
Pattern-Based Approach
to the Workflow Satisfiability Problem
with User-Independent Constraints1

Daniel Karapetyana,b,∗, Andrew J. Parkesb, Gregory Gutinc, Andrei Gagarinc,d

aUniversity of Essex, Colchester, UK
bUniversity of Nottingham, Nottingham, UK

cRoyal Holloway, University of London, Egham, UK
dCardiff University, Cardiff, UK

Abstract

The fixed parameter tractable (FPT) approach is a powerful tool in tackling computationally hard
problems. In this paper, we link FPT results to classic artificial intelligence (AI) techniques to show how
they complement each other. Specifically, we consider the workflow satisfiability problem (WSP) which
asks whether there exists an assignment of authorised users to the steps in a workflow specification,
subject to certain constraints on the assignment. It was shown by Cohen et al. (JAIR 2014) that WSP
restricted to the class of user-independent constraints (UI), covering many practical cases, admits FPT
algorithms, i.e. can be solved in time exponential only in the number of steps k and polynomial in the
number of users n. Since usually k � n in WSP, such FPT algorithms are of great practical interest.

We present a new interpretation of the FPT nature of the WSP with UI constraints giving a decom-
position of the problem into two levels. Exploiting this two-level split, we develop a new FPT algorithm
that is by many orders of magnitude faster than the previous state-of-the-art WSP algorithm and also has
only polynomial-space complexity. We also introduce new pseudo-Boolean (PB) and Constraint Satisfac-
tion (CSP) formulations of the WSP with UI constraints which efficiently exploit this new decomposition
of the problem and raise the novel issue of how to use general-purpose solvers to tackle FPT problems
in a fashion that meets FPT efficiency expectations. In our computational study, we investigate, for the
first time, the phase transition (PT) properties of the WSP, under a model for generation of random
instances. We show how PT studies can be extended, in a novel fashion, to support empirical evaluation
of scaling of FPT algorithms.

Keywords: fixed parameter tractability; workflow satisfiability problem; phase transition; pseudo-
boolean formulation; hypergraph list colouring.

1. Introduction

The combinatorial explosion, in the running times of algorithms for many important problems, has
been an ongoing computational challenge within Artificial Intelligence (AI). AI has developed, and
continues to develop, many powerful techniques to address this challenge. One of them, originating
from theoretical computer science but recently also used in AI (see, e.g., [22, 44]), is the theory of fixed
parameter tractable (FPT) algorithms, which is concerned with the parametrisation of hard problems
that reveals that these problems are tractable under certain conditions. In this paper, we link together AI
and FPT results and apply them to an important access control problem arising in many organisations.

Specifically, many organisations often have to solve ‘workflow’ problems in which multiple sets of
tasks, or steps need to be assigned to workers, or users, subject to constraints that are designed to
ensure effective, safe and secure processing of the tasks. For example, security might require that some
sets of tasks are performed by a small group of workers or maybe just one worker. Alternatively, some
sets might need to be performed by at least two users, for example, so as to ensure independent processing

1A preliminary version of some portions of this paper was published in the proceedings of FAW 2015 [37].
∗Corresponding author

1

or cross-checking of work, etc. [4, 16, 47, 50]. Furthermore, different users have different capabilities and
security permissions, and will generally not be authorised to process all of the steps. In the Workflow
Satisfiability Problem (WSP), the aim is to assign authorised users to the steps in a workflow specification,
subject to constraints arising from business rules and practices. (Note the term “workflow” originally
arose from the flow of the steps between users, however, in this context, the time ordering is not relevant
– the challenge is to make a feasible assignment for all the steps.) The WSP has important applications
and has been extensively studied in the security research community [4, 5, 6, 14, 15, 17, 18, 25, 50].

The WSP is NP-complete, and it has been difficult to solve, even for some moderately-sized in-
stances [12, 47]. Work in WSP has attempted to render solving of the WSP practical by finding a
subclass of problems that admit fixed parameter tractable (FPT) algorithms; informally speaking, this
means that there is a small parameter k such that the problem is exponential in k but polynomial in
the size of the problem. In the case of the WSP, the parameter k is naturally the number of steps – in
real-life instances this number is usually much smaller than the number n of users [50].

It has been shown [11] that the WSP is FPT if it includes only authorisations and user-independent
(UI) constraints, i.e. constraints whose satisfaction does not depend on specific user identities. Then
existing methods [12] achieve a runtime that is polynomial in n, and exponential only in k. (Constraints
described in the WSP literature are relatively simple, so it was assumed in [11, 12] that it is possible
to test whether a solution satisfies any single constraint in polynomial time. We will use the same
assumption in this paper. We will also assume that an authorisation test – whether a user is authorised
to a step – takes constant time, as we store authorisation lists in the form of bitmaps.)

The major contributions of this paper are:

1. A new understanding of the FPT nature of the WSP with UI constraints that decomposes the prob-
lem into two levels: ‘upper’ level corresponding to UI constraints, and ‘lower’ level corresponding
to user assignment and authorisations.

2. An effective backtracking search method, ‘Pattern Backtracking’ (PBT), exploiting the two level
decomposition and supported by heuristics and pruning. (The PBT implementation presented in
this paper is a significant improvement over the algorithm introduced in the preliminary report [37]
and even more so over the FPT algorithm of [12] which unlike PBT has an exponential space
complexity.)

3. A declarative method that we use explicitly in a pseudo-Boolean [8, 40] and implicitly in a CSP
formulations, which also exploits the two level decomposition of the problem.

4. Experimental studies of the algorithm performances, focussing on average case complexity, and
supported by a new methodology that carefully exploits work in AI on phase transition (PT)
phenomena [7, 34, 10, 43] but in a fashion extended and adapted for the needs of an FPT study.

To fully exploit the two level decomposition of the problem, we use special structures called patterns
as introduced in [11]. Patterns capture the decisions concerned with UI constraints but generally do not
fix user assignments. In particular, they specify which steps are to be performed by the same user and
which steps are to be performed by different users.

The notion of patterns is a convenient tool for handling the decomposition of WSP into two levels:
an upper level corresponding to UI constraints, where the decisions can be encoded with a pattern, and a
lower level corresponding to user assignments (note that authorisations are intrinsically user dependent
and hence cannot be handled with patterns). This is used in our two-level algorithm which we call
Pattern Backtracking (PBT). Its upper level implements a tree search in the space of patterns (thus not
fixing user assignments), and the lower level searches for a user assignment restricted by a pattern. The
space of upper level solutions has size exponential in k (and not depending on n), and the lower level
can be reduced to a bipartite matching problem, i.e. admits a polynomial-time algorithm. Thus, PBT
has running time exponential in k only.

We will show that PBT is not only FPT but also has polynomial space usage. Note that, the
complexity class FPT does not in itself directly restrict the space usage; the previous algorithms had a
space usage that was exponential in k, and this restricted their application to (roughly) k ≤ 20. Moreover,
due to the two-level structure of PBT, together with careful design of pruning methods and branching
heuristics, the resulting implementation is many orders of magnitude faster than previous methods, with
much improved scaling behaviour. The reachable values of k, i.e. the number of steps in the workflow,
jump from about k ≤ 20 to about k ≤ 50; the reachable number of users is also now extended to being

2

in millions. This is a significant improvement for an NP-complete problem, and also can be expected to
be sufficient for practical-sized WSP instances.

We also provide a new pseudo-Boolean (PB) formulation of the problem: ‘Pattern Based PB’ (PBPB).
Existing PB or integer programming encodings of the WSP with UI constraints [12, 50] are based on the
binary decision variables xsu, indicating whether step s is assigned to user u (we refer to these encodings
as ‘UDPB’ for “user-dependent PB” encodings). To exploit the user-independent nature of our problem,
we also use a set of M -variables which are not directly linked to specific users:

Mij = 1 iff steps i and j are assigned to the same user, 0 otherwise. (1)

The M -variables in the PBPB formulation are used to allow an ‘off-the-shelf’ PB solver to better exploit
the two-level decomposition of the problem as branching on M -variables captures the UI property of the
constraints and corresponds to the upper level of the search (in the space of patterns). Notice that such
variables have also been used extensively in powerful semi-definite programming approaches to graph
colouring [41], e.g. see [27], where they are referred to as the ‘colouring matrix’. By using a generic
PB solver, SAT4J [40], we show that the performance of the new PBPB formulation is several orders of
magnitude better than the previous ‘UDPB’ formulation. Moreover, PBPB can even compete with PBT
in terms of scaling behaviour, in some circumstances, though not in terms of constant factors.

We also give a Constraint Satisfaction Problem (CSP) formulation and solve it with the state-of-the-
art OR-Tools2 (in the latest MiniZinc constraint solvers competition, OR-Tools was the clear winner [49]).
Even though the formulation and solver do not explicitly use our knowledge of the FPT nature of the
problem, the performance of the CSP-based solver is similar to that of PBPB. We discuss a possible
reason for this similarity.

Regarding the computational complexity, FPT problems and algorithms have been mainly studied
from the perspective of worst case analysis, well-known to be over-pessimistic in many cases. In terms of
the study of the potential practical usages of proposed algorithms, it is vital to study the performance
averaged over specific instances. Ideally, it would be useful to have a benchmark suite of real-world
instances. However, in the case of WSP, there is not yet any such suite publicly available, and even if
it were, then it would probably not be suitable for scaling studies due to the diverse nature of instances
in such suites. Hence, as commonly accepted in computational studies of WSP [6, 12, 50], we use a
generator of artificial instances.

When studying average case performance, it is vital to have a systematic way to decide on the
parameters used in the generation of test instances, and in a fashion that gives the best chance of
obtaining a meaningful and reliable insight into the behaviour of algorithms. With this motivation,
in the latter parts of the paper we study the WSP from the perspective of phase transition (PT) or
threshold phenomena. It has long been known that complex systems can exhibit threshold phenomena,
see e.g. [7, 34]. They are characterised by a sharp change, or PT, in the properties of problem instances
when a parameter in the instance generation is changed. An important discovery, e.g. [10, 43, 48, 42], was
that such thresholds are also associated with decision problems that are the most challenging for search
algorithms: the PT region is the source of the hardest instances of the associated decision problem. In
the context of NP-complete problems, this generally means the empirical average time complexity is
exponential in n in the PT region, i.e. it has a form that matches the worst case expectations, though
usually with a reduced coefficient in the exponent. Outside of the PT region, the average complexity
can drop significantly, resulting in what is usually informally called an “easy-hard-easy” transition.

Testing instances without study of the associated PT properties has the danger of accidentally picking
an easy region and, as a result, obtaining overly optimistic results. Since the WSP is a decision problem,
a fair and effective testing of the scaling of the algorithms is best done by focussing on the PT region.
(We also argue later that real-world instances are likely to be close to the PT region.)

The empirical average case analysis of FPT algorithms is more challenging than a typical PT study,
since FPT problems have not just one but several size parameters. We give a novel empirical-average-
case study that has been systematically organised for the case of FPT studies. We will show how the
instance generator we use leads to hard problems (in the FPT sense), and also exhibits other behaviours
expected from a PT.

1.1. Structure of the paper
Section 2 gives the needed background on the theory of FPT, and the WSP. Section 3 introduces the

notion of a pattern, central for the algorithms we discuss. Section 4 describes the new PBT algorithm in

2 https://developers.google.com/optimization/ (accessed Jan. 2019)

3

https://developers.google.com/optimization/

detail and demonstrates that it is FPT. Section 5 provides the new PB formulation PBPB of the WSP,
(associated with this, Appendix A gives details of encoding of various UI constraints.), along with the
CSP encoding. Section 6 provides a descriptive comparison of the workings of the PBT algorithm, the
existing algorithm [12] which we call here Pattern User-Iterative (PUI), and the PBPB encoding.

Section 7 introduces the instance generator that we use for computational experiments. Some more
technical aspects related to the PT are given in Appendices Appendix B and Appendix C. Section 8
provides the results of empirical comparisons of the algorithms and their scaling behaviours with reference
to the PT, with some more results reported in Appendix D. Finally, in Section 9 we discuss overall
conclusions and potential for future work.

2. Background

To make the paper reasonably self-contained, this section provides background and discusses related
work on parameterized algorithmics and the WSP.

2.1. Parameterized Algorithms and Complexity

A parameterized problem Π can be considered as a set of pairs (I, k) where I is the problem instance
and k (usually a nonnegative integer) is the parameter. Π is called fixed-parameter tractable (FPT) if
membership of (I, k) in Π can be decided by an algorithm of runtime O(f(k)|I|c), where |I| is the size
of I, f(k) is a computable function of the parameter k only, and c is a constant independent from k and
I. Such an algorithm is called an FPT algorithm. The parameterised algorithmics literature also uses
the notation “O∗” to denote a version of big-Oh that suppresses polynomial factors in both k and |I| (in
the same fashion that the Õ notation suppresses logarithmic factors), and so we can write f(k)|I|O(1)

as O∗(f(k)). There is a general expectation that a problem admitting an FPT algorithm is “easy” as
high-order polynomials are not so likely to occur.

When the decision time is replaced by the much more powerful |I|O(f(k)), we obtain the class XP, where
each problem is polynomial-time solvable for any fixed value of k. There is a hierarchy of parameterized
complexity classes between FPT and XP (for each integer t ≥ 1, there is a class W[t]):

FPT ⊆W [1] ⊆W [2] ⊆ · · · ⊆ XP.

For the definition of classes W[t], see, e.g., [26]. Due to a number of results obtained on the topic, it is
widely believed that FPT6=W[1], i.e. no W[1]-hard problem admits an FPT algorithm [26].

Note that, in general, the WSP parameterized by the number of steps k is W[1]-hard [50], but
the WSP with only user-independent constraints is FPT [11]. For more information on parameterized
algorithms and complexity, see, e.g., [26].

2.2. The WSP

In the WSP, we are given a set U of n users, a set S of k steps, a set A = {A(u) ⊆ S : u ∈ U} of
authorisation lists, and a set C of (workflow) constraints. In general, a constraint c ∈ C can be described
as a pair c = (Tc,Θc), where Tc ⊆ S is the scope of the constraint and Θc is a set of functions from Tc to
U which specifies those assignments of steps in Tc to users in U that satisfy the constraint (authorisations
are disregarded).

