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Assessment of toxicity reduction in ZnS substituted CdS:P3HT bulk 
heterojunction solar cells fabricated using a single-source 
precursor deposition  

Matthew T. Bishop,a Marco Tomatis,a,b Wenjun Zhang,c Chuang Peng,d,e* George Z. Chen,d,f Jun He 
b,d and Di Hu d,g* 

Utilisation of cadmium sulphide (CdS) for the preparation of hybrid bulk heterojunction (BHJ) solar cells is limited due to its 

high human, soil and marine toxicity. This work aims to reduce the toxicity of the cadmium based hybrid bulk 

heterojunctions, by varying the composition of metal sulphide nanoparticles between CdS and zinc sulphide (ZnS). 

Furthermore, these devices were created using a single-source precursor, which limits potential barriers for scaling up this 

process to industrial scale. It was found that the chemical composition of fabricated devices varied as expected; however, 

comparable morphologies were noted by SEM analyses. Toxicity of fabricated photovoltaic devices was estimated according 

to the life cycle assessment methodology, using the SimaPro software. Although negligible changes between the band gaps 

of prepared devices were calculated by decreasing the Cd load to 50 wt%, over 50 % reduction to human toxicity could be 

achieved. As a photovoltaic device, the highest power conversion efficiency (0.018 %) was observed for the device containing 

75 wt% Cd and 25 wt% Zn, which also showed significant reductions for human and environmental toxicity (25 % and 19 % 

reduction, respectively) in comparison to the device containing only CdS, while increasing the power conversion efficiency 

by roughly 30 %. It was also noted that although the ZnS only device had the lowest efficiency (0.002 %, a decrease of roughly 

98 %), however, this allowed for a 99 % reduction in human toxicity and a 73 % reduction in terrestrial ecotoxicity.

1. Introduction 

It has been estimated that around 3x1024 J of energy reach Earth 

from the sun each year, which theoretically could be utilised to 

address the current annual world energy consumption of 8x1016 

J 1, 2. Establishing effective methods of harvesting solar energy 

could potentially reduce the utilisation of fossil fuels for power 

generation and therefore, be a great benefit to society. Over 85 

% of commercially available solar cells are silicon based 3. 

However, the production of 1 Mt of silicon has been shown to 

release roughly 1.58 Mt of CO2 into the atmosphere 4. This 

poses a significant, and often overlooked, impact on the 

environment. 

Bulk heterojunction (BHJ) solar cells provide a potential 

alternative method of harvesting solar energy. BHJs refer to 

multiple phases mixed within one layer. The heterojunction 

provides a three-dimensional blend of electron-donating and 

electron-accepting materials characterised by a large 

donor/acceptor interface area which increases the probability 

of exciton capture and dissociation, thereby increasing the 

potential power output of the solar cells 5-7. Furthermore, it has 

been suggested that creating BHJs composing of both 

conductive organic polymers and inorganic nanocrystals could 

combine material advantages, such as flexibility and stability, of 

organic and inorganic devices 8. However, the synthesis of these 

devices often requires multiple steps, causing complications for 

large scale implementation for future commercialisation 

opportunities 1, 5, 6, 9. 

With regard to the fabrication of BHJs for energy harvesting 

applications, poly(3-hexylthiophene) (P3HT) is commonly used 

as the organic component, due to its high absorption coefficient 

(roughly 105 cm-1) within the visible region of the solar spectrum 
3, 8.  Whereas for the inorganic component, metal sulphides 

have been extensively studied 10, 11. A novel single source 

precursor mixture was used in order to deposit a metal 

sulphide/polymer matrix in a more efficient and easier scale-up 

method, as a means to overcome the often complicated 

synthetic route for BHJs. This requires a precursor with an 

appropriately low decomposition temperature precursor for 
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the synthesis of the metal sulphide nanoparticles, as polymers 

are usually thermally unstable 12, 13.  

Cadmium sulphide (CdS) has been a proven inorganic 

component for the abovementioned applications 14-18, 

however, it is a highly toxic material rendering a high impact to 

both the human health and the environment. Therefore, it is 

paramount to design a hybrid photovoltaic device of 

comparable or higher efficiency to the more conventional CdS 

based ones by utilising non-toxic or less toxic compounds. ZnS 

has emerged as a potential substitute for CdS due to its 

relatively low toxicity and high open circuit voltage 19. However, 

its application as a substitute for CdS in photovoltaic devices has 

been scarcely investigated, especially using the comparable 

deposition procedures to allow for accurate comparative 

studies 15, 19, 20.  

