = i0, close the loop. Otherwise return to step 2,
using i = k.

Since all loops are performed without rejection, the worm al-
gorithm is highly efficient.

The transition probability P
(

(i, j)(�) → (j, k)(�)
), with

which the site k is selected in step 3, is determined as follows.
The requirement for global detailed balance translates into the
local detailed balance condition [41]

w
(

(i, j)(�)
)

P
(

(i, j)(�) → (j, k)(�)
)

=
w
(

(j, k)(�)
)

P
(

(j, k)(�) → (i, j)(�)
) . (15)

Here,w((j, k)(�)) is the equilibrium probability of the config-
uration obtained on insertion of the dimer (j, k)(�) in step 3.
For the double dimer model, Eq. (1) implies

w
(

(j, k)(�)
)

∝ exp
[

−
(

JN (�)
(j,k) +Kd

(�̄)
(j,k)

)

∕T
]

, (16)

where N (�)
(j,k) ∈ {0, 1, 2, 3, 4} is the number of nearest-

neighbour dimers parallel to (j, k)(�) in the same replica, whilst
d(�̄)(j,k) is the dimer occupation number of the other replica �̄ on
bond (j, k). A solution for the transition probabilities, chosen
to reduce backtracks (where k = i), is then

P
(

(i, j)(�) → (j, k)(�)
)

=
w
(

(j, k)(�)
)

−min(w)�i,k
∑

kw
(

(j, k)(�)
)

−min(w) , (17)

where w is a 6-component vector containing elements
w
(

(j, k)(�)
) for all k [32].

Step 2 produces configurations containing two test
monomers: a stationary monomer at site i0, and a moving
monomer at site j (see Fig. 4). Hence, single-loop updates
may be used to construct the monomer distribution function
Gm(R), by tallying the monomer separation R after each step
2. Since the local detailed balance rule correctly samples only
configurations produced by step 3, it is necessary to tally an
amount 1∕∑kw

(

(j, k)(�)
), rather than unity [10].

B. Double loops

As discussed in Sec. II B 2, single loops are suppressed in
the synchronized phase, whereas simultaneous loops in both
replicas are not. Therefore, to avoid problems with ergodicity,
it is necessary to perform double-loop updates.
Double loops are constructed as follows. In step 1, loops

begin in both replicas from the same randomly chosen site i =
l = i0. Both loops perform step 2 as for a single-loop update,
deleting dimers (i, j)(1) and (l, m)(2). Step 3 now corresponds
to 36 choices, with 6 in each replica. The insertion of new
dimers (j, k)(1) and (m, n)(2) is associated with a configuration
probability

w
(

(j, k)(1), (m, n)(2)
)

= w
(

(j, k)(1)
)

w
(

(m, n)(2)
)

exp(K�j,m�k,n∕T ), (18)
where the factor exp(K�j,m�k,n∕T ) prevents double-countingof dimer overlap when the bonds (j, k) and (m, n) are iden-
tical. Eq. (17) is then used to obtain the transition proba-
bilities, with w a 36-component vector containing elements
w
(

(j, k)(1), (m, n)(2)
). In step 4, the process terminates when

both loops close simultaneously, i.e. k = n = i0. Otherwisewe return to step 2, using i = k and l = n.
Double-loop updates are performed without rejection, but

their efficiency is poor at higher temperatures. This is because
the probability of simultaneous closure is small, and so up-
dates are unnecessarily long. To reduce this problem, we use
double loops only for large |K|∕T . We also define a spring
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1.
i0,i

2.
i0,i
j

3.
i0,i
j k

4.
i0

i

FIG. 4. Local steps involved in a single-loop update of the worm algorithm (see main text for details).

potential V (

(j, k)(1), (m, n)(2)
)

= 1
2ks|rk − rn|

2, where ks is
a spring constant and rk denotes the position vector of site k.
This is imposed bymultiplying the equilibrium probabilities of
Eq. (18) by exp(V ), and favours the selection of sites k and n
with smaller separation in step 3. The potential only modifies
equilibrium probabilities of configurations during the double-
loop construction, and so does not affect detailed balance for
the close-packed dimer configurations.

C. Simulation parameters

We performed simulations on systems up to a maximum
linear size L = 96 with PBCs. Following equilibration,
data points are typically obtained by averaging over 106 MC
sweeps, where a sweep is defined such that all lattice bonds are
visited once on average. Statistical errors are estimated using
a jackknife resampling method. A spring constant ks = 2 is
used for double loops.