If W = (S,U,A, C) is the workflow and T ⊆ S is a set of steps, then we say that a function π : T → U
is a plan. A plan is called authorised if π−1(u) ⊆ A(u) for all u ∈ U (each user is authorised to the steps
they are assigned), and eligible if for all c ∈ C such that Tc ⊆ T , π|Tc ∈ Θc (every constraint with scope
contained in T is satisfied). A plan that is both authorised and eligible is called a valid plan. If T = S,
then the plan is complete. A workflow W is satisfiable if and only if there exists a complete valid plan.

Consider an example of a WSP instance with UI constraints in Figure 1. This particular instance
includes just two types of constraints: “equals”, defined for a scope of two steps, that requires those two
steps to be assigned the same user; and “not-equals”, also defined for a scope of two steps, that requires
those two steps to be assigned different users. Then the following are three examples of complete plans
for this instance:

π(s1) = u1, π(s2) = u1, π(s3) = u2, π(s4) = u1, π(s5) = u1 : eligible, non-authorised; (2)

π(s1) = u3, π(s2) = u2, π(s3) = u1, π(s4) = u3, π(s5) = u5 : ineligible, authorised; (3)

π(s1) = u3, π(s2) = u3, π(s3) = u6, π(s4) = u3, π(s5) = u5 : authorised, eligible, i.e. valid. (4)
4

s1

s2 s3

s4

s5

=

6=

6= 6=

6= user s1 s2 s3 s4 s5

u1 – – + – –
u2 – + – – –
u3 + + – + +
u4 + – – – –
u5 – – + + +
u6 + – + – –

Figure 1: An example of a WSP instance with k = 5 and n = 6. On the left, each step is represented with a node, and each
constraint with an edge (in general, a constraint is represented with a hyper-edge but in this example all the constraints
have scopes of size two). Red edges (marked with “6=”) represent not-equals constraints, and blue edges (marked with
“=”) represent equals constraints. The table on the right gives authorisations A(u), where ‘+’ means authorised and ‘−’
means unauthorised.

The existence of a valid complete plan (4) implies that this instance is satisfiable.
Clearly, not every workflow is satisfiable, and hence it is important to be able to determine whether

a workflow is satisfiable or not and, if it is satisfiable, to find a valid complete plan. Unfortunately,
the WSP is NP-hard [50]. However, since the number k of steps is usually relatively small in practice
(usually k � n = |U | and we assume, in what follows, that k < n), Wang and Li [50] introduced its
parameterisation by k (we use terminology of the recent monograph [26] on parameterised algorithms
and complexity). Algorithms for this parameterised problem were also studied in [11, 12, 16]. While
in general the WSP is W[1]-hard [50], the WSP restricted to some practically important families of
constraints, but still allowing arbitrary authorisations, is FPT [11, 16, 47, 50].

Many business rules are not concerned with the identities of the users that perform a set of steps.
Accordingly, we say a constraint c = (T,Θ) is user-independent (UI) if, whenever θ ∈ Θ and φ : U → U
is a permutation, then φ ◦ θ ∈ Θ. In other words, given a complete plan π that satisfies c and any
permutation φ : U → U , the plan π′ : S → U , where π′(s) = φ(π(s)), also satisfies c. The class of
UI constraints is general enough in many practical cases; for example, all the constraints defined in the
ANSI RBAC standard [1] are UI. Most of the constraints studied in [12, 16, 50] and other papers are
also UI. Classical examples of UI constraints are the requirements that two steps are performed by either
two different users (separation-of-duty), or the same user (binding-of-duty). More complex constraints
such as at least-r and at-most-r can state that at least/at most r users are required to complete some
sensitive set of steps.

2.3. Connection with Graph Colouring and Constraint Satisfaction

The WSP (with arbitrary constraints) can be seen as a constraint satisfaction problem (CSP), where
the unary constraints are called authorisations. (In this paper, while WSP constraints are UI, authori-
sations are arbitrary.) However, WSP is not a typical CSP: in many applications of CSP, the number
of variables is much larger than the number of values (size of the domains), whereas in the WSP viewed
as a CSP, usually the number of steps (number of variables) is much smaller than the number of users
(size of the domains).

To the best of our knowledge, WSP is the first real-world application of such CSPs, and there are only
a few studies that consider relevant cases. One of the most closely related ones is [29] which discusses the
“all different” constraints, requiring that all the variables in the scope are assigned different values. From
the WSP point of view, it is a special kind of UI constraint. Among other results, it is shown in [29] that
CSP with “all different” constraints parametrised by the number of variables admits FPT algorithms.
However, our study considers a much more general class of constraints. Moreover, it is concerned with
practical considerations such as practically efficient algorithms and average case empirical analysis.

We note here that the WSP with UI constraints can be considered as an extension of the hypergraph
list colouring problem, where steps correspond to the hypergraph vertices, users to the colours, and user-
step authorisations define colours lists. Each constraint (Tc,Θc) then defines a hyperedge connecting
vertices Tc, but the logic of colouring a hyperedge can be arbitrarily sophisticated as long as it is colour-
symmetric. This colour symmetry is exactly the requirement implied by UI constraints, while the general
WSP does not restrict the colouring logic at all.

5

3. Patterns

In this section, we discuss the concept of patterns as these capture equivalence classes under the
permutation of users and form a vital part of the PBT algorithm presented in the next section.

3.1. Equivalence Classes and Patterns

We define an equivalence relation on the set of all plans. We say that two plans π : T → U and
π′ : T ′ → U are equivalent, denoted by π ≈ π′, if and only if T = T ′, and π(s) = π(t) if and only if
π′(s) = π′(t) for every s, t ∈ T . (This is a special case of an equivalence relation defined in [11].) To
handle equivalence classes of plans, we introduce a notion of pattern. Patterns were first introduced
in [11] but we follow the definition of patterns from [15]. Let a pattern P (on T) be a partition of T into
non-empty sets called blocks. A pattern prescribes groups (blocks) of steps to be assigned to the same
user, and also requires that steps from different blocks are assigned to different users. In other words, a
pattern P requires that π(s) = π(t) if and only if s, t ∈ B for some B ∈ P. Directly from the definition,
if B1 6= B2 ∈ P, then π(B1) 6= π(B2), where π(B) is the user assigned to every step within block B.

Patterns also provide a convenient way to test equivalence of plans. Let P(π) be the pattern describing
the equivalence class of the plan π; it can be computed as P(π) = {π−1(u) : u ∈ U, π−1(u) 6= ∅}. Then
π ≈ π′ if and only if P(π) = P(π′) [11], see Figure 2 for an example.

π1 π2

Step User

s1 u3

s2 u3

s3 u1

s4 u5

s5 u5

≈

Step User

s1 u3

s2 u3

s3 u6

s4 u5

s5 u5

P(π1) = {{s1, s2} , {s3} , {s4, s5}} P(π2) = {{s1, s2} , {s3} , {s4, s5}}

Figure 2: An example of two equivalent plans π1 and π2, eligible for the instance defined in Figure 1. The patterns P(π1)
and P(π2) are equal. Note that π1 is authorised while π2 is not.

In the language of graph list-colouring, a plan is a partial colouring (since a plan is not necessarily
complete), a block is a set of vertices which are required to have the same colour, and a pattern is a
set of blocks with a requirement that all the blocks are assigned different colours ignoring the concrete
assignment of colours. The idea of patterns is somewhat related to the Zykov’s method [28] (for the
graph colouring problem) as they both are designed to effectively exploit the colour symmetry of the
problems. Although in WSP this “colour symmetry” is broken by the authorisation lists, we use a similar
approach to satisfy constraints C which are symmetric in WSP with UI constraints.

We say that a pattern P is eligible if there exists an eligible plan π such that P(π) = P. Similarly, we
say that a pattern P is authorised if there exists an authorised plan π such that P(π) = P. An eligible
authorised pattern is called valid. If a pattern is defined on T = S, then it is called complete.

3.2. Finding an authorised plan within an equivalence class

In this section we will describe an algorithm for finding an authorised plan π such that P(π) = P for
a given pattern P or detecting that such a plan does not exist.

Definition 3.1. For a given pattern P, an assignment graph G(P) is a bipartite graph (V1 ∪ V2, E),
where V1 = P (i.e. each vertex in V1 represents a block in the partition P), V2 = U and (B, u) ∈ E if
and only if B ∈ P, u ∈ U and B ⊆ A(u).

We can now formulate a necessary and sufficient condition for authorisation of a pattern.

Proposition 3.1. A pattern P is authorised if and only if G(P) has a matching covering every vertex
in V1.

6

Proof of Proposition 3.1 is straightforward.
Proposition 3.1 implies that, to determine whether an eligible pattern P is valid, it is enough to

construct the assignment graph G(P) and find a maximum size matching in G(P). It also provides an
algorithm for converting a matching M of size |P| in G(P) into a valid plan π such that P(π) = P. An
example of how Proposition 3.1 can be applied to obtain a plan from a pattern is shown in Figure 3.

{s1, s2}

{s3}

{s4, s5}

u1

u2

u3

u4

u5

u6

(a) Satisfiable example. Every block is matched
(red edges) to a user. The plan corresponding to
this matching is shown on the right.

{s1, s2}

{s3}

{s4}

{s5}

u1

u2

u3

u4

u5

u6

(b) Unsatisfiable example. Three blocks on the left
(highlighted) can only match two users on the right
(highlighted). Thus, at most two of these three
blocks can be assigned distinct users.

Figure 3: Two examples of assignment graphs for eligible patterns P1 = {{1, 2} , {3} , {4, 5}} (Figure (a)), and P2 =
{{1, 2} , {3} , {4} , {5}} (Figure (b)). (The WSP instance is defined in Figure 1.) The matching in Figure (a) is of the
maximum possible size |P1| = 3, and hence P1 is authorised. There exists no matching of size |P2| = 4, and hence P2 is
unauthorised, i.e. there exists no valid plan within the corresponding equivalence class.

4. The New PBT Algorithm

In this section we first give the core PBT algorithm, and then some improvements, including branching
heuristics that significantly improved the performance. Cohen et al. [11] were the first to introduce a
general theoretical approach based on patterns to solve WSP. In their next paper [12], Cohen et al.
provided the first refined FPT algorithm and its implementation in the case of WSP with UI constraints;
for a short discussion of the algorithm of [12], see Section 6.1.

4.1. Pattern-Backtracking Algorithm (PBT)

We call our new method Pattern-Backtracking (PBT) as it uses the backtracking approach to sys-
tematically explore the search space of patterns. The key idea behind the PBT algorithm is that it is
not necessary to search the space of plans; it is sufficient to search the space of patterns checking, for
each eligible complete pattern, if it is authorised. (This idea was used in the preliminary version [37]
of this paper; a similar idea was also exploited by dos Santos et al. [24, 25] who however use different
algorithmic techniques such as Petri nets and Datalog.)

The algorithm is FPT for parameter k, as the size of the space of patterns is a function of k only, and
finding a valid plan within an equivalence class (or detecting that the equivalence class does not contain
any valid plans) takes time polynomial in n. This separation helps to focus on the most important
decisions first (as the search for eligible complete patterns is the hardest part of the problem).

The basic version of PBT is a DPLL-style backtracking algorithm traversing the space of patterns, see
Figure 4. The search starts with an empty pattern P, and then, at each forward iteration, the algorithm
adds one step to P. Let S(P) denote the steps included in P. The branching captures the simple notion
that any step s not in S(P) must either be placed in some block of P, or else form a new block. These
choices are disjoint and so it follows that the search tree is indeed a tree; the same pattern cannot be
produced in different ways. Hence the tree can be searched using depth-first search (DFS). This is
the key difference between PBT and the previous pattern-based WSP algorithm, PUI. PUI explores
the space of patterns in a breadth-first way, in the worst case building and storing an exponential-in-k

7

{} {
{s1}

}
{
{s1, s2}

}
{
{s1}, {s2}

}

{
{s1, s2, s3}

}
{
{s1, s2}, {s3}

}
{
{s1, s3}, {s2}

}
{
{s1}, {s2, s3}

}
{
{s1}, {s2}, {s3}

}
Figure 4: Illustration of the backtracking mechanism within PBT.

number of valid incomplete patterns. This leads to the space complexity of PUI also being exponential
in k. For details see Section 6.1.

Pruning in the basic version of PBT is based on constraint violations only. Hence, any leaf node
at level k in the basic version corresponds to an eligible complete pattern. Using Proposition 3.1, the
algorithm verifies the authorisation of the pattern. Once an eligible authorised (i.e. valid) complete
pattern is found, the algorithm terminates returning the corresponding valid complete plan.

In practice (the source code of our implementation of PBT is available at [36]), we interleave the
backtracking with authorisation tests. The real PBT uses an improved branch pruning that takes into
account both constraints and authorisation. In particular, for every node of the search tree the algorithm
verifies if the pattern is authorised, and if not, then that branch of the search tree is pruned.

The calling procedure for the PBT algorithm is shown in Algorithm 1, which in turn calls the recursive
search function in Algorithm 2. The recursive function tries all possible extensions P ′ of the current
pattern P with step s /∈ S(P). The step s is selected heuristically (line 4) using the empirically-tuned
function ρ(s,P), which indicates the importance of step s in narrowing down the search space. The
implementation of ρ(s,P) depends on the specific types of constraints involved in the instance and
should reflect the intuition regarding the structure of the problem. See function (5) in Section 4.4 for a
particular implementation of ρ(s,P) for the types of constraints we used in our computational study.

Algorithm 1: Backtracking search initialisation (entry procedure of PBT)

input : WSP instance W = (S,U,A, C)
output: Valid plan π or UNSAT

1 Initialise P, G,M ← ∅, π ← Recursion(P, G,M);
2 return π (π may be UNSAT here);

Authorisation tests are implemented in lines 7 and 8 and discussed in more detail in Section 4.2. All
the propagation and eligibility tests are implemented in line 5 and discussed in Section 4.3.

4.2. Authorisation-Based Pruning

Although it would be sufficient to check authorisations of complete patterns only, testing authorisa-
tions at each node allows us to prune branches if they contain no authorised plans. In doing so, it is not
necessary to generate the assignment graph from scratch in every node:

• If P ′ is obtained from P by extending some block B ∈ P, then G′ can be obtained by removing
all existing edges (B, u), u ∈ U , and adding edges (B′, u) such that B′ ⊆ A(u), where B′ is the
extended block. One may note that the edge set (B′, u), u ∈ U , is a subset of the edge set (B, u),
u ∈ U ; however, as we will explain below, we do not store the entire set of edges (B, u), u ∈ U ,
and hence cannot exploit this property.

• If P ′ is obtained from P by adding a new block {s}, then G′ can be obtained by adding a new
vertex B = {s} to G and adding the edge (B, u), for each u ∈ U such that s ∈ A(u).