In order to address this research gap, the efficiencies of 

photovoltaic devices prepared at varying weight ratios of CdS 

and ZnS have been investigated. Photovoltaic devices described 

in this study were prepared via decomposition of metal ethyl 

xanthate precursors (MXan, M= Cd, Zn), at varying metal 

concentrations, dispersed within a P3HT matrix using spin 

coating deposition. MXan were selected as precursors due to 

their low decomposition temperature, which allows preventing 

damage to the polymeric component, and have been previously 

shown to form functional BHJ photovoltaic devices 9, 21. MXan 

have been thought to decompose to metal sulphides via the 

Chugaev elimination reaction 22, a reaction mechanism 

consisting of a syn-elimination of an alkene via a 6-membered 

cyclic transition state, carbonyl sulphide elimination and a 

hydrogen sulphide elimination process (Figure 1).  

Relationships between the chemical composition and 

properties of prepared hybrid BHJ photovoltaic device were 

then established to investigate whether ZnS could be used as an 

alternative to partly, or completely replace CdS in hybrid BHJ 

solar cells. In addition, the toxicity related to the disposal of 

produced solar cells as landfill waste was quantified according 

to the principle of the Life Cycle Assessment (LCA), a widely 

applied methodology which allows assessing the environmental 

impact of processes and products throughout their whole life 

cycle 23. 

2. Experimental 

2.1. Toxicity Assessment 

As the fabrication of BHJ solar cells is currently only at 

laboratory scale 12, 14, it was not possible to assess the potential 

environmental impact of prepared photovoltaic devices during 

their whole life cycle. It is also worth highlighting that laboratory 

scale processes are sub-optimal, as they do not consider 

precursor recycling or other strategies aimed at minimising the 

amount of reagents used and wastes produced. Therefore, 

results of the impact assessment describing the proposed 

synthetic route would not be representative of a proper 

production process and thus, they should not be considered. 

Due to this reason, only the toxicity related to the disposal of 

prepared devices in landfill was considered for this study. 

Landfill disposal was analysed as it is a common method of 

deposal for many items; including solar panels. Solar panels are 

rarely recycled due to the complexity of their structure which 

includes metals, plastics and various polymers, resulting in the 

leaching of toxic compounds and subsequent contamination of 

both soil and groundwater sources are commonly observed in 

landfill sites 24, 25.  Furthermore, by conducting this analysis at 

the end of the life cycle, any efforts to encapsulate and prevent 

metal contamination of the devices is likely to be undone due 

to breakages occurring, which would result in the leaching of 

BHJ materials. 

This assessment allowed for the quantification of the changes 

in the toxicity of disposed solar cells towards humans and the 

environment based on the changes in their metal composition. 

Therefore, such a preliminary study could be used to 

complement data regarding the performance of prepared 

devices, aiding with the selection of different, less hazardous, 

precursors; possibly leading to the development of more 

sustainable technologies for renewable energy generation. 

The impact assessment was conducted, by utilising the SimaPro 

software version 8.3, according to the ReCiPe method at 

midpoint level based on the hierarchist perspective 26. The 

ReCiPe method was chosen for this study because of the 

relevance of the impact categories considered, including 

Human Toxicity (HT), Terrestrial Ecotoxicity (TET), Freshwater 

Ecotoxicity (FET) and Marine Ecotoxicity (MET), which allowed 

for the quantification of the toxicity of prepared solar cells on 

both humans and the environment. The metals and their 

concentrations utilised for the toxicity assessment were based 

on the discussed synthetic routes described in the following 

section (2.3 Device Fabrication). 

It is worth mentioning here that the concentration of 

contaminants in landfills leachate depends on several factors 

including climatic conditions, waste composition, age and 

degradation of the considered waste 25. Therefore, high 

uncertainties are expected regarding the metals concentration 

in soil and water since a case-by-case evaluation, based on on-

site analysis, would be necessary to measure their 

concentration and distribution in the local environment. 