We have checked the MC data by comparing with exact
results for the case L = 2 and with the limits discussed in
Sec. II B 1.

IV. NUMERICAL RESULTS

We have used the worm algorithm to find the phase diagram
shown in Fig. 3, and to determine the critical properties of each
transition. In this section, we present our results for each of the
phase boundaries in turn, and also for the nature of the ordered
phases at large negative J∕T .

A. Synchronized ⟷ Coulomb

Wefirst focus on the synchronization transition, between the
synchronized and Coulomb phases. In particular, we consider
the case J = 0, K = −1, and vary the temperature. In the
vicinity of the critical point, double-loop updates are not re-
quired.

Our data for the flux difference variance Var�(−) and nor-
malized confinement length �∕L are shown in Fig. 5. Both
quantities are small (large) at low (high) temperatures, indi-
cating a phase transition between synchronized and Coulomb

phases (see Sec. II B 2). In particular, the high-temperature
limit �2∕L2 ≃ 0.25 is observed, which closely matches the
mean-square separation of (L2+2)∕4 for free monomers hop-
ping on an empty lattice [14]. This is evidence for deconfined
monomers in the Coulomb phase.
In contrast to Var�(−), the variance of the total flux,

Var�(+), is large in both phases, as shown in Fig. 6. This con-
firms that the dimers in each replica remain disordered, even
though relative fluctuations between the two replicas are sup-
pressed. In fact, as |K|∕T increases and the replicas become
more synchronized, Var�(+) becomes larger. In the limit of
perfect synchronization, K∕T = −∞, �(1) = �(2) and so
Var�(+) = 4Var�(1), double the value at K = 0, where
�(1,2) are independent and their variances add.

In order to classify the phase transition, we use finite-size
scaling arguments [42]. At the transition of interest, both
Var�(−) and �2∕L2 have zero scaling dimension [8, 23], and
so for a continuous transition at critical temperature Tc, obeythe scaling forms

Var�(−) ∼ fΦ(L1∕�t) (19)
and

�2∕L2 ∼ f�(L1∕�t) , (20)
where t = (T − Tc)∕Tc is the reduced temperature, � is the
correlation-length exponent, and fΦ and f� are universal func-tions. At the critical temperature t = 0, Eqs. (19) and (20) be-
come independent of system size, predicting a distinct cross-
ing point in MC data at T = Tc. This is observed (see Fig. 5,
insets), indicating that the transition is continuous.

In reality, we observe a weak dependence on system size
at the critical point, which may be explained by corrections
to scaling. Including the leading-order correction, Eq. (19)
becomes

Var�(−) ∼ fΦ(L1∕�t) + uL−|yu|f̃Φ(L1∕�t) , (21)
where u is a constant, −|yu| is the renormalization group (RG)
eigenvalue of the leading irrelevant scaling operator, and f̃Φis a universal function. For two system sizes L1 and L2, thisimplies a crossing temperature T× scaling as [43, 44]

T×(L1, L2) − Tc ∼
L−|yu|2 − L−|yu|1

L1∕�1 − L1∕�2
. (22)
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FIG. 5. Variance of the flux difference �(−) = �(1) − �(2) (left panel) and square of the normalized confinement length �2∕L2 (right panel)
versus temperature T , for the cubic-lattice double dimer model with J = 0,K = −1, and different system sizesL. In each case, quadratic fits in
the vicinity of the crossing point are shown (insets). Both quantities are small (large) at low (high) temperatures, indicating a phase transition
between synchronized and Coulomb phases. The distinct crossing points imply that the transition is continuous.

0.2 0.4 0.6 0.8 1.0 1.2

0

40

80

120

FIG. 6. Variance of the total flux �(+) = �(1) +�(2) versus temper-
ature T , for J = 0, K = −1, and different system sizes L. At low
temperatures the replicas are synchronized, but remain fluctuating,
and hence Var�(+) is still large (∼ L).