8

Algorithm 2: Recursion(P, G,M) (recursive function for backtracking search)

input : Pattern P, authorisation graph G = G(P) and a matching M in G of size |P|
output: Valid plan or UNSAT if no valid plan exists in this branch of the search

1 if S(P) = S then
2 return plan π defined by matching M ;

3 else
4 Select an unassigned step s ∈ S \ S(P) that maximises ρ(s,P) (for details see Section 4.4);
5 Compute all the eligible patterns X extending P with step s (for details see Section 4.3);
6 foreach P ′ ∈ X do
7 Produce an assignment graph G′ = G(P ′) (for details see Section 4.2);
8 if there exists a matching M ′ of size |P ′| in G′ then
9 π ← Recursion(P ′, G′,M ′);

10 if π 6= UNSAT then
11 return π;

12 return UNSAT (for a particular branch of recursion; does not mean that the whole instance is
unsat);

Similarly, it is possible to recover G from G′; hence, we can reuse the same data structure updating it
in every node, with updates taking only O(kn) time. It is also not necessary to compute the maximum
matching M ′ in G′ from scratch. We can obtain matching M ′ in G′ from matching M in G in O(kn)
time. Indeed, if a new block is added, then a maximum matching of G′ can have at most one edge
more than M . If an existing block in G is extended, we can remove the old edge from M adjacent to
the extended block, and then again a maximum matching can have at most one edge more than the
updated M . By Berge’s Augmenting Path Theorem, G′ has a matching of size |M |+ 1 if and only if G′

has an M -augmenting path [51]. Thus, we only need to try to find an M -augmenting path in G′. The
augmenting path algorithm requires O(|V (G′)|+ |E(G′)|) = O(kn) time.

In fact, we will never need more than k ≥ |P| edges from a vertex B ∈ P of the assignment graph.
Hence, when calculating the edge set for a B ∈ P, we can terminate when reaching k edges. As a result,
we only need O(k2) time to update/extend the matching M , but we still need O(kn) time to update or
extend the assignment graph.

Note that incremental maintenance of the matching M in every node of the search tree actually
improves the worst-case time complexity compared to computation of M in the leaf nodes only, despite
incremental maintenance being unable to take advantage of the Hopcroft-Karp method. Indeed, in the
worst case (when the search tree is of its maximum size), each internal node of the tree has at least
two children. Hence, the total number of nodes is at most twice the number of leaf nodes. Then the
total time spent by PBT on authorisation validations is O((kn + k2)p), where p is the total number of
complete patterns. Observe that validation of authorisations of complete patterns only, as in the basic
version of PBT, would take O((kn+ k2.5)p) time.

When updating the assignment graph, we have to compute the edge set for a block B ∈ P, and this
takes O(kn) time, i.e. relatively expensive due to the potentially large n. Since, during the search, we
are likely to compute the edge set for many of the blocks B multiple times, we cache these edge sets for
each block B. The number of blocks generated during the search (bounded by 2k) can be prohibitive for
caching all the edge sets, and, thus, we erase the cache every time it reaches 16 384 records (this constant
was obtained by parameter tuning).

4.3. Eligibility-Based Pruning

While much of the implementation of PBT is generic enough to handle any UI constraints, some
heuristics make use of our knowledge about the types of constraints present in our test instances. In
particular, we assume that the instances include only not-equals, at-most and at-least constraints, as in
[3, 12, 47, 50]. Note that all of the methods discussed in this paper make use of this information – which is
a common practice when developing decision support systems. Hence, this makes our experiments more
realistic and also helps to fairly compare all the approaches, as the old ones were already specialised.

Since all our constraints are only restricting the number of distinct users to be assigned to the
scope, we implemented incremental maintenance of corresponding counters for each at-most and at-least

9

constraint. The implementation of line 5 scans all the constraints with scopes that include step s and
verifies which of the blocks in P can be extended with s without violating the constraint. Similarly, the
algorithm considers creation of a new block {s}.

Note that pruning based on some constraint c does not always require that Tc ⊆ S(P ′). For example,
an at-most-3 constraint with scope {s1, s2, . . . , s5} can be used to prune pattern {{s1} , {s2} , {s3} , {s4}}.
Our implementation of PBT produces only the extensions of the pattern that will not immediately break
any constraint (disregarding authorisations).

4.4. Branching Heuristic

This section essentially describes line 4 of Algorithm 2. As standard in tree-based search, the selection
of the branch variable, or step s in PBT, can make a big difference to the size of the search tree. The
selection is performed by taking the step with the highest value of a score ρ(s,P). The score is designed
with the intention to encourage early pruning of the search tree.

In order to define components of the score function ρ(s,P), we split the constraints C into the not-
equals, C6=, the at-most C≤, and at-least C≥. Different constraints have different strengths in terms of
the pruning of the search, and so are permitted to be counted with different weights. Specifically:

ρ(s,P) = α6=ρ 6=(s) + α6=,≤ρ 6=,≤(s) + α≥,≤ρ≥,≤(s) + α0
≤ρ

0
≤(s,P) + α1

≤ρ
1
≤(s,P) + α2

≤ρ
2
≤(s,P), (5)

where the α’s are numeric weights, and

• ρ6=(s) = | {c : c ∈ C 6=, s ∈ Tc} | is the number of not-equals constraints c that cover step s. The
more constraints cover a step, the more important it is in general.

• ρ6=,≤(s) = |{c : c ∈ C 6=, s ∈ Tc, ∃c′ ∈ C≤, Tc ⊆ Tc′}| is the count of the not-equals constraints c
covering s and also covered by some at-most constraint c′. Not-equals and at-most constraints are
in conflict, and their interaction is likely to further restrict the search.

• ρ≥,≤(s) = | {c ∈ C≤, c′ ∈ C≥ : |Tc ∩ Tc′ | ≥ 3, s ∈ Tc ∩ Tc′} | is the number of pairs of constraints
(at-least, at-most) covering s with intersections of at least 3 steps. Large intersections of at-most
and at-least constraints are rare but do significantly reduce the search space.

• ρi≤(s,P) = | {c : c ∈ C≤, s ∈ Tc, |Tc ∩ S(P)| = r − i} |, where r is the parameter of the at-most-r
constraint, is the number of at-most-r constraints such that they can cover at most i new blocks
of the pattern. For example, i = 0 means that r distinct users are already assigned to the scope
Tc and, hence, the choice of users for s is limited to those r users.

We emphasise that these terms might seem ‘quirky’, but they are the result of extensive experimen-
tation with many different ideas, and they represent the best choices found. Space precludes discussion
of other possibilities that were tried but not found to be effective in our instances.

Note that ρ 6=(s), ρ 6=,≤(s), ρ≥,≤(s) do not depend on the state of the search and can be pre-calculated.
Also ρi≤(s,P) can make use of the counters that we maintain to speed-up eligibility tests (see above).

The values of parameters α6=, α6=,≤, α≥,≤, α0
≤, α1

≤ and α2
≤ were selected empirically using a bespoke

automated parameter tuning method. We found out that the algorithm is not very sensitive to the values
of these parameters, and we settled at α6= = 3, α6=,≤ = 4, α≥,≤ = 2, α0

≤ = 40, α1
≤ = 4 and α2

≤ = 0.
Note that the function does not account for at-least constraints except for rare cases of large in-

tersection in at-least and at-most constraints. This reflects our empirical observation (also confirmed
analytically in Appendix B) that the at-least constraints are usually relatively weak in our instances and
rarely help in pruning branches of the search tree.

We conducted empirical studies of the branching factor and the depth of the search. Our results show
significant reduction of both parameters when the branching heuristic was enabled, greatly reducing the
size of the search trees. For example, at k = 40, with the branching heuristic disabled, the overall number
of nodes in the search tree is about 5.7 ·1010, of which around 90% were at the depths 23–28. The average
branching factor at the depth 23 reaches its maximum of 5.55. With the branching heuristic enabled, the
overall number of nodes is about 1.0 · 106, of which 90% are at the depths 16–27. The average branching
factor reaches its maximum of 2.56 at the depth of 7.

10

4.5. Worst-Case Analysis of PBT

Recall that, in the worst case, the total number of patterns considered by the PBT algorithm is
less than twice the number of complete patterns. Observe that the number of complete patterns equals
the number of partitions of a set of size k, i.e. the k’th Bell number Bk which is O(2k log2 k). Finally,
observe that the PBT algorithm spends time O(k2 + kn) on each node of the search tree, assuming that
checking of all relevant constraints takes O(k2) time. Thus, the time complexity of the PBT algorithm
is O(Bk · (k2 +kn)) = O∗(2k log2 k). In fact, the running time O∗(2k log2 k) is likely to be optimal. Indeed,
Gutin and Wahlström [32] proved that unless the Strong Exponential Time Hypothesis [35] fails, which is
generally considered quite unlikely, there is no O∗(ck log2 k)-time algorithm for WSP with UI constraints
with any c < 2.

The PBT algorithm follows the depth-first search order and, hence, stores only one pattern at a time.
It also maintains a subgraph of the assignment graph with only O(k2) edges. (See Section 4.2 where the
upper bound k on the degrees of blocks in the matching graph is explained.) Hence, the space complexity
of the algorithm is O(k2), i.e. smaller than the problem itself (O(kn)). Note that small space complexity
is very good for reducing cache misses.

5. Pseudo-Boolean and Constraint Satisfaction Formulations

To make the paper self-contained, we provide in Section 5.1 the old pseudo-Boolean formulation [12],
and in Section 5.2 we show how it can be extended to exploit the FPT nature of the problem. We also
give a CSP formulation of the problem in Section 5.3.

5.1. Old Pseudo-Boolean Formulation (UDPB)

The main decision variables in the old formulation are xs,u, s ∈ S, u ∈ U , where user u is assigned
to step s if and only if xs,u = 1. Because xs,u directly assigns a step to a particular user, we call this
formulation User Driven PB (UDPB). We also introduce auxiliary variables yc,u and zc,u for at-least
and at-most constraints c, respectively. Variables yc,u and zc,u are used to bound the number of distinct
users assigned to the constraints’ scopes.

The old formulation is presented below in (6)–(15). We use notation A−1(s) = {u ∈ U : s ∈ A(u)}
for the set of users authorised for step s ∈ S.

∑
u∈U

xs,u = 1 ∀s ∈ S, (6)

xs,u = 0 ∀s ∈ S and ∀u ∈ U \A−1(s), (7)

xs1,u + xs2,u ≤ 1 ∀ not-equals constraint with scope {s1, s2} and ∀u ∈ U, (8)

yc,u ≥ xs,u ∀ at-most-r constraints c with scope Tc, ∀s ∈ Tc and ∀u ∈ U, (9)∑
u∈U

yc,u ≤ r ∀ at-most-r constraint c, (10)

zc,u ≤
∑
s∈Tc

xs,u ∀ at-least-r constraint c with scope Tc, and ∀u ∈ U, (11)

∑
u∈U

zc,u ≥ r ∀ at-least-r constraint c (12)

yc,u ∈ {0, 1} ∀ at-most-r constraint c and ∀u ∈ U, (13)

zc,u ∈ {0, 1} ∀ at-least-r constraint c and ∀u ∈ U, (14)

xs,u ∈ {0, 1} ∀s ∈ S and ∀u ∈ U. (15)

Constraints (6) guarantee that exactly one user is assigned to each step. Constraints (7) implement
authorisations. Constraints (8)–(12) define WSP constraints (recall that our test instances include only
not-equals, at-least and at-most UI constraints, although the UDPB formulation can obviously encode
any computable WSP constraints, whether UI or not).

11

5.2. New Pseudo-Boolean Formulation (PBPB)

A contribution of this paper is a new pseudo-Boolean formulation (16)–(28) exploiting the FPT
nature of the problem. This formulation, which we call Pattern Based PB (PBPB), was inspired by
formulations of the graph colouring problem [27, 28, 41]. In particular, steps s1 and s2 are assigned
the same user if and only if Ms1,s2 = 1 (we assume Ms,s = 1 for every s ∈ S). Such variables are not
concerned with the identity of users and, thus, are more effective when handling UI constraints. This is
the same idea as behind colour matrix in [27] which preserves the colour symmetry and encapsulates only
the decisions that matter at the upper level of the search. However it extends such usage in two ways.
Firstly, WSP with UI constraints has a richer set of constraints, defined on “hyperedges”. Secondly, the
matrix M is tightly integrated with the non-UI authorisations. Thus, we still use the x variables with
the same meaning as in the UDPB formulation but complement them with the new variables M .

The formulation (16)–(28) is given for only the specific constraints (namely, at-most-3 and at-least-
3 constraints with scope of size 5, and not-equals constraints); for formulations of other constraints,
including general UI constraints, see Appendix A.

Ms1,s2 = Ms2,s1 ∀s1 6= s2 ∈ S, (16)

Ms,s = 1 ∀s ∈ S, (17)

Ms1,s2 ≥Ms1,s3 +Ms2,s3 − 1 ∀s1 6= s2 6= s3 ∈ S, (18)

Ms1,s2 ≤Ms2,s3 −Ms1,s3 + 1 ∀s1 6= s2 6= s3 ∈ S, (19)∑
u∈U

xs,u = 1 ∀s ∈ S, (20)

xs1,u − xs2,u ≤ 1−Ms1,s2 ∀s1 6= s2 ∈ S and ∀u ∈ U, (21)

xs1,u + xs2,u ≤ 1 +Ms1,s2 ∀s1 6= s2 ∈ S and ∀u ∈ U, (22)

xs,u = 0 ∀s ∈ S and ∀u ∈ U \A−1(s), (23)

Ms1,s2 = 0 ∀ not-equals constraint with scope {s1, s2}, (24)∑
s1<s2∈T

Ms1,s2 ≥ 2 ∀ at-most-3 constraint with scope T , |T | = 5, (25)

∑
s1<s2∈T

Ms1,s2 ≤ 3 ∀ at-least-3 constraint with scope T , |T | = 5, (26)

Ms1,s2 ∈ {0, 1} ∀s1, s2 ∈ S, (27)

xs,u ∈ {0, 1} ∀s ∈ S and ∀u ∈ U. (28)

The xs,u variables, used to define authorisations in (23), need to be linked to the Ms1,s2 variables. In
particular, if Ms1,s2 = 1 then we require that xs1,u = xs2,u for every u ∈ U , see (21), and if Ms1,s2 = 0
then xs1,u + xs2,u ≤ 1, i.e. at least one of xs1,u and xs2,u has to take value 0, see (22). To improve
propagation, we formulate optional (transitive closure) constraints (18) and (19). These constraints
are entailed by the link between the M and x variables in (20)–(22), but adding them increases the
propagation avoiding the cost of extra reasoning involving the x variables.