 

2.2. Xanthate Synthesis 

Each xanthate precursor was synthesised via an adapted 

synthetic procedure proposed by Agrawal el al 12, using either 1 

g of cadmium chloride or 0.7 g of zinc chloride dissolved in 20 Figure 1. The general reaction mechanism for Chugaev elimination reaction.  



Sustainable Energy & Fuels  Communication 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3  

Please do not adjust margins 

Please do not adjust margins 

ml of de-ionized water. This was added to an aqueous solution 

containing 3.5 g of potassium ethyl xanthate dissolved in 20 ml 

of de-ionized water, and then stirred for 24 hours revealing a 

pale yellow Cadmium Xanthate (CdXan) or white Zinc Xanthate 

(ZnXan) precipitate. Finally, the prepared precipitate was 

filtered, washed with de-ionized water and dried at 50 °C. 

2.3. Device fabrication 

Prior to deposition, substrates were ultra-sonically cleaned in 

ethanol for 10 minutes and dried in an inert gas. 

Five precursors were prepared at different metal compositions: 

 

 0.442 g of CdXan and 0 g of ZnXan (Cd4:Zn0) 

 0.332 g of CdXan and 0.142 g of ZnXan (Cd3:Zn1) 

 0.221 g of CdXan and 0.284 g of ZnXan (Cd2:Zn2) 

 0.111 g of CdXan and 0.426 g of ZnXan (Cd1:Zn3) 

 0 g of CdXan and 0.568 g of ZnXan (Cd0:Zn4) 

 

Each precursor was dissolved in 10 ml of 1,2-dichlorobenzene 

(DCB) with 0.18 g of P3HT. The prepared solutions were then 

pipetted onto indium tin oxide (ITO) coated glass and spin 

coated at 1000 rpm for 30 seconds. These deposition 

parameters were chosen as the optimised condition for Cd4:Zn0 

and result in a film roughly 70-80 nm thick (Figure 2). After the 

deposition, devices were heated to 160 °C for 30 minutes, to 

decompose the xanthate precursors into their respective 

sulphides. 

Once the active layers have been deposited, an additional 50 

nm layer of gold was coated to the device via DC-magnetron 

sputtering, to work as an electrode for the device. Gold was 

selected as it is a highly conductive and non-toxic material that 

has been previously used for photovoltaic applications 27. A 

current of 11 mA was utilised for this deposition, as it was noted 

that higher currents caused the device to fail. This is likely due 

to penetration between layers, resulting in the destruction of 

the architecture of the BHJ. A schematic of the final device 

design is shown in Figure 3 and photographs of deposited 

samples are shown in Figure 4. From Figure 4 it can be seen that 

deposition occurs successfully, without any damage to the 

surface of the decomposed film. 

 

2.4. Characterisation techniques 

To determine the crystal structure, X-ray diffraction (XRD) 

patterns were collected using a D8 Advance diffractometer 

(Bruker) equipped with a copper anode (Cu-Kα radiation λ = 

0.154 nm) over the angular range of 10o< 2θ <90o with a step 

size of 0.01o at 40 kV and 35 mA. 

A Zeiss ΣIGMA Scanning Electron Microscopy (SEM) operating at 

5.0 kV was used for knowing the morphology, size of the 

deposited films, while the composition was analysed by Energy 

Dispersive Spectroscopy (EDS) on an X-Act (Oxford Instrument) 

coupled with the previously mentioned SEM. 

Thicknesses of deposited layers were determined using a Veeco 

3100 SPM in tapping mode to collect line profiles of these 

layers.  

Optical characteristics of the samples were measured at room 

temperature using a Cary 5000 UV-vis absorption spectrometer 

at a rate of 400 nm/s, between 350 – 750 nm. One cycle was 

taken for each sample. 

Figure 2. AFM line profiles to determine the thickness of a) Cd4:Zn0, b) Cd3:Zn1, c) 

Cd2:Zn2, d) Cd1:Zn3 and e) Cd0:Zn4.  
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Current-voltage measurements were made using a CHI600E 

electrochemical workstation under illumination at AM1.5 G 

(100 mW cm-2) light intensity. 