Fixing the ratio � = L2∕L1 gives
T×(L1, �L1) − Tc ∼ L

−|yu|−1∕�
1 , (23)

with an identical result applying to the �2∕L2 crossing point.
We determine Tc by fitting to these expressions with � = 2,
using quadratic fits in the vicinity of the crossing point to
measure T× for each L1 (insets of Fig. 5). From our results,

16 24 32 40 48
0.7142

0.7144

0.7146

0.7148

0.7150

FIG. 7. Crossing temperature T× of Var�(−) (red) and �2∕L2 (blue),
for pairs of system sizes L1, L2 in the ratio L2∕L1 = 2. Solid lines
are fits to Eq. (23) for L1 ≥ 24, from which consistent values for the
critical temperature Tc = 0.71447(4) (flux) and Tc = 0.714444(2)
(confinement length) are obtained.

shown in Fig. 7, we obtain consistent critical temperatures
Tc = 0.71447(4) (flux) and Tc = 0.714444(2) (confinement
length).
In order to determine the correlation length exponent �, we

evaluate the temperature derivative of Eqs. (19) and (20) at the



9

16 24 32 40 48 64 80 96

10
0

10
1

10
2

10
3

FIG. 8. Log–log plot of temperature derivative of Var�(−) (red) and
�2∕L2 (blue), evaluated at the critical temperature Tc, versus systemsize L. Solid lines are fits to Eq. (24) for L ≥ 40, from which con-
sistent values for the correlation length exponent � = 0.671(8) (flux)
and � = 0.677(3) (confinement length) are obtained.

critical point. For Var�(−) this gives
)
)T

Var�(−)
|

|

|

|T=Tc
∼ L1∕� , (24)

and one finds the same result for �2∕L2. The system size de-
pendence of the slope at Tc is extracted from quadratic fits.
The results are shown in Fig. 8, and a fit to Eq. (24) yields
consistent estimates � = 0.671(8) (flux) and � = 0.677(3)
(confinement length). These values are compatible with the
3D XY universality class, for which �3DXY = 0.6717(1) [45].Now equippedwith estimates for Tc and �, we replot the dataof Fig. 5 against L1∕�t in Fig. 9. Near the critical temperature,
a good data collapse is obtained for all but the smallest system
size. The curves, which represent the universal functions fΦand f� , are consistent (up to normalization) with those in Fig. 6
of Ref. [14].

As shown in Fig. 10 (left panel), a single peak in the heat
capacity per site c is observed at the transition temperature,
indicating a single phase transition between the synchronized
and Coulomb phases. To measure the specific heat exponent
�, we consider its scaling at the critical point,

c = c0 + AL�∕� , (25)
where c0 represents the regular part, and A is a constant. A
fit to this form in Fig. 10 (bottom right panel) yields �∕� =
0.13(11), and using � = 0.677(3) (flux) gives a rough estimate
� = 0.09(7). In the 3D XY universality class, the correspond-
ing value is �3DXY = −0.0151(3) [45]. Our results satisfy hy-
perscaling � = 2 − d�, where d = 3 is the spatial dimension.
We next measure the crossover exponent �, which can be

found by considering the monomer distribution function Gm

-6 -4 -2 0 2 4 6

0

2

4

6

-6 -4 -2 0 2 4 6

0.18

0.20

0.22

0.24

FIG. 9. Flux difference variance Var�(−) (top panel) and squared
normalized confinement length �2∕L2 (bottom panel) versus L1∕�t,
for J = 0, K = −1, and different system sizes L. In each case, we
have replotted the data of Fig. 5 near the critical point, using values
Tc = 0.714444 (obtained from the crossing point of the confinement
length) and � = �3DXY = 0.6717. The data collapse is consistent witha synchronization transition in the 3D XY universality class.

[23]. Each MC simulation can only construct Gm up to an
arbitrary multiplicative constant, so we define the ratio

G(L) =
Gm(Rmax;L)
Gm(Rmin;L)

, (26)

where |Rmax| ∼ L, |Rmin| = 1, and the system size depen-
dence of Gm has been shown explicitly. At the critical point,
this has scaling form [32]

G(L) ∼ L−2
(

d− �
�

)

, (27)
for sufficiently large systems. A fit to this form in Fig. 11
yields �∕� = 2.4820(6), and using � = 0.677(3) (confine-
ment length) gives � = 1.680(8). This value is compati-
ble with the 3D XY universality class, for which �3DXY =
d�3DXY−�3DXY = 1.6665(3), using the exponents reported inRef. [45].
Finally, we consider the same phase boundary, between the

synchronized and Coulomb phases, at points where J ≠ 0.
The critical point (K∕T )c for each J∕T , plotted in Fig. 3, has
been obtained from the crossing point of Var�(−) for system
sizes L = 16 and L = 24. We expect that the universality
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FIG. 10. Left panel: heat capacity per site c versus temperature T for
J = 0,K = −1, and system sizeL = 48. A single peak is observed at
the critical temperature Tc = 0.714444 (dashed vertical line), which
grows slowly with system size (top right panel). (Colors indicate dif-
ferent values of L as in Fig. 5.) Bottom right panel: System size
dependence at the critical temperature Tc = 0.714444. The solid lineis a fit to Eq. (25) for L ≥ 40, from which a value �∕� = 0.13(11) is
obtained.