Constraints (24) encode not-equals, (26) encode at-least-3 and (25) encode at-most-3 (these are the
constraints present in our instances; for details see Section 7.1). It is useful that (24)–(26) involve only the
M variables; together with (16)–(19) they guarantee that a solution corresponds to an eligible pattern.
Hence, (24)–(26) correspond to the upper level of the search, i.e. the search over the space of patterns.

It is easy to observe that any constraint that is expressed only in terms of the M ’s is automatically
UI, as it does not involve the x variables (users), and so cannot change with permutations of them. The
following proposition states that the converse also applies.

Proposition 5.1. On solving an instance of the WSP, the decision variables M are sufficient to encode
any UI constraint.

Proof By definition, any WSP constraint c = (Tc,Θc) can be defined by the set Θc of all the plans
π : Tc → U that are eligible for C = {c}. Moreover, if a constraint c is UI then π ∈ Θc implies that
π′ ∈ Θc for every π′ ≈ π. Then it follows that a UI constraint can be described by listing equivalence
classes of plans or, equivalently, patterns on Tc.

12

Recall that a pattern can be uniquely described with the M variables; in particular, a pattern P can
be described as Ms′,s′′ = 1 for every s′, s′′ ∈ B, B ∈ P, and Ms′,s′′ = 0 for every s′ ∈ B′, s′′ ∈ B′′ and
B′ 6= B′′ ∈ P. Then it is easy to exclude a pattern via a linear inequality expressed in variables M .

Let PAT be the list of all patterns on Tc disobeying a UI constraint c = (Tc,Θc). Then, in general,
we can encode a UI constraint c with constraints (16), (17) and∑

B∈P

∑
s′<s′′∈B

(1−Ms′,s′′) +
∑

B′ 6=B′′∈P

∑
s′∈B′

∑
s′′∈B′′,s′<s′′

Ms′,s′′ ≥ 1 ∀P ∈ PAT . (29)

2

To see how Proposition 5.1 works, consider the following example. To require that P 6= {{s1, s2} , {s3}}
(which is a UI constraint), or, equally,

M 6=

 1 1 0
1 1 0
0 0 1

one can write

(1−M12) +M13 +M23 ≥ 1 .

Note that to encode a UI constraint in this way, one may need numerous constraints to prohibit multiple
patterns. In Appendix A we give more compact approaches to formulate some standard UI constraints
and also discuss why our encodings (25) and (26) are correct.

5.3. CSP Formulation

As noted above, the WSP with UI constraints is effectively a Constraint Satisfaction Problem (CSP).
There is a variable xs for each step s ∈ S, with the domain A−1(s). Note that any CSP constraint that
is not sensitive to specific values, but only there equality or not corresponds to a UI constraint, and vice
versa.

The not-equals constraint with scope T = {i, j} is encoded as

xi 6= xj (30)

In order to encode an at-least-3 constraint with scope T of size 5, we request that there exists at least
one subset of steps in T of cardinality 3 with all different values. Let X be the set of all subsets of T of
cardinality 3. Let Xr ⊂ T be the rth element of X . Then the constraint can be encoded using auxiliary
Boolean variables vr as follows:

|X |∨
r=1

vr (31)

vr =⇒ xi 6= xj r = 1, 2, . . . , |X |, i < j ∈ Xr (32)

vr ∈ {0, 1} r = 1, 2, . . . , |X |. (33)

In order to encode an at-most-3 constraint with scope T of size 5, we request that in every subset
Y ⊂ T of cardinality 4, there exists at least one pair of steps i 6= j ∈ Y such that xi = xj . (Indeed,
an at-least-3 out of 5 constraint with scope T is falsified if and only if any four steps in T are assigned
all different values.) Let Y be the set of all subsets of T of cardinality 4. Then the constraint can be
encoded as follows: ∨

i 6=j∈Y

xi = xj ∀Y ∈ Y (34)

6. Analysis of WSP Solution Approaches

In this section we analyse and compare the existing and new WSP solution approaches. In Section 6.1,
we discuss different branching strategies and how they are linked to performance of WSP algorithms.
Section 6.2 discusses properties of PBPB with respect to both the upper level search for eligible patterns
and of the assignment problems that arise at the lower level. (For asymptotic worst-case analysis of PBT
and PUI please see Section 4.5).

13

6.1. Branching Strategies

In this section, we use the language of patterns and of the PBPB encoding in order to discuss
possible branching strategies in a WSP algorithm. The first key observation is that any pattern can be
described with Mij variables. The matrix of M variables corresponding to a complete pattern is exactly
a permutation of block-ones-diagonal matrix, where a block in the matrix corresponds to a block of the
pattern. A pattern as used within PBT is then a set of blocks (see Figure 5a) with the requirement
that the steps in different blocks are assigned different users.(It is important to note that in such figures,
purely for illustration, we are assuming that the rows/columns are permuted to reveal any block-diagonal
structure; there is no implication that the steps are processed in a fixed order.) We will say that such
an (incomplete) pattern is ‘open’ as the relation between the steps in the pattern and those not in
the pattern is left as undetermined; for a step not in the pattern, the values of M are not yet fixed.
The openness of the pattern corresponds to the open nature of the assignments within PBT. Figure 6
illustrates the branching within PBT in terms of the options for extending the value assignments to the
M matrix.

1 1 0 0 0 ? ? ?

1 1 0 0 0 ? ? ?

0 0 1 1 1 ? ? ?

0 0 1 1 1 ? ? ?

0 0 1 1 1 ? ? ?

? ? ? ? ? 1 ? ?

? ? ? ? ? ? 1 ?

? ? ? ? ? ? ? 1

s1

s1

s2

s2

s3

s3

s4

s4

s5

s5

s6

s6

s7

s7

s8

s8

(a) Open pattern. The pattern has two blocks, each
of which can be extended with new steps. New
steps can also be assigned to a new block.

1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 1 ? ?

0 0 0 0 0 ? 1 ?

0 0 0 0 0 ? ? 1

s1

s1

s2

s2

s3

s3

s4

s4

s5

s5

s6

s6

s7

s7

s8

s8

(b) Closed pattern. Both blocks are closed, i.e. the
algorithm cannot add any other steps to these two
blocks; it can only create new blocks.

Figure 5: Open vs. closed pattern in terms of M matrix. Full M matrix is shown for clarity although it is symmetric by
definition. Question marks show undecided variables. Grey cells (with zeros) are variables fixed at 0; green and red cells
(with ones) are variables fixed at 1.

Figure 6: PBT branching. The parent pattern contains two blocks (green of size 2 and red of size 3). PBT extends the
parent pattern by assigning a new step in three different ways: (left) extend the first block with the new step; (centre)
extend the second block with the new step; (right) create a new block consisting of the new step only. A black frame
encloses the the variables fixed in each of the branches. Note that the branching step can be chosen arbitrarily; PBT uses
a heuristic to select the branching step.

PUI, the previously state-of-the-art FPT algorithm for the WSP with UI constraints [12], implements
a different branching strategy. It iterates over the set of users U gradually building a set P of valid
patterns. At an iteration corresponding to some user ui ∈ U , PUI attempts to extend each P ∈P with

14

exactly one new block B, trying each non-empty B ⊆ A(ui) \ S(P). PUI will never attempt to extend
an existing block in a pattern, and in this sense it uses ‘closed’ patterns, see Figure 5b. While closed
patterns support richer propagation, they also reduce the flexibility of search. Indeed, a single extension
of a closed pattern inevitably fixes many more M variables than that of an open pattern, reducing the
ability of the algorithm to focus on the most constrained parts of the problem. In general, the smaller
the decisions are, the more flexibility the search has in ordering them and, hence, prioritising the most
important ones. Thus, we suggest that open patterns are preferable to closed patterns.

Storing the set P of valid patterns also makes the space complexity of PUI exponential in k. Consider
an instance with n = k and no constraints. Let s ∈ S be some step, and let all the users in this instance
be authorised to all the steps except for s, i.e. A(u) = S \ {s} for every u ∈ U . Clearly, such an instance
is unsatisfiable. To establish this, PUI will generate and store all incomplete valid patterns. Observe
that any partition of S′ ⊆ (S \ {s}) is a valid pattern in this instance. To count them, consider the set
of all partitions of S. There are exactly Bk of such partitions. Now, in each of these partitions, remove
the block that includes s. This will give us a set of all partial partitions of S that do not cover s. This
set exactly corresponds to the set of all the incomplete valid patterns in our problem instance. Hence,
to solve this instance, PUI will populate P with exactly Bk patterns. Hence, the space complexity of
PUI is Ω∗(Bk), where Ω∗ hides polynomial factors similarly to the O∗ notation.

Another aspect in which PBT is different to PUI is that PBT implements delayed assignment of users,
branching on user-independent M variables. Conversely, PUI branches on the x variables, i.e. fixes the
assignment of users while branching, achieving the FPT running time by merging equivalent branches.
We argue that delayed user assignment would usually be more effective. As we show in Appendix A, a
significant portion of patterns are authorised but usually only a few patterns are eligible; hence branching
on the M variables is likely to produce smaller search trees.

It is possible to implement an algorithm with closed patterns and delayed user assignment. Our
attempt to implement such a ‘closed-pattern-based PBT’, however, resulted in an algorithm significantly
slower than PBT (although faster than PUI).

It is also possible to implement an open-pattern style search with immediate user assignment. Indeed,
a general purpose PB solver is likely to exploit this strategy when solving UDPB formulation. However,
assignment of some (but not all) xsu for a u ∈ U would mean that subsequent pruning of the branch
does not guarantee that the corresponding open pattern is invalid; indeed, a different assignment of xsu,
s ∈ S, may produce a valid plan. Hence, patterns could not be used to merge branches of the search, and
the algorithm would not be FPT. For FPT algorithms with immediate user assignment, it is vital, like in
PUI, to try all the authorised combinations of xsu for a given u ∈ U before proceeding to the next u; by
following this strict sequence, the algorithm guarantees that it finds all the eligible patterns authorisable
by processed users. For the same reason, PUI could not be implemented as a DFS algorithm.

An important observation is that FPT algorithms with immediate user assignments (i.e. PUI) are
forced to order the branching variables by user whereas algorithms with delayed user assignments and
open patterns (i.e. PBT) order the branching variables by steps. In a problem with a relatively small
number of steps and a large number of users, it is more likely that the users are relatively uniform
compared to the steps, and hence the search is more sensitive to the order of steps than to the order
of users. In other words, branching heuristics in PBT-like algorithms are expected to be more effective
compared to branching heuristics in PUI-like algorithms.

Now consider the combination of the PBPB encoding with a DPLL-based [21] PB solver such as
SAT4J. Internally, a PB solver on PBPB will need to be making branching decisions. This is generally
done so as to prefer branching on variables that propagate to entail values for other variables, and
given the central nature of the M variables, it seems reasonable they would be favoured as branch
variables. As pointed out above, a complete assignment to the variables Ms1,s2 , s1, s2 ∈ S, and satisfying
the constraints (16)–(19), uniquely defines a complete pattern. A PB solver will be handling partial
assignments to the M variables, but it is still reasonable to ask if they are structured like open or closed
patterns. To address this, consider the effects of the transitivity constraints (18) and (19). If two M
variables sharing a step, e.g. M12 and M23, are set to 1, then (19) immediately forces a propagation,
M13 = 1, and similarly for (18), so if block-diagonals of 1’s happen to overlap then will form into a
larger block of 1’s. Hence there is a tendency to complete the blocks in the M matrix, but there will
be no reason to close them. This will tend to drive the partial M -assignments to have a structure close
to open patterns. We hence expect that a standard (DPLL-based) PB solver could work on the PBPB
formulation in a similar fashion of using open patterns and then extending them. So we expect that the
behaviour of the PB solver with PBPB will be more similar to PBT than to PUI; we will see evidence

15

for this in Section 8.
We also note here, that, unlike the bespoke PBT and PUI algorithms, PBPB solvers have the flexibility

to arbitrarily alternate between branching on M ’s and x’s. When user authorisations are tight, this may
lead to superior strategies and hence is a potential strength of the general-purpose solver approach.

6.2. Properties of the New Pseudo-Boolean Formulation PBPB

In this section, we show that the PBPB formulation can also potentially admit FPT running time
and polynomial space complexity. The discussion breaks into the upper level search on the M -variables
for eligible patterns, and the subsequent lower level matching problems arising from the x variables in
the context of a pattern.

For the upper level, there are O(k2) of the M variables, and so a tree search in PB would have the
potential to fully instantiate these before handling the user assignments via the x variables (which is not

an unreasonable assumption, see Section 6.1), using a tree of worst-case size 2O(k2). This is FPT, and
so whether or not PBPB has a potential to be FPT as a whole depends on the complexity of the user
assignments once a complete pattern is reached.

When all the M ’s are instantiated, the PBPB formulation (16)–(28) reduces to the following:∑
u∈U

xs,u = 1 ∀s ∈ S, (35)

xs,u = 0 ∀s ∈ S and ∀u ∈ U \A−1(s), (36)

xs1,u = xs2,u ∀s1 6= s2 ∈ B,B ∈ P and ∀u ∈ U, (37)

xs1,u + xs2,u ≤ 1 ∀B1 6= B2 ∈ P, ∀s1 ∈ B1, ∀s2 ∈ B2 and ∀u ∈ U, (38)

xs,u ∈ {0, 1} ∀s ∈ S and ∀u ∈ U. (39)

This is a bipartite matching problem but with blocks of steps being assigned to a user. However,
because of (37), when any one step in a block is assigned (i.e. some xs,u = 1) then all the other steps in
the block are also forced, by propagation, to the same user.

While we know algorithms to solve the matching problem in polynomial time, a general-purpose
PB solver in a mode that essentially only uses SAT-style resolution cannot solve it efficiently. The
Pigeon Hole Problem, seeking to assign n entities to n − 1 holes and which is a special case of the
Bipartite Matching Problem, is known to be exponentially hard for DPLL solvers [33] that only use SAT
representations; but polynomial size proofs are possible for PB, and so this explains why we encode it
using PB. The following proposition shows the formulation (35)–(39) can be solved in FPT time by a
general purpose PB solver, using standard tree-search methods (branching and propagation), but not
introducing new variables during the search process. It is important to make this assumption because
search or proof methods that are allowed to introduce new variables have the potential to be a lot more
powerful, e.g. [46], but such methods are currently too difficult to control in practice.