3. Results and Discussion 

3.1. Toxicity Assessment 

Figure 5 represents the toxicity assessment for the disposal of 

prepared BHJ solar cells in landfill. It is worth mentioning LCA 

describing the production and utilisation of solar panels in 

photovoltaic plants or on a domestic scale rarely considered the 

end of life of the panels due to the lack of data describing this 

stage 28. However, the behaviour of heavy metals leachates as 

well as possible remediation strategies are widely described, 

allowing to justify toxicities distributions reported in Figure 5 29, 

30. The severe toxicity of heavy metal leachates is mainly related 

to the contamination of soil, surface and groundwater. These 

contaminations lead to the bioaccumulation of toxic metals in 

various organisms and therefore cause significant impacts to 

both human health and the environment 31. 

As expected, reduction of the toxicity ranging between 99% and 

19% for human toxicity and freshwater ecotoxicity, respectively 

were observed with the decrease of CdS load. The toxicity of 

devices prepared at higher CdS loads was mainly attributed to 

the widely described toxicity of Cd to several organs 32, to soil 33 

and water 34. It is worth highlighting that only moderate 

reductions of the toxicity of prepared devices were observed on 

fresh and marine water (up to 19% reduction on FET and MET). 

This was possibly because Zn was proven toxic towards various 

aquatic organisms at different stages of their life 35. On the 

contrary, the toxicity of Zn towards humans and soils resulted 

in dramatic reductions. The scarce toxicity of this metal was 

attributed to the fact that Zn is utilised by the human body and 

it becomes toxic only at high concentrations 36, while its toxicity 

in soils mostly depends on the type and properties of 

considered soil 37. Therefore, dramatic reductions of the 

environmental impact were observed with the increase of ZnS 

metal load on human toxicity and terrestrial ecotoxicity (up to 

99 % and 73% reduction were estimated for Cd0:Zn4 on HT and 

TET, respectively). 

 

3.2. Characterisation of Cd-Zn based solar cells 

XRD (Figure 6) and SEM coupled with EDS (Figure 7) analyses 

were utilised as preliminary tests in order to determining the 

composition and to quantify the altering chemical composition 

of the deposited layer.   

Figure 3. Schematic representation of the device design.  

Figure 4. Photographs taken of deposited and decomposed samples, prior to gold 

deposition.  

Figure 6. XRD analysis of films, deposited on ITO coated glass. Key peaks at 48 and 63 o 

(2ϴ), for CdS and ZnS respectively, are highlighted by red arrows. 

Figure 5. Relative contribution to human and environmental toxicity of prepared 

samples. Showing Human Toxicity (HT), Terrestrial Ecotoxicity (TET), Freshwater 

Ecotoxicity (FET) and Marine Ecotoxicity (MET).  
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Figure 6 shows the XRD diffractograms of the deposited active 

layers as the ratio of the precursors change. Characteristic ITO 

peaks 38, from the substrate, (JCPDS No. 71-2194) could be seen 

at roughly 2θ=30, 36, 38, 51, 61 o. Typical diffraction peaks of 

CdS Greenockite 39 (JCPDS No. 41-1049) were observed at 

around 25, 26, 28, 44, 48, 52 and 61 o  (2θ), while  diffraction 

peaks located at 27, 28, 30, 40, 56 and 63° (2θ) suggested the 

presence of ZnS Wurtzite 40 (JCPDS No. 79-2204) on analysed 

samples. The diffraction peaks of CdS, ZnS and ITO often align; 

however, two noticeable peaks, located at roughly 48 and 63 o 

(2θ) for CdS and ZnS respectively. To highlight these peaks, red 

arrows are used in Figure 6.  

As expected, the intensity of diffraction peaks of CdS gradually 

decreased with the increase of ZnS load and were not be 

observed during the analysis of Cd0:Zn4. The smaller shoulder 

peak at 63 o, corresponding to ZnS, decreases in intensity with 

decreasing ZnS load in the device. 

From Figure 7 it is apparent that all samples have a similar 

morphology, regardless of their chemical composition. This 

suggests that the substrate or P3HT are the predominant 

factors in the determination of the morphology. EDS analysis 

results reported in Figure 7 also confirmed the variation of the 

metal content suggested by the XRD results showing atomic 

ratios comparable to those expected from the deposition 

conditions, confirming varying metal ratios required for this 

study. 

UV-vis analysis of deposited films was also conducted, as 

reported in Figure 8. 