16 24 32 40 48 64 80 96

0.04

0.08

0.12

0.16

FIG. 11. Log–log plot ofG(L), the normalized value of the monomer
distribution function Gm, evaluated at the critical temperature Tc =
0.714444, versus system size L. The solid line is a fit to Eq. (27) for
L ≥ 40, from which a value �∕� = 2.4820(6) is obtained.

class is the same for each point along the boundary, and have
confirmed this for the points J∕T = −0.16 and J∕T = −0.24.

-0.546 -0.545 -0.544 -0.543

0.225

0.230

0.235

0.240

0.245

FIG. 12. Squared normalized confinement length �2∕L2 versus J∕T ,
for K∕T = −0.2, J∕T ≃ (J∕T )c, and different system sizes L.
A confinement transition between the columnar & synchronized and
Coulomb phases is not accompanied by a distinct crossing point, and
is thus not continuous.

B. Columnar & (Anti)synchronized ⟷ Coulomb

As discussed in Sec. II B 1, independent replicas (K =
0) exhibit a continuous transition between the columnar and
Coulomb phases [8]. We now consider columnar ordering
of coupled replicas (K ≠ 0), i.e., the transition between the
columnar & (anti)synchronized and Coulomb phases. Our re-
sults indicate that columnar ordering is driven first-order when
replicas are coupled. (Certain other additional interactions
have previously been shown to have this effect [30, 31].)
According to Eq. (20), a continuous (confinement) transi-

tion is characterized by a crossing point in �2∕L2, at the criti-
cal temperature. We plot this quantity in Fig. 12, in the vicin-
ity of a transition between the columnar & synchronized and
Coulomb phases. A distinct crossing point is not observed
[cf. Fig. 5 (insets)], and hence the transition is not continuous.
Similar behaviour is obtained for Var�(±).

Instead, the transition must be first-order. One thus expects
a bimodal energy histogram in the vicinity of the critical point,
which can be seen in Fig. 13 (red). The same behavior is
also obtained for transitions between the columnar & antisyn-
chronized and Coulomb phases (blue). In contrast, a single
peak is observed for columnar ordering of independent repli-
cas (green), as expected for a continuous transition.

Six points along this first-order phase boundary are included
in the phase diagram of Fig. 3. These have been located by
identifying peaks in the heat capacity per site, using system
size L = 32.

C. Columnar & Synchronized ⟷ Synchronized

We next consider the transition between the columnar &
synchronized and synchronized phases. In the limit K∕T →
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FIG. 13. Histograms of energy per site, E∕N , for different values
of K∕T and with J∕T close to the columnar-ordering transition for
each. The system sizes shown are L = 32 (top panel) and L = 48
(bottom panel). A single peak at K∕T = 0 is consistent with the
well-known continuous transition between columnar and Coulomb
phases. The distributions for K∕T ≠ 0 are mixtures of two ap-
proximately normal distributions, and become more clearly bimodal
for larger L, indicating first-order transitions between columnar &
(anti)synchronized and Coulomb phases.

−∞, this phase boundary corresponds to columnar ordering of
a single dimer model with Jeff = 2J (see Sec. II B 2). This is
known to be an (apparently) continuous transition in the tricrit-
ical universality class, and we expect the whole phase bound-
ary to share the same critical properties as this point.

Since the flux difference varianceVar�(−) and confinement
length � are small in both (synchronized) phases, we locate the
phase boundary using crossing points in the total flux variance
Var�(+), for system sizes L = 16 and L = 24. We have an-
alyzed the points K∕T = −2.0 and K∕T = −1.2 in greater
detail (not shown), and verified the expected critical proper-
ties.