Proposition 6.1. The PB formulation (35)–(39) can be solved by tree search and propagation (without
the introduction of new variables), in polynomial space, and in time exponential in |P| only.3

Proof The PB formulation (35)–(39) corresponds to the standard bipartite matching problem on a
graph with the vertices of one partition consisting of the blocks of P and the other partition vertices are
the users U . Observe that if the degree (number of authorised users) of a block B ∈ P is greater than
the number of blocks in |P|, then no set of choices for the other blocks can remove all the options for that
block. Hence, all vertices B ∈ P of degree |P| or above can be delayed until last in the search tree: if the
search does reach them, then they can be given arbitrary values and so will never lead to backtracking.
(An example occurs in Figure 3a in which the block {s3} has 3 authorised users; so its assignment can be
delayed until after the other 2 blocks.) Variables within a block are all constrained to be equal, hence,
eventually one of them will be picked as the branch variable; at this time the propagation will give values
to all the others. The other members of a block hence will no longer be candidate branch variables,
and they will not contribute to the size of the search tree. Hence in the backtracking portion of the
branching, branching factor of the search will be limited by |P| − 1, and the depth of the search by |P|.
Hence the search tree size is O((|P| − 1)|P|), and the depth is polynomial. 2

3The proposition is closely related to known methods in kernelisation [31]; however, due to the lack of space we do not
want to pursue that here.

16

This proposition is sufficient to show that a PB solver based on standard branch-and-propagate
methods has the potential to solve the PBPB formulation in FPT time. However, Proposition 6.1
effectively shows that an unbalanced bipartite matching problem (with parts of size O(k) and O(n),
respectively) can be solved by a PB solver in time polynomial in n and exponential in k, whereas we
know that the Hungarian method is polynomial in both n and k. Although we have not observed difficult
matching problems in our experiments with WSP algorithms, it is still natural to discuss the worst case,
and consider what are the potential limitations of the PB approach. For this we will switch to a “proof
theory” perspective and ask about the sizes of the proofs of unsatisfiability available within the PB
representation (note that a proof of satisfiability of the matching problem is trivial in the sense that it
is just the verification of a given witness).

Proposition 6.2. When the PB formulation (35)–(39) is unsatisfiable, then there is a PB proof of that
unsatisfiability, without introducing new variables, and that is polynomial in both |P| and n.

Proof Observe that we can take an arbitrary representative, a step, from within each block of the
pattern P and use propagation through (37) to limit the users permitted for the representative. Hence
the problem (35)–(39) is precisely the matching of the selected representative of each block to a permitted
user. The Proposition 6.2 follows from the Hall’s marriage theorem [9]; a matching problem on a bipartite
graph G = (L∪R,E) has a complete matching of the vertices of the partition L, if and only if it is true
that for all subsets L′ of L, there are at least |L′| elements in R that may match with some vertex in
L′. In WSP language this basically means that the matching problem is unsatisfiable if and only if there
is some subset B of blocks, for which the corresponding set of candidate users is smaller than |B|; for
example, see Figure 3b. Such a subset is a constrained form of the pigeon-hole problem (PHP), stating
that |B| blocks cannot be assigned to fewer than |B| users, and restricting equations (35)–(39) to such a
subset from the marriage theorem leads to a PB encoding of the PHP. (There are also extra constraints
to remove unauthorised assignments within the PHP, but these are not needed, as the counting already
suffices.) Since the PHP is known to have a polynomial size PB proof without the use of new variables,
see e.g. [13, 23], it follows there is also a PB proof of (35)–(39). 2

Note that Propositions 6.1 and 6.2 are quite different in that the first one is discussing the process
of a solution, whereas the second one is about a witness to unsatisfiability but not the time to find it.
Nevertheless we conclude that a PB solver might, at least, be expected to use tree search to solve the
assignment problem in time exponential in k, but also have the potential to be able to solve it in time
polynomial in k.

We further note that our separate experiments confirmed that at large n the matching problem
occurring at the lower level of the algorithm are typically very easy as there is little conflict between
users, and simple propagation is usually sufficient to solve the problem.

7. Instance Generator and Phase Transitions

It is preferred to use real-world instances in computational studies. However, there are only very few
real-world instances of WSP available publicly, and those are of size too small to be of interest in our
computational experiments, see e.g. [6]. We have considered the instances appearing in practice from [6,
24, 25], namely, TRW (Trip Request Workflow), ITIL (IT Financial Reporting), and ISO (Budgeting
for Quality Management) having 5, 7, 9 steps (tasks) and 5, 2, 3 not-equals constraints, respectively.
More details and description of user-step authorisations for 3 satisfiable and 3 unsatisfiable versions of
these instances can be found in Section 5 of [25]. Our new solver PBT correctly solved each of the
six instances in less than 0.001 sec. If some businesses do not use more and more complex constraints
because of computational complexity issues, PBT provides a good opportunity to consider larger and
more involved workflow scenarios.

Therefore, due to the difficulty of acquiring real-world instances with an appropriate range of sizes, to
support extensive studies of the scaling of the runtimes, similarly to other authors [12, 47, 50], we use the
synthetic instance generator described in [12], available for downloading from [36]. In this section, we first
present the generator of the WSP instances. We then empirically study the probability of satisfiability
of the instances as we vary the generator parameters. We give evidence for PT, between the satisfiable
and unsatisfiable regions. The point is that the resulting instances from the PT region can be expected
to be a good test of the effectiveness of solution algorithms.

17

7.1. The Instance Generator

Three families of UI constraints are used: not-equals (also called separation-of-duty), at-most-r and at-
least-r constraints. A not-equals constraint with scope {s, t} is satisfied by a complete plan π if and only
if π(s) 6= π(t). An at-most-r constraint c with scope Tc is satisfied if and only if |π(Tc)| ≤ r. Similarly,
an at-least-r constraint c with scope Tc is satisfied if and only if |π(Tc)| ≥ r. We do not explicitly
consider the widely used binding-of-duty constraints, that require two steps to be assigned to one user,
as those can be trivially eliminated during preprocessing. While the binding-of-duty and separation-of-
duty constraints provide the basic modelling capabilities, the at-most-r and at-least-r constraints impose
more general “confidentiality” and “diversity” requirements on the workflow, which can be important
in some business environments. We decided to focus this study on at-least-3 and at-most-3 constraints
with a scope of 5, |Tc| = 5 for the following reason. Cohen et al. [12] performed several computational
experiments with the at-least-r and at-most-r constraints for various values of r and various sizes of scope
T . The constraints at-least-3 and at-most-3 with scope of size 5 were selected in [12] as they appear to
be in the practical range of the parameters r and |T | and the values r = 3 and |T | = 5 often lead to
computationally challenging WSP instances. For more details, see Section 5.2 of [12].

The specific stochastic WSP Instance Generator takes as input four parameters,

1. k, the number of steps;

2. n, the number of users;

3. e, the number of not-equals constraints;

4. γ, the number of at-most-3 and also the number of at-least-3 constraints (all with scope 5).

The generator, which we denote as WIG(k, n, e, γ), is stochastic, but as usual can be made deterministic
by also specifying a value for the random generator seed. For each user u ∈ U , it generates A(u) such
that the size of A(u) is first selected uniformly from {1, 2, . . . , b0.5kc} at random and then the set A(S)
itself is selected randomly and uniformly from S with no repetitions. This results in each step having n/4
authorised (random) users on average. The generator also produces e distinct not-equals, γ at-most-3
constraints, and γ at-least-3 constraints, all uniformly at random.

Note that in general, WSP instances could have some symmetries, e.g. different steps, or different
users are interchangeable, potentially, making search processes more inefficient and needing the usage of
symmetry breaking methods (e.g. see [19]). However, our benchmark instances have negligible amounts
of such symmetry (both by theory and also by direct evaluation) and so we do not consider it here.

The PBT algorithm and the test instance generator are available for downloading [36].

7.2. Thresholds from the Instance Generator

In this section, we focus on experiments to study the dependency of instance properties on the
parameters of the instance generator, and show that the WSP instances we use exhibit the classic
properties expected of PTs.

Figure 7 shows an example, at k = 40 and n = 400, of the running time of PBT and the percentage
of unsatisfiable (unsat) instances as they change with variation of parameters e (Figure 7a) and γ
(Figure 7b). As one could expect, the number of unsat instances grows with the number of constraints.
It can also be observed that the hardest instances are those near the 50% level of the unsat curve.
Following standard arguments, under-constrained instances have a lot of valid plans which makes them
relatively easy. Unsatisfiability of the oversubscribed instances can be proved relatively quickly due to
heavy pruning of the branches. However, instances around the 50% unsat level are likely to have none
to few valid plans making it hard to find them or prove unsatisfiability. Note that one can argue that
real-world instances in many cases are likely to be in the region of 50% unsatisfiable: Organisations are
likely to be constraining their workflows up to the point when the workflows become unsatisfiable, or
start with unsatisfiable workflows and gradually relax the constraints until obtaining satisfiable problems.

In the comparison of algorithms we use ‘critical’ instances with γ = k and e = e50, where e50 =
e50(k, n, γ) makes WIG(k, n, e50, γ) instances satisfiable with 50% probability. The values of e50(k, n, γ)
are obtained empirically for each k, n and γ and are freely available to facilitate future work [36].

Although we do not use it directly, it is also possible to estimate e50 analytically based on the
instance generator properties. In Appendix B, we give an (approximate) computation in the style of
an ‘annealed estimate’ [48] of the average number of solutions given k, n, e and γ; with the intent to

18

0

2

4

R
u

n
n

in
g

ti
m

e,
se

c

0 50 100 150 200
0

20

40

60

80

100

Number of not-equals constraints e

U
n

sa
t.

,
%

(a) The number γ of at-most and at-least constraints
is fixed at γ = k, and the number e of not-equals
constraints is varied.

0

1

2

3

R
u

n
n

in
g

ti
m

e,
se

c

0 20 40 60
0

20

40

60

80

100

Num. of at-most and at-least constraints γ

U
n

sa
t.

,
%

(b) The number e of not-equals constraints is fixed at
e = 78 (corresponding to 10% of all available choices),
and the value of γ is varied.

Figure 7: At (k, n) = (40, 400), the running times of PBT (blue) and percentage of unsatisfiable instances (red) for various
values of the instance generator parameters. The blue shades show the [35%–65%] (deep blue) and [25%–75%] (lighter
blue) percentiles of the runtimes.

use it to obtain an approximate value of e50(k, n, γ). The annealed estimate seeks the average number
of solutions over all instances, and so gives an upper bound on the PT – because once the average
drops below 0.5 then at least half the instances must be unsatisfiable. (A similar concept is used in
the constrainedness parameter [30] which is expressed via the average number of feasible solutions in an
ensemble of problem instances.) The main novelty of our analysis is that it accounts for the unevenness
of distribution of solutions arising from the two-level nature of the problem. In particular, we observed
that a straightforward strategy of direct estimation of the probability of a single plan being valid does
not give a tight estimate in our case. Indeed, there might be millions of authorised plans per pattern but
at the same time the expected number of eligible patterns can be well below one. In that case, most of
the instances will have no valid plans at all but some very rare instances will have millions of valid plans.
Since the straightforward estimation strategy gives the average number of valid plans per instance, its
result is likely to be a significant over-estimate of the position of the PT. In order to estimate the critical
point e50 more accurately, we have to ask a different question: we need to know when the probability of
an instance to have at least one valid plan is 50%. For this, we have to estimate the number of eligible
patterns and then the probability of a pattern being authorised. This will give us the expected number
of valid patterns which yields a more accurate estimate of the critical point e50.

Lastly, to further support that the observed phenomena have properties expected of a PT, we con-
ducted a set of experiments at the critical points and around them. In particular, we show in Appendix
C the emergence of forced variables similar to [20], i.e. the decision variables with values forced by the
instance, in the critical region. We observe that the PT coincides with a rapid growth of the number
of M variables forced to be either 0 or 1, effectively corresponding to forced (not included explicitly)
not-equals or “equals” constraints, respectively.

8. Computational Experiments

Specifically, we empirically study and compare the following WSP solvers:

PBT The algorithm proposed in this paper;

PUI The FPT algorithm proposed and evaluated in [12];

UDPB (Res) The old pseudo-Boolean SAT formulation of the problem (see Section 5.1) solved with
SAT4J [40] in the resolution proof system mode. We also attempted to use the cutting planes mode
to solve UDPB but the performance was prohibitively poor for running the experiments.

PBPB (Res) The new pseudo-Boolean SAT formulation, PBPB, of the problem (see Section 5.2) solved
with SAT4J in the resolution proof system mode.

19

PBPB (CutP) PBPB solved with SAT4J in the cutting planes proof system mode.

CSP (CP-SAT) Our CSP formulation solved with CP-SAT, the latest constraint solver from OR-Tools.

The PBT algorithm is implemented in C#, and the PUI algorithm is implemented in C++. Our test
machine is based on two Intel Xeon CPU E5-2630 v2 (2.6 GHz) and has 32 GB RAM installed. Hyper-
threading is enabled, but we never run more than one experiment per physical CPU core concurrently,
and concurrency is not exploited in any of the tested solution methods.

8.1. Slices in Studying Algorithm Scaling

As discussed in Section 7, we focus on the PT WSP instances in our computational study. In a
standard (non-FPT) study of PTs, this is generally straightforward – at least conceptually, though
potentially quite computationally challenging. For example, consider standard Random-3SAT; the size
of the problem is indicated by the number, n, of propositional variables. For each value of n, the number
of clauses c is selected so that the instances have a 50% probability of being satisfiable, which we might
write as “set c = c50”. Then, to study the algorithm’s complexity, one tests it on these PT instances.

However, a key aspect of FPT is that, in addition to a main problem size parameter n, it also has
some other parameter k which is closely involved in the problem complexity. One will generally wish to
study the algorithm’s scalability in terms of both k and n. We call n and k size parameters following the
observation that they control the size of the space of WSP solutions. Consequently, we say that (k, n)
is the size space. The remaining parameters e and γ are then constraint parameters as they control the
number of constraints, and they are chosen such that the instances have 50% chance of being satisfiable
as discussed in Section 7.2.