Each absorption spectra displays a small peak at roughly 605 

nm, which was attributed to the ordering of intra-chain 

interactions in P3HT 12. Deposited films with higher 

concentrations of CdS such as Cd4:Zn0 and Cd3:Zn1, present an  

initial peak position that is noticeably more red-shifted 

compared to their ZnS counterparts. This pushes their peak 

absorption to overlap more significantly with the solar 

spectrum, which peaks at roughly 530 nm. Comparable red-

shifts where also reported by Jabeen et al 41 during their 

investigation of Cd doped ZnS nanoparticles. According to the 

authors, such shift would enable the band gap to be tuned for 

more absorption in the visible spectra.  

 In order to better understand the optical properties of the 

active layers, Tauc plots were generated form the spectral data, 

plotting (αhν)2 vs hν (see Figure 9). From these plots, the band 

gaps can be estimated by extrapolating the straight line of the 

Tauc plot to intercept the X-axis 42. 

These generated Tauc plots were used to calculate the band gap 

energies of the devices, to properly investigate this effect the 

chemical composition has on band gap tuning (Figure 9) 13, 43, 44. 

The main peak in the solar spectrum occurs at roughly 530 nm, 

which corresponds to a band gap of 2.33 eV.  

Figure 7. SEM images of  a) Cd4:Zn0, b) Cd3:Zn1, c) Cd2:Zn2, d) Cd1:Zn3, e) Cd0:Zn4 and 

f) a table presenting the calculated atomic ratios using the EDS. 
Figure 9. Tauc plots of deposited films on ITO coated glass. 

Figure 8. UV-vis analysis of films, deposited on ITO coated glass. 
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However, it has been reported that peak efficiencies for single-

junction devices, like the devices described in this work, occur  

with a band gap between 1.3-1.75 eV 45, 46.  It was calculated 

that the band gap for the Cd4:Cd0 sample is 2.62 eV, and only 

increases by 0.05 eV with a 50 % reduction of CdS load. This 

band gap then increases to 2.89 eV as the concentration of Zn 

surpasses that of Cd (Cd1:Zn3), and finally is noted to be 3.33 

eV for Cd0:Zn4. From the results shown in Table 1 it can be 

inferred that the observed band is proportional to the 

concentration of Cd and inversely proportional to the 

concentration of Zn. This increase in band gap can only be 

attributed to the content of ZnS as no other changes in 

deposition took place and the morphology of the material 

remains constant.  

As reported in Table 1, the band gap of Cd4:Zn0 was closer to 

the optimum values (1.3-1.75 eV) in comparison to that 

estimated for pure ZnS (Cd0:Zn4). This is due to the red-shifting 

observed with increasing CdS content, allowing for better 

overlap with the solar spectrum. However, since the observed 

band gap increased by 0.05 eV from Cd4:Zn0 to Cd2:Zn2, it has 

been shown that the CdS content can be reduced with minimal 

effect to the calculated band gap. Though, it is important to 

note that the band gap is not the sole factor that alters the 

performance of a photovoltaic device.  

 The current-voltage (I–V) plots of prepared samples were also 

measured to determine the influence of the abovementioned 

chemical and optical differences on key photovoltaic 

parameters, see Figure 10. It is important to note that there is 

non-linear relationship between the chemical characteristics of 

the devices and their respective photovoltaic parameters. This 

is reflected in the relative positions of the curves displayed in 

Figure 10, showing that the reduction of CdS to a 75% load 

(Cd3:Zn1) outperformed the pure CdS sample (Cd4:Zn0). This 

could partially be due to the doping effects, such as the 

potential increase in the energy of conduction band of the 

inorganic phase, promoting charge diffusion, and the stability of 

the band gap of the material 41, 47. The efficiency was 

considerably decreased with further increase in Zn load, despite 

the continued stability of the band gap. The formation of an 

additional phase of ZnS would hinder charge transport within 

the material, by increasing path length 41. Therefore it is 

hypothesised to be the cause of these findings and result in a 

lower efficiency device. 

 Table 2 displays the average characteristic photovoltaic 

parameters for 3 replicates of each device tested. The maximum 

voltage available from the photovoltaic devices, open-circuit 

voltage (Voc), for Cd4:Zn0 and Cd0:Zn4 are consistent with 

values previously reported for CdS:P3HT 16, and ZnS:P3HT 20 

photovoltaic devices. Initial introduction of Zn into the device, 

Cd3:Zn1, has an enhanced Voc, increasing it from 0.44 to 0.49 

V. This is likely due to the increase in band gap, as it has been 

shown that the band gap and Voc are directly related therefore, 

increases in the band gap lead to increases in the Voc 45, 48. 