D. Columnar & (Anti)synchronized phases

Finally, we consider the different possible columnar-ordered
phases at negative J∕T and both signs of K∕T . To clas-
sify these, it is convenient to use the covariance of the replica
magnetizations �12 = ⟨M (1) ⋅M (2)

⟩, which, deep within the

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

ObD, perpendicular

no ObD

ObD, antiparallel

FIG. 14. Covariance of the replicamagnetizations �12 = ⟨M (1)⋅M (2)
⟩

versus K∕T , for different values of J∕T < 0 and system size L = 8.
As explained in Sec. IVD, �12 vanishes at K = 0 and approaches +1
in the columnar & synchronized phase for K∕T < 0. Deep within
the columnar & antisynchronized phase, K∕T > 0, we expect �12to approach one of the values in Eq. (28), shown with dashed lines,
depending on the result of order-by-disorder effects. The evidence in-
dicates that antiparallel magnetizationsM (1) = −M (2) are preferred.
(Accessible values of L and |J |∕T are limited by loss of ergodicity
deep within the ordered phase.)

columnar-ordered region, indicates the relative orientations of
the magnetizations.
In the columnar phase at K = 0, the two replicas are inde-

pendent, and so �12 = ⟨M (1)
⟩ ⋅ ⟨M (2)

⟩ = 0, since the mean
magnetization vanishes by symmetry. Deep within the colum-
nar & synchronized phase for K < 0, the 6 ground states with
M (1) =M (2) = ±�� [see Fig. 2(a)] dominate, giving �12 = 1.For positiveK , there are two sets of configurations that min-
imize the energy: 6 where the magnetizations are antiparallel,
M (1) = −M (2) = ±�� [see Fig. 2(b)], and 6 × 4 = 24 where
they are perpendicular, M (1) ⋅M (2) = 0 [see Fig. 2(c)]. Be-
cause the degeneracy between the two sets is accidental (i.e.,
not required by symmetry), it is liable to be resolved by or-
der by disorder (ObD). There are, a priori, three possibilities:
ObD favoring antiparallel magnetizations; ObD favoring per-
pendicular magnetizations; and no ObD, leaving all orienta-
tions equally likely. For large negative J∕T , where columnar
order is well established and so ⟨|M (�)

|⟩ ≃ 1, these give lim-
iting values of

�12 =
⎧

⎪

⎨

⎪

⎩

−1 ObD, antiparallel
0 ObD, perpendicular

−0.2 no ObD.
(28)

MC results for �12 are shown in Fig. 14. The expected be-
haviour is obtained in the columnar phase (�12 = 0 when
K∕T = 0), and the columnar & synchronized phase (�12 → 1
forK∕T < 0). In the columnar & antisynchronized phase, the
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FIG. 15. Cayley tree with coordination number q = 4. The ‘root’
bond, labeled d0, has depth n and is connected at each of its vertices
to q − 1 ‘subbranches’, with roots labeled d1, of depth n − 1.

data appear to converge towards �12 = −1 as J∕T becomes
more negative. This indicates that ObD selects an arrangement
with antiparallel magnetizations, in agreement with consider-
ation of the elementary fluctuations, as in Sec. II B 2.

V. BETHE LATTICE

To gain further insight into the synchronization transition,
we consider the double dimer model on the Bethe lattice,
which, we will show, can be solved exactly. This provides an
approximation to the model on the cubic lattice that is in the
spirit of mean-field theory. In particular, we expect it to repro-
duce the qualitative behavior correctly, with a critical temper-
ature that approximates the true value, but to fail to predict the
critical properties.

We first consider a ‘Cayley tree’, illustrated in Fig. 15, a
graph where each vertex has q neighbors, except for those
at the boundaries, and where there are no closed loops. To
avoid contributions from the boundaries, which in the thermo-
dynamic limit constitute a finite fraction of the vertices, we
define the Bethe lattice as the part of the Cayley tree that is far
away from all boundaries. A dimer model on the Bethe lattice
has dimers occupying the bonds of the lattice (i.e., the edges
of the graph).

Statistical mechanics problems with nearest-neighbour in-
teractions are often exactly solvable on the Bethe lattice, since
the absence of circuits allows one to formulate a recurrence
relation for the partition function. This method has been used
for the Ising model [46], whilst a similar calculation has been
performed for spin ice on the Husimi tree [13, 23, 47]. Here we
apply it to the synchronization transition on the Bethe lattice.