Since (k, n) is two dimensional, studying the performance over the whole size space is computationally
expensive and also difficult to analyse. Accordingly, in this paper, for simplicity and clarity we study the
scaling along one-dimensional subspaces of (k, n), which we will refer to as slices. Since the size space is
two-dimensional, we need to study the scaling in at least two independent (not necessarily orthogonal)
directions; or along two independent one-dimensional “slices”. While studying the FPT properties, it is
natural that such slices should also tend to focus on the regions in which k is small compared to n.

n

k

“vary-k” slice
“fixed-k” slice

Figure 8: Schematic view of the two “slices” used in our computational study in order to cover the two-dimensional size
space (k, n) used in order to investigate the empirical FPT properties. Such FPT studies should naturally focus on the
lower right (grey) region in which k is small compared to n.

Many options of choosing the slices are possible, including non-linear slices, however in this paper we
will just use two linear slices schematically illustrated in Figure 8, as they give a good and useful insight
into the behaviour:

“vary-k” Vary the value of k, but the value of n is given as a specified function of k. In this paper,
following [12, 37], we use the choice n = 10k. This gives a simple and clean way of keeping k to be
‘small’ compared to n. We also report the experimental results for the n = 100k slice in Appendix
D, however the conclusions are somewhat similar.

“fixed-k” Use a constant value of k and vary n. This is a natural slice for a test of FPT performance;
recall that the worst-case time complexity grows polynomially with n at a fixed k, and one can
expect the algorithms to demonstrate good scalability in this slice.

8.2. Performance Comparison: Slice “vary-k”

To compare performance of various WSP algorithms, for each value of k we generated 100 instances
using WIG(k, 10k, e50, k). The empirical number of not-equals constraints e50 for each k needed to obtain
PT instances is shown on Figure 9c. One can observe the ‘zig-zag’ shape of the curve in that the values

20

corresponding to odd k’s are greater than the values corresponding to even k’s. This minor artefact
arises simply because the size of each authorisation list is randomly drawn by our instance generator
from [1, b0.5k − 0.5c]. As a result, the average number of authorisations in an instance with k = 2i− 1
is equal to that in an instance with k = 2i, i ∈ N. This makes the authorisations in ‘even’ instances
slightly more constrained compared to ‘odd’ instances, which is then compensated by reduced number e
of not-equals constraints.

We then solved each instance with each of the algorithms and in Figure 9 we report the median
running time. We report separate times for the satisfiable and unsatisfiable instances. The immediate
observations are that all the algorithms demonstrate roughly exponential growth of the running time,
but that the performances of all the methods differ widely.

Crucially, the new PBPB (Res) and PBT (Res) both drastically outperform the previous UDPB
(Res) and PUI, showing lower growth rate and also being significantly faster even on small instances.
We first look at the scaling of the best performing PBT, on the unsatisfiable instances as the discussion
of scaling of satisfiable instances can be obscured by finding solutions early in the search tree. Although
it is not immediately obvious, the scaling of the PBT on unsatisfiable instances in Figure 9 is slightly
super-exponential; the empirical curve bends slight upwards and so 2ak, with a constant a, does not
give a convincing fit. Deep analysis of the average case effects of heuristic improvements in such tree-
based search is not yet possible, but generally the expectation, based on experience, is that heuristics
will improve the coefficients in the exponents but retain the form. Recalling from Section 4.5, that the
number of patterns scales as 2Θ(k log k), it is reasonable to compare the empirical scaling to 2(k log2 k)/b for
some empirically determined constant b. In Figure 9b we show that a good fit is a function 2k·log2 k/13.2,
confirming our assumption and indicating the effectiveness of the branching heuristics and pruning.

The next observation is that PBT is faster than PBPB (Res) by one to two orders of magnitude,
but that the scaling behaviours are similar. A more accurate comparison can be done by inspecting
Figure 10. While the limited range of k and noise do not allow us to convincingly make any definite
conclusions, we hypothesise that the ratio of the runtimes between PBT and PBPB (Res) is close to
a constant for large k. Also, PBPB (Res) is relatively slow on small instances, presumably because of
an expensive initialisation/preprocessing, normal for an off-the-shelf solver, but this does not affect the
method’s scalability. The similarity of the scaling on larger instances (k > 35) supports our hypothesis
from Section 6.1 that the search processes of PBPB (Res) and PBT could well be similar.

It is also clear that PBPB (Res) and CSP (CP-SAT) show (remarkably) similar performance, despite
CSP (CP-SAT) not explicitly using patterns. In this paper, we treat the PBPB and CSP solvers in an
“off-the-shelf blackbox” fashion and do not study their internal workings. However, CP-SAT is built on
top of a SAT solver, and so we speculate that the search in the SAT solver effectively mimics a pattern-
based reasoning. This could be directly through the the vk variables. Alternatively, conversion to SAT
could introduce a new variable for each term or predicate that occurs in the constraints, including the
terms xi = xj and xi 6= xj in (30), (32) and (34) – such Boolean variables would play a similar role to
the pattern variables Mij .

We also observe that the ratio between the solution time of unsatisfiable and satisfiable instances
steadily grows for PBPB (Res), while it stays roughly constant for PBT. This may be explained by the
fact that the PB solver is likely to employ some heuristics for ordering search branches; these heuristics
generally improve the running time of the solver on satisfiable instances while leaving its performance
on unsatisfiable instances intact. PBT does not currently have any such heuristic; in our attempt to
implement one, the gain was comparable to the overheads, and, thus, we dropped the branch ordering
heuristic in our final implementation of PBT.

We also directly investigated whether the running times of PBPB (Res) correlate with the running
times of PBT, see Figure 11. On satisfiable instances the correlation is relatively weak which is natural as
the running time depends on the branching decisions which differ in the two algorithms. On unsatisfiable
instances the correlation is much stronger which again shows that, although the individual branching
decisions of the two algorithms may be different, the effectiveness of the heuristics is comparable.

The gap between the running times on satisfiable and unsatisfiable instances is relatively small (within
one order of magnitude) for all the solvers except for UDPB (Res). We hypothesise that this difference
is due to the inherent symmetry of the UDPB formulation, meaning that there are many valid plans and
there is a high probability of finding one well before exhausting the entire search tree. In contrast, the
number of valid patterns in a PT instance is likely to be small, and one is likely to be found only after
searching a significant part of the search tree. Note that PBPB (Res) is still superior to UDPB (Res) on
satisfiable instances, as the plans search tree is much larger than the patterns search tree when n� k.

21

20 25 30 35 40 45 50 55

10−3

10−2

10−1

100

101

102

103

104

105

Number of steps k

R
u

n
n

in
g

ti
m

e,
se

c

PBT
PUI

UDPB (Res)

PBPB (Res)

PBPB (CutP)

CSP (CP-SAT)

(a) The solid lines correspond to unsatisfiable instances, and dashed to satisfiable instances.

20 25 30 35 40 45 50 55

10−5.5

10−5

Number of steps k

T
im

e
ov

er
2

0
.5
x

PBT unsat

const · 2k·log2 k/13.2

(b) PBT unsat running time with the [35–65] percentile range (shaded) as an indication of a confidence interval
on the medians. The vertical axis is rescaled to better show the fit, allowing a better view. Any exponential
function would be a straight line in this plot, however empirical running time appears to be curved. The blue
line, corresponding to const ·2k·log2 k/13.2, appears to be a relatively accurate approximation of the running times,
demonstrating that scaling of PBT running time closely follows Bk, with a speed-up power factor 13.2.

20 25 30 35 40 45 50 55
20

40

60

80

100

Number of steps k

e 5
0

(c) The number e50 of not-equals constraints at phase transition.

Figure 9: Evaluation of algorithms’ performance along the “vary-k” slice, i.e. WIG(k, 10k, e50, k).

22

20 25 30 35 40 45 50 55
101

102

103

Number of steps k

P
B

P
B

/
P

B
T

Satisfiable
Unsatisfiable

Figure 10: Comparison of PBPB and PBT performance. The vertical coordinate is the ratio between the median running
time of PBPB (Res) and median running time of PBT.

10−3 10−2 10−1 100 101 102

101

102

103

PBT running time, sec

P
B

P
B

(R
es

),
se

c

(a) Satisfiable instances

10−1 100 101 102
101

102

103

PBT running time, sec

P
B

P
B

(R
es

),
se

c

(b) Unsatisfiable instances

Figure 11: Correlation between PBT and PBPB (Res) running times on instances of size k = 40. 1000 instances used in
this experiment (about 500 satisfiable and 500 unsatisfiable).

Although we argued that good experiments should seek instances in the PT region of parame-
ter space, it is still interesting to verify the performance of PBT on under- and over-constrained in-
stances. To build such instances in a consistent way, we define a new parameter β, and study instances
WIG(k, 10k, βe50(k, 10k, k), βk), i.e. the PT instances with the number of constraints scaled by β. Fig-
ure 12 shows how the scaling changes as we move away from the PT, β = 1.0. It shows the classic
so-called “easy-hard-easy” behaviour. Below the PT (β < 1) the runtimes and scaling are much better
than at the PT; that is most of the instances have many solutions, and so solving will terminate early.
Above the PT (β > 1) most of the instances are unsatisfiable, but the pruning will increase, and this is
reflected in the improved scaling.

8.3. Performance Comparison: Slice “fixed-k”

All the FPT algorithms discussed in this paper are designed to solve large WSP with relatively small
number k of steps. This reflects the fact that in large organisations there might be thousands of users
with only tens of steps in an instance. Thus it is of both theoretical and practical importance to evaluate
scalability of the approaches with regards to the number of users n.

Figure 13 reports on a set of experiments with WIG(18, n, e50, 18) instances. Note that a relatively
small value of k = 18 was chosen to allow even the slowest algorithms to terminate in reasonable time.
The (impractically large) maximum value of n was selected to investigate behaviour of the algorithms.

Figure 13b shows how the value of e = e50(18, n, 18) varies with n so as to remain at the PT region.
The corresponding results for the runtimes of the different algorithms are given in Figure 13a. Although
all the instances at all values of n are selected from a PT region, it seems that there are two regions
above and below a dividing value of n∗ ≈ 2000. For n < n∗ the number of not-equals constraints in
the graph is increasing with n, but for n > n∗ the number of the not-equals constraints in the graph is
roughly constant, and the properties of the instances are practically independent of n.

The simplest behaviour to interpret is that of PUI on unsatisfiable instances, which exhibits a scaling
that is approximately proportional to n1.25. This slightly superlinear scaling is natural as the algorithm
works through the users one at a time, and if the instance is highly constrained by the not-equals

23

20 25 30 35 40 45 50 55

10−4

10−2

100

102

104

Number of steps k

R
u

n
n

in
g

ti
m

e,
se

c

β = 0.5
β = 0.75

β = 1 (PT)
β = 1.25
β = 1.5

Figure 12: Performance of PBT on instances outside the PT region (obtained by changing β).

constraints then the work per user may well become roughly constant, with only a mild accumulation
of new patterns and, hence, increase of the patterns pool and associated runtime costs. On satisfiable
instances PUI has a potential to solve the problem after O(k) iterations, i.e. with a perfect user ordering
heuristic its running time could theoretically be independent of n. However, the real user ordering
heuristic does not always pick the “right” users and the running time mildly increases with n, matching
our expectations.

The running time of PBT shows little dependency on n. Observe that the upper level of the search
algorithm in PBT does not depend on n. Due to the heuristic described in Section 4.2, the size of the
assignment graph (the lower level) is bounded by k2, i.e. does not generally grow with n. Hence, only
the generation of the assignment graph depends on n in PBT. However, the larger the value of n, the
less likely that full scans of the list of users are needed. As a result, PBT demonstrates sub-linear scaling
in this experiment, solving instances with more than 108 users in under a second. Even if not directly
practical in case of WSP, this result shows that a careful design and implementation of an FPT algorithm
has a potential to routinely address very large problems.

In contrast to the experiments along the “vary-k” slice, the PBPB (Res) scaling on the “fixed-k” slice
is not similar to that of PBT, and is possibly worse than polynomial (as the slope increases on the log-log
plot). On the other hand, the PBPB (CutP) and CSP (CP-SAT), both show very good performance,
demonstrating sub-linear scaling (roughly n0.9), and outperforming PBPB (Res) on large n’s. For PBPB
(CutP), it is natural to hypothesise that this is because at large n the matching problem becomes even
more important, making the cutting planes proof system more suitable. For CSP (CP-SAT), we can
hypothesise that, unlike the SAT4J solver, the OR Tools SAT solver efficiently discovers strategies similar
to the one proposed in Proposition 6.2, and thus solves the problem in FPT time. This behaviour is
interesting, and good news for SAT solvers, but requires future investigation as there might be potential
for significant improvement to enhance the solver’s performance using the fact that the problem is FPT.

We note here that the off-the-shelf solvers (PBPB (Res), PBPB (CutP) and CSP (CP-SAT) all
compete with each other in the ‘vary-k’ and ‘fixed-k’ slices (see also Appendix D for the n = 100k slice),
however none of them is a universal winner. It is clear though that, as expected, the resolution proof
system performs better than the cutting planes resolution system on the ‘vary-k’ slice.

9. Conclusion

In this paper, we studied the Workflow Satisfiability Problem (WSP), with User Independent (UI)
constraints, which admits FPT algorithms. Employing a new view of the FPT nature of the problem and
the AI methods, we designed a new FPT algorithm, PBT, that significantly outperforms the previous
state-of-the-art algorithm, extending the size of instances that can be reasonably tackled from k ≈ 20 to
k ≈ 50. This is partly due to the fact that PBT is the first FPT algorithm for WSP with UI constraints
that has polynomial space complexity. We believe that an important lesson is that having found an FPT
algorithm for a problem should be just a starting point for designing a practical algorithm as there are

24

102 103 104 105 106 107 108 109
10−3

10−2

10−1

100

101

102

103

104

Number of users n

R
u

n
n

in
g

ti
m

e,
se

c
PBT
PUI

UDPB (Res)

PBPB (Res)

PBPB (CutP)

CSP (CP-SAT)

const · n1.25

const · n0.9

const · n0.9

n = n∗

(a) Median runtimes for the different solvers, as a function of n. Solid lines show running times for unsat instances
and dashed lines for sat instances.

102 103 104 105 106 107 108 109
0

20

40

Number of users n

e 5
0

(b) Number e of not-equals constraints as a function of n selected so as to be 50% satisfiable.

Figure 13: The “fixed-k” slice for k = 18, i.e. WIG(18, n, e50, 18).

still likely to be many opportunities for significant improvement via the repertoire of intelligent heuristic
search mechanisms.