Furthermore, it is important to note that the varying Voc, with 

altering precursor chemical compositions, demonstrates the 

formation of CdS-ZnS heterojunctions. Since the Voc are 

determined by the energy gaps between the donor and 

acceptor materials, the variation in this value displays the 

chemical and electrical alteration of these layers and therefore 

the energy levels of the system 49,50.  

The trend seen in Voc is mimicked in the collected short-circuit 

current (Jsc) values, with Cd3:Zn1 showing the highest value 

(0.084 mA.cm-2) and Cd0:Zn4 showing the lowest value (0.015 

mA.cm-2). This analysis clearly showed that ZnS based solar cells 

collect lower currents than their CdS counterparts. It is 

important to note that Jsc values reported in Table 2 are also 

influenced by resistance between different components of the 

device. This can be dramatically improved through various 

methods, such as energy level optimisation via introducing 

layers to enhance carrier mobility and current collection or 

Figure 10. I-V plots of CdS/ZnS:P3HT devices under illumination with an intensity of 100 

mW.cm-2. 

Table 1. Optical band gaps of active layers of different compositions. 
Table 2. Average characteristic photovoltaic parameters of devices derived from current-

voltage plots 
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altering the chemistry of current layers through the 

introduction of additional dopants 7, 20, 51. 

  The Fill Factor (FF) is the ratio of the maximum power of the 

device to the product of the Voc and Jsc. As shown in Table 2, 

the FF for the different devices remained fairly constant. This 

would suggest a similar recombination mechanism and 

quenching for each device, which is likely as the shown 

morphology (Figure 5) appears to be the same regardless of the 

sample. Since recombination often occurs at grain boundaries, 

the FF is likely to vary as the morphology varies 10. The Power 

Conversion Efficiencies (PCEs) reported in Table 2 follow the 

same trend observed for both Voc and Jsc, due to the 

correlation of these three parameters with the efficiency.   

From the PCEs it can be said that the Cd3:Zn1 device performs 

the best. This can be attributed to two major factors, the 

increase in Voc and the increase in Jsc. As previously discussed, 

the increased Voc is due to the manipulation of energy levels 

from the incorporation of ZnS in the device. The increased Jsc 

value could potentially be attributed to two things, either the 

optical properties or collection properties of the device 52. As 

the absorption is lower (Figure 8) and the band gap (Figure 9) is 

less favourable than that for Cd4:Zn0. Therefore, the 

enhancement can be attributed to collection properties. The 

incorporation of ZnS into a CdS acceptor material has been 

suggested to improve collection properties by improving the 

transportation of electrons into the acceptor phase 53.  

4. Conclusions 

This investigation looked into the potential reduction of CdS 

used in newly deposited BHJ photovoltaics, to help increase the 

possible future commercial viability of these devices. Five 

variations of CdS/ZnS:P3HT BHJs were deposited and 

characterised from single source precursors. It was shown that 

by using higher concentrations of CdXan in the precursor 

solution the band gaps calculated are significantly more red-

shifted. However, the band gap only changes by 2 % with a 50 

% reduction of CdS in the device, which roughly equates to a 50 

% reduction in human toxicity. Overall, Cd3:Zn1 resulted the 

most efficient solar device prepared in this study, showing the 

reduction of CdS load used in the device. This results in a toxicity 

reduction of up to 25% for human toxicity and 19% for the 

environment. However, all devices were shown to be 

functional, that a single-source precursor could be used to 

create any of these devices for ease of commercialisation. While 

the higher Zn loaded devices performed worse compared to 

their more toxic counterparts. With further development of the 

potential for these efficiencies to be improved is very possible, 

which could help to replace Si solar cells with low toxicity single-

source precursor solar cells. This work demonstrates the 

feasibility of using ZnS:P3HT to fabricate BHJ solar cells, and the 

potential of reducing the toxicity of CdS:P3HT based BHJ solar 

cells, by partly replacing CdXan in the single source precursor 

solution with ZnXan. These findings have provided a new 

pathway to develop BHJ photovoltaic devices with comparable 

efficiency and reduced toxicity. 
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