A. Noninteracting dimers

To illustrate the method, we begin with a simpler calcula-
tion. Consider a single close-packed dimer model, with no

interactions, on the Cayley tree. In this case the partition func-
tion is simply

Z =
∑

c∈ℭ0

1 . (29)

A quantity of interest is the mean dimer occupation number
for the central bond, or root, of the Cayley tree, given by

⟨d0⟩ =
1
Z

∑

c∈ℭ0

d0 . (30)

To begin, the partition function is written as
Z =

∑

d0

[

Zn(d0)
]2 (31)

=
[

Zn(0)
]2 +

[

Zn(1)
]2 . (32)

In the first line, the quantity Zn(d0) is the ‘partial partition
function’ of the left, or equivalently right, branch of the Cayley
tree, when the root dimer occupation number is fixed to d0.The index n enumerates the branch depth. The same logic may
be applied to Eq. (30), and results in

⟨d0⟩ =
[

Zn(1)
]2

[

Zn(0)
]2 +

[

Zn(1)
]2 . (33)

A branch with root d0 and depth n consists of (q − 1) ‘sub-
branches’, rooted at d1 and with depth n − 1 (see Fig. 15).
This observation allows the construction of recurrence rela-
tions which connect the partial partition functions of branches
of depth n and n− 1. By allowing for all consistent configura-
tions of the subbranches, while applying (at the roots) the con-
straint that each site should be covered by exactly one dimer,
one finds

Zn(0) = (q − 1)Zn−1(1)
[

Zn−1(0)
]q−2 (34)

Zn(1) =
[

Zn−1(0)
]q−1 . (35)

It is convenient to introduce the variable
xn =

Zn(0)
Zn(1)

, (36)

for which Eqs. (34) and (35) imply

xn =
q − 1
xn−1

. (37)

Next we consider only sites on the Bethe lattice, deep within
the Cayley tree, by taking the thermodynamic limit n → ∞.
Here, the solution is a fixed point satisfying xn = xn−1 = x,
so that Eq. (33) may be re-written

⟨d0⟩ =
1

1 + x2
, (38)

whilst Eq. (37) becomes

x = q − 1
x

. (39)
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This has solution
x =

√

q − 1 , (40)
and substitution into Eq. (38) yields

⟨d0⟩ =
1
q
. (41)

This is given, as expected, by the ratio of the number of dimers
to the number of bonds.

In reality, the recurrence relation of Eq. (37) does not con-
verge towards its fixed point in the thermodynamic limit, but
instead oscillates indefinitely. To perform a more rigorous
treatment, one can permit monomers with a small nonzero fu-
gacity z, modifying Eq. (37) to

xn =
q − 1
xn−1

+ z . (42)

This recurrence relation does converge in the thermodynamic
limit, and Eq. (41) is easily retrieved by subsequently taking
the limit z→ 0.

Using the same approach, one can also calculate the re-
sponse to monomer insertion, which, as discussed in Sec. II B,
allows one to distinguish confined and deconfined phases. The
distribution function Gm, defined in Eq. (9), involves a pair
of monomers and cannot easily be calculated using the recur-
rence relation. Instead, we consider the corresponding quan-
tity for a single monomer,

Ψm =
Zm
Z

, (43)

where Zm =
∑

c∈ℭ(r+) e
−E∕T is the partition function with

a monomer inserted at r+. This takes the form of an ex-
pectation value (specifically, of a monomer insertion operator
[39]) and we therefore refer to it as the ‘monomer expectation
value’. While it vanishes due to the requirement of charge neu-
trality when periodic boundary conditions are applied, it can
be nonzero with open boundary conditions, including on the
Bethe lattice.

Suppose r+ is taken as the left side of the root d0. Then
the left (right) branch of the Cayley tree ‘sees’ an occupied
(unoccupied) root, and the system has partition functionZm =
Zn(1)Zn(0). The partition function without monomers Z is
again given by Eq. (32). From the definition of Eq. (36), and
its solution in Eq. (40), one obtains

Ψm =
√

q − 1
q

. (44)

The result is nonzero, indicating that an isolated monomer
can occur with finite free-energy cost ΔFm = −T lnΨm.Monomers are therefore deconfined, as expected in the non-
interacting dimer model.

B. Synchronization transition

Now consider the double dimer model of Eq. (1) on the Cay-
ley tree. Since parallel pairs of dimers cannot be defined, we
set J = 0, leaving configuration energies

E = K
∑

l
d(1)l d(2)l , (45)

and a partition function given by Eq. (4). The quantity of in-
terest is the mean energy per site deep within the interior of
the tree, which we take as its value on the root bond,

⟨E⟩
N

= q
2
K⟨d(1)0 d(2)0 ⟩ , (46)

assuming translational symmetry (at least on average). We
therefore require the correlation function

⟨d(1)0 d(2)0 ⟩ = 1
Z

∑

c(1)∈ℭ0
c(2)∈ℭ0

d(1)0 d(2)0 e
−E∕T (47)

on the same bond. This may be calculated in analogy with
Sec. VA, although the algebra is more involved.