The direct study of algorithms for the WSP was also complemented with a study of PTs arising
from a generator of WSP instances. We found strong evidence of PT phenomena in the same fashion as
previous extensive studies within graph theory and AI.

While typical PT studies deal with a single size parameter, FPT implies that there are two ‘size
parameters’, both playing important role in the complexity of the problem. This paper gives a novel
combination of studying FPT and PT and the use of multiple ‘slices’ of the size space for a thorough
empirical study of scaling of algorithms.

A common approach to solving decision problems in practical computing is to formulate them using
a general-purpose declarative language and then using off-the-shelf solvers. Naturally, one may be in-
terested in representations, with which off-the-shelf general solvers result in similar scaling to the direct
implementations of FPT algorithms. We did observe such good behaviour of our new PBPB formula-
tion solved by SAT4J (in resolution proof system mode) on the “vary-k” slice, in which the scaling was
roughly as good as the PBT solver, and a lot better than that of the previous solvers. A very similar
performance was observed from a CSP solver even though our CSP formulation did not explicitly exploit
our understanding of the FPT nature of the problem. We expect that the internal mechanism of han-

25

dling our CSP formulation by CP-SAT in fact leads to an internal search process similar to pattern-based
methods of PBPB and the overall winner PBT.

Although the running time of the general-purpose solvers was by one or two orders of magnitude worse
than that of PBT, as might be expected, it indicated that the solvers were able to determine a good
search strategy. Furthermore, one may expect some additional efficiencies of the general purpose solvers
when applied to real instances, as an off-the-shelf solver is more likely to be able to exploit associated
structures.

The behaviour of these off-the-shelf solvers was not as good in the “fixed-k” slice experiments com-
pared to PBT. The PBPB (Res) solver demonstrated, apparently, exponential scaling despite us showing
in Proposition 6.1 that a simple tree-based solver is capable of exhibiting FPT time, i.e. polynomial scal-
ing in “fixed-k” slice. Also, the memory usage by the general-purpose solver was a bottleneck; e.g.
CSP (CP-SAT) consumed around 1.5-2 GB of RAM at k = 18 and n ≈ 2.4 ·106. In comparison, for such
a problem, PBT takes around 1 MB of RAM on top of the size of instance data itself (about 20 MB).
This indicates that there is a good potential for improvement of current off-the-shelf solvers to enable
them to take advantage of FPT properties.

9.1. Future Directions

A natural direction for future research is to further improve the performance of the PBT algorithm.
One can investigate improving the pruning from the authorisations by adding extra lookahead; further
improving the branching heuristics (possibly by exploiting machine learning for adaptive search) and
also finding branch ordering selections that give a net gain on the satisfiable instances. A particularly
important direction arises from noting that PB solvers on the PBPB encoding are likely to be benefiting
from learning and storing of no-goods (entailed constraints). It would be interesting to consider how
PBT could be enhanced with such no-good learning, and in such a way that is compatible with FPT –
enhancing the FPT-driven two-layer nature of the solution, rather than breaking it. The PT properties
of the set of generated instances should also be mapped in more detail, along with consideration of a
wider range of UI constraints. Such an enhanced study of the PT properties should be also exploited for
further evaluation of proposed algorithms.

Although the combination of PBPB and SAT4J in the resolution proof system mode worked well,
there was evidence from the “fixed-k” that in some regions of the space of instances it was performing less
well. In particular, scaling with n seemed to be non-polynomial, and this deserves further investigation.
Possibly, general PB solution methods need different branching heuristics, or could be extended to better
exploit the matching problem (equivalently, list colouring of a clique) that arises as a vital sub-problem
when using the PBPB formulation. We emphasise that here we do not attempt to systematically cover
‘all encodings’, but to take some representative and natural ones and study their behaviour from an
FPT perspective. However, we believe the methodology and initial results give a foundation for a future
systematic study of combinations of encodings and solvers.

We propose this study as a contribution towards ensuring that general purpose solvers are appropri-
ately effective on FPT problems; and give an example of developing a formulation that enables solvers
to exploit the inherent FPT properties of the problem. A future challenge in AI may be to study how a
general-purpose solver can automatically discover such formulations.

An important outcome is that the combination of decomposition and FPT ideas leads to new highly-
effective algorithm, and then combining FPT with PT ideas give a powerful framework for empirical
study. Our PT study of WSP also revealed interesting challenges in empirical average time complexity
studies for FPT problems. We proposed using multiple slices through the size space while adjusting
other parameters of the instance generator to stay in the PT region. However, it is still an open question
how to best select these slices, or indeed how to do a more integrated study of the effects of the multiple
parameters. Considering the general interest of the AI community in analysis of a widening range of
complexity classes (e.g. [2]) (including studies of FPT problems, see e.g. [22, 39]) and understanding of
practical implications of these complexity classes, we believe that further development of the study of
interactions between FPT and PT offers the potential for deeper insight into computational challenges
arising in AI.

Acknowledgements. We would like to thank the reviewers for the valuable comments that helped us to
improve the paper. This research was partially supported by EPSRC grants EP/H000968/1 (for DK and
AP), EP/K005162/1 (for AG and GG), and a Leverhulme Trust grant (GG). The source codes of the
instance generator and PBT, as well as the experimental data, are publicly available [36].

26

References

[1] American National Standards Institute. ANSI INCITS 359-2004 for Role Based Access Control, 2004.
[2] D. D. Bailey, V. Dalmau, and P. G. Kolaitis. Phase transitions of PP-complete satisfiability problems. Discrete

Applied Mathematics, 155(12):1627 – 1639, 2007. SAT 2001, the Fourth International Symposium on the Theory and
Applications of Satisfiability Testing.

[3] D. Basin, S. J. Burri, and G. Karjoth. Optimal workflow-aware authorizations. In Proc. of the 17th ACM Symposium
on Access Control Models and Technologies, SACMAT 2012, pages 93–102, New York, NY, USA, 2012. ACM.

[4] D. A. Basin, S. J. Burri, and G. Karjoth. Obstruction-free authorization enforcement: Aligning security and business
objectives. J. Comput. Security, 22(5):661–698, 2014.

[5] E. Bertino, E. Ferrari, and V. Atluri. The specification and enforcement of authorization constraints in workflow
management systems. ACM Trans. Inf. Syst. Secur., 2(1):65–104, 1999.

[6] C. Bertolissi, D. R. dos Santos, and S. Ranise. Solving multi-objective workflow satisfiability problems with opti-
mization modulo theories techniques. In Proceedings of the 23rd ACM Symposium on Access Control Models and
Technologies, SACMAT ’18, pages 117–128, New York, NY, USA, 2018. ACM.

[7] B. Bollobas. Random Graphs. Academic Press, London, England, 1985.
[8] E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete Appl. Math., 123(1-3):155–225, Nov. 2002.
[9] P. J. Cameron. Combinatorics: Topics, Techniques, Algorithms. Cambridge University Press, 1994.

[10] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the Really Hard Problems Are. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence, IJCAI-91, Sidney, Australia, pages 331–337, 1991.

[11] D. Cohen, J. Crampton, A. Gagarin, G. Gutin, and M. Jones. Iterative plan construction for the workflow satisfiability
problem. J. Artif. Intel. Res., 51:555–577, 2014.

[12] D. Cohen, J. Crampton, A. Gagarin, G. Gutin, and M. Jones. Algorithms for the workflow satisfiability problem
engineered for counting constraints. J. Comb. Optim., 32(1):3–24, 2016. (DOI: 10.1007/s10878-015-9877-7).

[13] W. Cook, C. R. Coullard, and G. Turán. On the complexity of cutting-plane proofs. Discrete Applied Mathematics,
18(1):25–38, 1987.

[14] J. Crampton. A reference monitor for workflow systems with constrained task execution. In E. Ferrari and G.-J. Ahn,
editors, Proc. of the ACM Symposium on Access Control Models and Technologies, SACMAT 2005, pages 38–47.
ACM, 2005.

[15] J. Crampton, G. Gutin, and D. Karapetyan. Valued workflow satisfiability problem. In Proc. of the 20th ACM
Symposium on Access Control Models and Technologies, SACMAT 2015, pages 3–13, 2015.

[16] J. Crampton, G. Gutin, and A. Yeo. On the parameterized complexity and kernelization of the workflow satisfiability
problem. ACM Trans. Inf. Syst. Secur., 16(1):4, 2013.

[17] J. Crampton, G. Z. Gutin, D. Karapetyan, and R. Watrigant. The bi-objective workflow satisfiability problem and
workflow resiliency. Journal of Computer Security, 25(1):83–115, 2017.

[18] J. Crampton, G. Z. Gutin, and R. Watrigant. On the satisfiability of workflows with release points. In E. Bertino,
R. Sandhu, and E. R. Weippl, editors, Proceedings of the 22nd ACM on Symposium on Access Control Models and
Technologies, SACMAT 2017, Indianapolis, IN, USA, June 21-23, 2017, pages 207–217. ACM, 2017.

[19] J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy. Symmetry-breaking predicates for search problems. In
Proceedings of the Fifth International Conference on Principles of Knowledge Representation and Reasoning, KR’96,
pages 148–159, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[20] J. Culberson and I. Gent. Frozen development in graph coloring. Theor. Comput. Sci., 265(12):227–264, 2001.
[21] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Commun. ACM, 5(7):394–397,

July 1962.
[22] R. De Haan, M. Kronegger, and A. Pfandler. Fixed-parameter tractable reductions to SAT for planning. In Proceedings

of the 24th International Conference on Artificial Intelligence, IJCAI’15, pages 2897–2903. AAAI Press, 2015.
[23] H. E. Dixon, M. L. Ginsberg, and A. J. Parkes. Generalizing boolean satisfiability I: Background and survey of existing

work. J. Artif. Int. Res., 21(1):193–243, Feb. 2004.
[24] D. R. dos Santos, S. Ranise, L. Compagna, and S. E. Ponta. Assisting the deployment of security-sensitive workflows

by finding execution scenarios. In P. Samarati, editor, Data and Applications Security and Privacy XXIX - 29th
Annual IFIP WG 11.3 Working Conference, DBSec 2015, Fairfax, VA, USA, July 13-15, 2015, Proceedings, volume
9149 of Lecture Notes in Computer Science, pages 85–100. Springer, 2015.

[25] D. R. dos Santos, S. Ranise, L. Compagna, and S. E. Ponta. Automatically finding execution scenarios to deploy
security-sensitive workflows. Journal of Computer Security, 25(3):255–282, 2017.

[26] R. G. Downey and M. R. Fellows. Foundations of Parameterized Complexity. Springer, 2013.
[27] I. Dukanovic and F. Rendl. A semidefinite programming-based heuristic for graph coloring. Discrete Applied Mathe-

matics, 156(2):180 – 189, 2008. Computational Methods for Graph Coloring and it’s Generalizations.
[28] R. D. Dutton and R. C. Brigham. A new graph colouring algorithm. Comput. J., 24(1):85–86, 1981.
[29] M. R. Fellows, T. Friedrich, D. Hermelin, N. Narodytska, and F. A. Rosamond. Constraint satisfaction problems:

Convexity makes all different constraints tractable. In Proceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI11), pages 522–527, 2011.

[30] I. P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of search. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference,
AAAI 96, Portland, Oregon, USA, August 4-8, 1996, Volume 1., pages 246–252, 1996.

[31] G. Gutin, S. Kratsch, and M. Wahlstrom. Polynomial kernels and user reductions for the workflow satisfiability
problem. Algorithmica, 2015. doi: 10.1007/s00453-015-9986-9.

[32] G. Gutin and M. Wahlström. Tight lower bounds for the workflow satisfiability problem based on the strong exponential
time hypothesis. Inf. Process. Lett., 116(3):223–226, 2016.

[33] A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297 – 308, 1985. Third Conference on
Foundations of Software Technology and Theoretical Computer Science.

[34] B. A. Huberman and T. Hogg. Phase transitions in artificial intelligence systems. Artif. Intell., 33(2):155–171, 1987.
[35] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367–375, 2001.

27

[36] D. Karapetyan. Source codes of the Pattern Backtracking algorithm, the instance
generator and the converter of instances into PBPB and UDPB formulations, 2015.
http://csee.essex.ac.uk/staff/dkarap/?page=publications&key=WSP-AI retrieved 25 June 2018.

[37] D. Karapetyan, A. Gagarin, and G. Gutin. Pattern backtracking algorithm for the workflow satisfiability problem. In
Frontiers in Algorithmics 2015, volume 9130 of Lect. Notes Comput. Sci., pages 138–149. Springer, 2015.

[38] P. Kilby, J. Slaney, S. Thiébaux, and T. Walsh. Backbones and backdoors in satisfiability. In Proceedings of the 20th
National Conference on Artificial Intelligence - Volume 3, AAAI’05, pages 1368–1373. AAAI Press, 2005.

[39] M. Kronegger, A. Pfandler, and R. Pichler. Parameterized complexity of optimal planning: A detailed map. In
Proceedings of IJCAI, IJCAI-2013, 2013.

[40] D. Le Berre and A. Parrain. The SAT4J library, release 2.2. J. Satisf. Bool. Model. Comput., 7:59–64, 2010.
[41] L. Lovasz. On the Shannon capacity of a graph. IEEE Trans. Inf. Theor., 25(1):1–7, Sept. 2006.
[42] M. Mézard, T. Mora, and R. Zecchina. Clustering of solutions in the random satisfiability problem. Physical Review

Letters, 94(19):197205, 2005.
[43] D. G. Mitchell, B. Selman, and H. J. Levesque. Hard and easy distributions for SAT problems. In P. Rosenbloom and

P. Szolovits, editors, Proceedings of the Tenth National Conference on Artificial Intelligence, pages 459–465, Menlo
Park, California, 1992. AAAI Press.

[44] S. Ordyniak and S. Szeider. Parameterized complexity results for exact bayesian network structure learning. J. Artif.
Int. Res., 46:263–302, 2013.

[45] A. J. Parkes. Clustering at the phase transition. Proceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI-97), pages 340–346, 1997.

[46] A. A. Razborov. Proof complexity of pigeonhole principles. In W. Kuich, G. Rozenberg, and A. Salomaa, editors,
Developments in Language Theory, pages 100–116, Berlin, Heidelberg, 2002. (LNCS, volume 2295) Springer.

[47] A. Roy, S. Sural, A. K. Majumdar, J. Vaidya, and V. Atluri. Minimizing organizational user requirement while meeting
security constraints. ACM Trans. Manage. Inf. Syst., 6(3):12:1–12:25, Sept. 2015.