The partition function is written as

Z =
∑

d(1)0 ,d(2)0

e−kd
(1)
0 d(2)0

[

Zn
(

d(1)0 , d(2)0
)]2 (48)

=
[

Zn(0, 0)
]2 +

[

Zn(1, 0)
]2 +

[

Zn(0, 1)
]2 + e−k

[

Zn(1, 1)
]2 , (49)

where the reduced coupling k = K∕T has been introduced for convenience. In the first line, the quantity Zn
(

d(1)0 , d(2)0
)

is the
‘partial partition function’ of the left, or equivalently right, branch of the Cayley tree, when the root dimer occupation numbers
are fixed to d(1)0 and d(2)0 . Similarly, Eq. (47) may be written

⟨d(1)0 d(2)0 ⟩ =
e−k

[

Zn(1, 1)
]2

[

Zn(0, 0)
]2 +

[

Zn(1, 0)
]2 +

[

Zn(0, 1)
]2 + e−k

[

Zn(1, 1)
]2 . (50)

In order to construct recurrence relations, one must again allow for all possible configurations of the subbranches, while applying
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(at the roots) the constraint that each site should be covered by exactly one dimer in each replica. The results are
Zn(0, 0) = (q − 1)e−kZn−1(1, 1)

[

Zn−1(0, 0)
]q−2 + (q − 1)(q − 2)Zn−1(1, 0)Zn−1(0, 1)

[

Zn−1(0, 0)
]q−3 (51)

Zn(1, 0) = (q − 1)Zn−1(0, 1)
[

Zn−1(0, 0)
]q−2 (52)

Zn(0, 1) = (q − 1)Zn−1(1, 0)
[

Zn−1(0, 0)
]q−2 (53)

Zn(1, 1) =
[

Zn−1(0, 0)
]q−1 . (54)

Next we define the variables
⎛

⎜

⎜

⎝

un
vn
wn

⎞

⎟

⎟

⎠

= 1
Zn(1, 1)

⎛

⎜

⎜

⎝

Zn(0, 0)
Zn(1, 0)
Zn(0, 1)

⎞

⎟

⎟

⎠

(55)

and take the thermodynamic limit. The solutions are again
fixed points, and Eq. (50) may be rewritten

⟨d(1)0 d(2)0 ⟩ = e−k

u2 + v2 +w2 + e−k
, (56)

whilst Eqs. (51)–(54) translate into a system of coupled, non-
linear equations given by

u = q − 1
u

[

e−k + (q − 2)vw
u

]

(57)
v = (q − 1)w

u
(58)

w = (q − 1)v
u
. (59)

The solutions to this system depend on the value of the re-
duced coupling k. For k ≤ kc = − log(q − 1), there is a singlesolution

⎛

⎜

⎜

⎝

u
v
w

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

√

(q − 1)e−k
0
0

⎞

⎟

⎟

⎠

, (60)

whereas, for k > kc, we find additionally

⎛

⎜

⎜

⎝

u
v
w

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎜

⎝

q − 1
√

q−1
q−2 (q − 1 − e

−k)
√

q−1
q−2 (q − 1 − e

−k)

⎞

⎟

⎟

⎟

⎠

, (61)

which, as we have confirmed by a linear stability analysis, is
the only stable solution. (Note that the critical value kc is neg-ative – as expected, the transition occurs for attractive coupling
K < 0.)

Substitution of this result into Eq. (56), and then into
Eq. (46), yields the final result for the mean energy per site
of

⟨E⟩
N

=
⎧

⎪

⎨

⎪

⎩

K
2

(q − 2)e−k

(q − 1)2 − e−k
for k ≥ kc

K
2

k ≤ kc.
(62)

In line with xn in Sec. VA, the recurrence relations for un,
vn and wn derivable from Eqs. (51)–(54) may oscillate in the
thermodynamic limit. Again, convergence is achieved by al-
lowing monomers with fugacity z and taking the limit z → 0.
In Fig. 16 (top panel) we show the temperature depen-

dence of the mean energy per site for a Bethe lattice with the
same coordination number as the cubic lattice, q = 6, and
with K = −1. There is a second-order phase transition at
Tc = 1∕ log(5) ≃ 0.62, characterized by a kink in the mean en-
ergy per site. Note that on the cubic lattice, our corresponding
result (with J = 0) is Tc ≃ 0.71. The low-temperature phase is
always perfectly synchronized, since there is an energy K for
every dimer in a given replica. The high-temperature phase,
whichwe identify with the Coulomb phase, is unsynchronized.
In particular, when k = 0, the mean energy per bond is K∕q2.
This is sensible, because in this limit the replicas are indepen-
dent, and from Eq. (41) the probability of double bond occu-
pation is 1∕q2.
To confirm our identification of the high-temperature solu-

tion with the (unsynchronized) Coulomb phase, we return to
the monomer expectation valueΨm defined in Eq. (43). In this
case, we consider the partition function with a monomer in a
single replica (again on the left side of the root d0), which is

Zm = Zn(1, 0)Zn(0, 0) +Zn(1, 1)Zn(0, 1) , (63)
while the partition function without monomers Z is given by
Eq. (49). From the definitions of Eq. (55), and their solution
in Eqs. (60) and (61), one obtains

Ψm =
⎧

⎪

⎨

⎪

⎩

√

(q − 1)(q − 2)(q − 1 − e−k)
(q − 1)2 − e−k

for k ≥ kc
0 k ≤ kc.

(64)

The result is shown in Fig. 16 (bottom panel), using the
same parameters as for the mean energy per site. In the low-
temperature synchronized phase (k < kc < 0), Ψm = 0
and the free-energy cost for an isolated monomer, ΔFm =
−T lnΨm, is infinite, while in the high-temperature unsyn-
chronized phase, Ψm > 0 and ΔFm is finite. This qualitative
distinction, equivalent to the criterion based onGm introduced
in Sec. II B, implies that the synchronization transition on the
Bethe lattice is a bona fide confinement transition.
While the model on the Bethe lattice with q = 6 gives a rea-

sonable approximation to the critical temperature on the cubic
lattice, it does not reproduce the correct critical behavior. This
is directly evident for the heat capacity, )

)T ⟨E⟩, which, accord-ing to Eq. (62), has a discontinuity at T = Tc, as expected for
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FIG. 16. Mean energy per site ⟨E⟩∕N (top panel) and monomer ex-
pectation valueΨm (bottom panel), versus temperature T for the dou-
ble dimer model on a Bethe lattice with the same coordination num-
ber as the cubic lattice, q = 6. In this case, there are no interactions
within each replica (i.e., J = 0), and we set K = −1. A second-
order phase transition at Tc = 1∕ log(5) ≃ 0.62 separates a low-
temperature (perfectly) synchronized phase, in which monomers are
confined (Ψm = 0), from a high-temperature unsynchronized phase,
in which monomers are deconfined (Ψm > 0).

a mean-field theory. For the monomer expectation value, the
duality mapping to the XYmodel [23] givesΨm ∼ t� for t > 0,where � is the magnetization exponent. From Eq. (64), we find
the mean-field value � = 1

2 .

VI. CONCLUSIONS

We have studied the phases of the double dimer model on
the cubic lattice using a combination of theoretical arguments
and MC simulations. Our results demonstrate the presence of
a synchronization transition at a critical coupling between the
replicas, which has no local order parameter but can be char-
acterized through the confinement of monomers.
In a subsequent publication, we will address the samemodel

on the square lattice; extensions to dimer models on other bi-
partite lattices are straightforward. By adapting the synchro-
nization criterion introduced here, analogous transitions can
also be expected in other systems consisting of two coupled
replicas of a fractionalized phase. These include the Coulomb
phase in ice models [2, 5], where a pair of monopoles in one
replica would similarly become confined upon synchroniza-
tion.
Experimental realizations of such transitions could be pos-

sible in various frustrated systems. In 2D, these include mag-
netic materials with a bilayer structure as well as nanomag-
net arrays [48], which have been used to simulate ice mod-
els with a variety of geometries, constructed in a double-layer
configuration. A 3D synchronization transition could be pos-
sible between magnetic moments of two types, for example,
in pyrochlore oxides with magnetic ions on both the A and B
sites of the crystal structure [49]. In these cases, one expects
a thermodynamic phase transition (see, e.g., Fig. 10), but with
no magnetic ordering. We leave the detailed study of possible
experimental signatures to future work.
A natural extension of the double dimer model that we

have treated here is to consider the case of multiple replicas
� ∈ {1, 2,… , n}. With strong coupling between ‘adjacent’
replicas � and � + 1, this can be interpreted as the Suzuki–
Trotter decomposition of the partition function for a quantum
dimer model [50]. The double-loop algorithm introduced in
Sec. III B could be extended to the case of multiple replicas,
giving a method that is similar (at least in spirit) to the mem-
brane algorithm [51] previously applied to quantum ice.
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