[48] B. Selman and S. Kirkpatrick. Critical behavior in the computation cost of satisfiability testing. Artif. Intell.,
81:273–295, 1996.

[49] P. J. Stuckey. MiniZinc Challenge 2018. https://www.minizinc.org/challenge2018/challenge_results2018.pdf.
[50] Q. Wang and N. Li. Satisfiability and resiliency in workflow authorization systems. ACM Trans. Inf. Syst. Secur.,

13(4):40, 2010.
[51] D. B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, 2001.

28

https://www.minizinc.org/challenge2018/challenge_results2018.pdf

Appendix A. Encoding Constraints

As noted in Section 5.2, any UI constraint can be formulated in terms of M variables only. However,
the straightforward approach adopting a list of all obeying or disobeying patterns may result into encod-
ing of exponential size in the size of the constraint scope. Here we show some more compact encodings
of several standard UI constraints. Let c be the constraint to be encoded and Tc = {s1, s2, . . . , sq}.

Appendix A.1. Easy Cases

For completeness, below we give a list of constraints that are easy to compactly encode with the M
variables.

• Not-equals, also called separation of duty: Ms1,s2 = 0.

• Equals, also called binding of duty: Ms1,s2 = 1.

• All-different, or at-least-q-out-of-q: Msi,sj = 0 for every 1 ≤ i < j ≤ q.

• Not-all-different, or at-most-(q − 1)-out-of-q:
∑q−1
i=1

∑q
j=i+1Msi,sj ≥ 1.

Appendix A.2. At-least and At-most Constraints with Scope Size up to Five

Let G = (Tc, E) be a graph with vertex set Tc and edges E = {(si, sj) : Msi,sj = 1}. Observe that
G uniquely represents a pattern on step set Tc as defined by appropriate variables M ’s; it consists of
cliques only, with each clique corresponding to a block of the pattern. Recall that at-least and at-most
constraints are restricting the number of distinct users to be assigned to the scope; thus they are step-
symmetric, i.e. satisfiability of a single at-least/at-most constraint does not depend on the permutation
of steps in its scope. In particular, the number of users assigned to the scope Tc is exactly the number
of cliques in G, and this number of cliques can often be determined by simple counting of edges in G.
Figure A.14 shows all patterns (subject to step permutations) on scope of size 5 and gives the possible
number of edges.

u1

u1

u1

u1

u1

(a) One user: 10 edges

u2

u1

u1

u1

u1

u2

u1

u1

u1

u2

(b) Two distinct users: 4 or 6 edges

u3

u1

u1

u1

u2

u3

u1

u1

u2

u2

(c) Three distinct users: 2 or 3 edges

u4

u1

u1

u2

u3

(d) Four distinct users:
1 edge

u4

u5

u1

u2

u3

(e) Five distinct users:
0 edges

Figure A.14: Graphs G illustrating of the user assignments within a scope of five steps. There are B5 = 52 patterns with
scope of size 5, however those differing only by a permutation of the steps are not given as they do not change the number
of edges.

Table A.1 gives the possible number of edges in G for various scope sizes q and numbers of distinct
assigned users. One can see that for any q ≤ 5 the ranges do not overlap, indicating that it is possible to
determine the number of distinct users assigned to Tc by counting edges in G. However, at q = 6, some
of the ranges overlap, and then not every at-least and at-most constraint with q ≥ 6 can be encoded in
this way.

29

distinct users

|Tc| = q 1 2 3 4 5 6

2 1 0 – – – –
3 3 1 0 – – –
4 6 2–3 1 0 – –
5 10 4–6 2–3 1 0 –
6 15 6–10 3–6 2–3 1 0

Table A.1: This table gives the bounds σq,r ≤ |E| ≤ σq,r for the number |E| of edges in a graph G for each scope size q and

number of distinct users. One can observe that counting the number of edges is sufficient to define at-least and at-most
constraints with scope size up to 5.

For q ≤ 5 and 1 ≤ r ≤ q, let σq,r and σq,r be the lower and upper bounds, respectively, on the number
of edges in G with q nodes and exactly r cliques. Then we can formulate an at-most-r constraint as

q−1∑
i=1

q∑
j=i+1

Msi,sj ≥ σq,r, (A.1)

and an at-least-r constraint as
|T |−1∑
i=1

|T |∑
j=i+1

Msi,sj ≤ σq,r. (A.2)

Encoding of at-least and at-most constraints with scope sizes above five is considered in the next
section.

Appendix A.3. Other Constraints

Here we give some other encodings that, among others, allow us to formulate at-least and at-most
constraints with scope size above 5 and some other standard UI constraints.

Observe that existence of at least t cliques in G (see Appendix A.2) means that there is at least one
independent set T ′ ⊂ Tc of size t. Thus, to encode an at-most-r constraint, we can request that there is
no independent set of size r + 1:∑

s′<s′′∈T ′

Ms′,s′′ ≥ 1 for every T ′ ⊂ Tc, |T ′| = r + 1. (A.3)

This encoding requires
(
q
r+1

)
constraints and no new variables.

Now consider a permutation σ of Tc, and let σ(q + 1) = σ(1). Observe that

| {i : i ∈ {1, 2, . . . , q} and (σ(i), σ(i+ 1)) /∈ E} | ≥ t,

where t is the number of cliques in G. Hence, the following encodes an at-least-r constraint:

q∑
i=1

(1−Msπ(i),sπ(i+1)
) ≥ r for every permutation π of Tc. (A.4)

Some of the constraints will be identical due to the step symmetry; as a result, we will need (q − 1)!/2
constraints, and no new variables.

We also propose more compact encodings that involve creation of new variables. Let Gi be a subgraph
of G induced by a node set {s1, s2, . . . , si}; observe that Gi also consists of cliques only. Let ti be the
difference in the number of cliques between Gi and Gi−1 for i = 2, 3, . . . , q, and t1 = 1. Then the number
of cliques in G = Gq can be computed as

∑q
i=1 ti.

Using variables t, we can encode an at-least-r constraint with an arbitrary scope as follows:

t1 = 1, (A.5)

ti ≤ 1−Msj ,si ∀j < i, i = 2, 3, . . . , q and (A.6)

30

q∑
i=1

ti ≥ r. (A.7)

This encoding takes O(q2) constraints and O(q) new variables.
Similarly we can encode an at-most-r constraint with an arbitrary scope:

t1 = 1, (A.8)

ti ≥
i−1∑
j=1

(1−Msj ,si)− (i− 2), i = 2, 3, . . . , q and (A.9)

q∑
i=1

ti ≤ r. (A.10)

This encoding takes O(q) constraints and O(q) new variables.

Another standard UI constraint is the generalised threshold constraint (tl, tr, Tc) which restricts the
number of steps assigned to a user involved in execution of steps Tc [16]. More formally, each user
assigned to at least one step s ∈ Tc is required to execute between tl and tr steps in Tc. Observe that
this constraint can be enforced by restricting the size of cliques in G between tl and tr:

tl ≤
q∑
j=1

Msi,sj ≤ tr for si ∈ Tc . (A.11)

Appendix B. Estimation of the Critical Point

Here we give an (approximate) computation in the style of an ‘annealed estimate’ of the average
number of solutions given k, n, γ and e; with the intent to use it to obtain indications of the location
of the PT points. Since many of the probabilities depend on the number b of blocks in the solution, we
first compute the estimate for a given b and then aggregate the results.

The Stirling number c(k, b) of the second kind is the number of ways to partition a set of k labelled
objects into b nonempty unlabelled subsets. Equivalently, c(k, b) is the number of different equivalence
relations with precisely b equivalence classes that can be defined on a k-element set.

The number of patterns with b blocks is exactly the Stirling number c(k, b) of the second kind, and
there are exactly P (n, b) = n!

(n−b)! plans implementing a pattern with b blocks. Consider a scope T of

size |T | = q. Let p(q, r) be the probability of that T intersect with exactly r distinct pattern blocks.
There are bq ways to assign blocks within T , and c(q, r) ·P (b, r) ways to assign exactly r distinct blocks.

Hence, p(q, r) = c(q,r)·P (b,r)
bq . Then the probability that a random pattern (or plan, which is the same in

this context) satisfies an at-most-r constraint is
∑r
r′=1 p(q, r

′). The probability that a random pattern

satisfies an at-least-r constraint is 1−
∑r−1
r′=1 p(q, r

′). Not-equals is a special case of at-least-r with q = 2
and r = 2; hence, the probability that a not-equals hits a random pattern is 1 − p(2, 1) = 1 − 1

b as one

could predict. We conclude that the number N elig
pat (b) of eligible patterns with b blocks is on average

N elig
pat (b) = c(k, b) · 1

be
·

((
r∑

r′=1

p(q, r′)

)
·

(
1−

r−1∑
r′=1

p(q, r′)

))γ
. (B.1)

N elig
pat =

∑
b

N elig
pat (b) (B.2)

When B.2 gives N elig
pat < 0.5 then at least half the instances have no eligible pattern and so must be

unsatisfiable, and so this gives an upper bound on the location of the PT. However, it is relatively weak,
and so we also need, unsurprisingly, to also take account of the authorisations.

The probability of a random plan being authorised is pauth(b) = (1/4)k as the probability of a single
step being authorised is 1/4. Then the number of valid plans, on average, is

Nvalid
plans =

k∑
b=3

N elig
pat (b) · P (n, b) · pauth(b) . (B.3)

31

(Note that there are no eligible patterns with b < 3 due to at-least-3 constraints.) We report the number

N elig
pat (b) of eligible patterns, number P (n, b) · pauth(b) of authorised plans per pattern and the average

number Nvalid
plans of valid plans in Table B.2. Observe that Nvalid

plans is often well above 1, especially for
large b, but this is mainly because of the huge number of authorised plans per pattern; the expected
number of eligible patterns for large b is negligible. This suggests that the distribution of Nvalid

plans is
highly multimodal; averaged over the instances of the given parameters, the number of valid plans will
be large but the majority of instances will have no valid plans at all. Nonetheless, B.3 can be used to
give an upper bound on the location of the PT because when the average number drops to 0.5, then,
independently of the distribution, at least one-half of the instances must be unsatisfiable.

Thus, the average number of valid plans might not be a practical indicator of the probability of
instance satisfiability; to establish the PT parameters, we suggest a different technique. In particular,
we exploit the two-layer nature of the problem. We estimate the probability pauth

pat (b) that a pattern with
b blocks is authorised, i.e. there exists at least one plan realising it, and then use it to compute the
probability psat(b) that there exists at least one valid plan.

To obtain a rough estimate of pauth
pat (b) (which is then not an upper bound), we assume that all the

blocks in the pattern are of the same size k/b. This might be justified as reasonable because

1. There are more patterns with roughly equal size blocks – by standard counting;

2. Authorisations are harder to satisfy for larger blocks and the increase is likely be super-linear in
the block size – and this will tend to promote solutions that have a fair distribution of block sizes.

The probability of a single block being authorised by a random user is (1/4)k/b, and the probability

that there is at least one user authorised to a given block is 1−
(

1−
(

1
4

)k/b)n
. To simplify calculations,

we also relax the requirement that distinct blocks need to be assigned to distinct users, and conclude
that

pauth
pat (b) =

(
1−

[
1−

(
1

4

)k/b]n)b
. (B.4)

Using (B.4) we compute psat(b) as follows:

psat(b) =

{
N elig

pat (b) · pauth(b) if N elig
pat (b) < 1,

1−
(
1− pauth(b)

)Nelig
pat (b)

if N elig
pat (b) ≥ 1.

(B.5)

Then the probability psat of existence of at least one valid pattern is 1 −
∏k
b=3 1 − psat(b), and the PT

region can be established by finding parameters, using B.5, leading to psat = 0.5.
Observe that psat(b) is very low at high b (see Table B.2) reflecting the fact that there is a very low

probability of existence of a valid plan with many blocks. In fact, Table B.2 shows that the number of
blocks in a valid pattern is tightly bounded – hence we expect the number of users in a valid plan being
usually forced by the instance.

Moreover, we can see that the total number of eligible patterns is relatively low at PT and, hence, the
complexity of the problem is driven by constraints and not authorisations. This is reflected in our overall
strategy focusing on constraints (by means of patterns) and considering authorisations as a secondary
component.

Another interesting observation is that the at-least-3 constraints are relatively weak while at-most-3
constraints significantly affect the probability of a pattern being eligible. This fact is exploited by our
branching heuristic, see Section 4.4.

Our experiments show that the estimate of psat(b) is relatively accurate; for example, for k = 30
it predicts PT at β = 1.17 (for the definition of β see Section 8.2), and for k = 50 at β = 1.02, see
Figure B.15. Hence, our formulas can be used to quickly predict if certain parameters are likely to result
in sat or in unsat instances.

Appendix C. Emergence of Forced Variables

A particularly interesting aspect of PTs is the emergence of forced variables in the critical region.
That is, variables that must have some particular value in all solutions – and so are entailed by the system.
This has been extensively studied in the context of Random 3SAT and Graph Colouring Problem (e.g.

32

Prob. per constraint Number of Probability of

6= ≤ ≥ eligible
patterns

auth. plans
per pattern

valid
plans

pattern is
auth.

valid pat.
exists

b Nelig
pat (b) P (b, r) Nvalid

plans pauthpat (b) psat(b)

3 6.7 · 10−1 1.0 · 100 6.2 · 10−1 2.8 · 10−2 2.3 · 10−11 6.5 · 10−13 2.3 · 10−11 6.5 · 10−13

4 7.5 · 10−1 7.7 · 10−1 8.2 · 10−1 2.4 · 104 6.9 · 10−9 1.6 · 10−4 6.9 · 10−9 1.6 · 10−4

5 8.0 · 10−1 5.8 · 10−1 9.0 · 10−1 3.6 · 105 2.0 · 10−6 7.3 · 10−1 1.8 · 10−6 4.7 · 10−1

6 8.3 · 10−1 4.4 · 10−1 9.4 · 10−1 1.5 · 105 6.0 · 10−4 8.8 · 101 2.7 · 10−4 1.0 · 100

7 8.6 · 10−1 3.5 · 10−1 9.6 · 10−1 1.3 · 104 1.8 · 10−1 2.2 · 103 1.4 · 10−2 1.0 · 100

8 8.8 · 10−1 2.8 · 10−1 9.7 · 10−1 5.0 · 102 5.2 · 101 2.6 · 104 1.9 · 10−1 1.0 · 100

9 8.9 · 10−1 2.3 · 10−1 9.8 · 10−1 1.3 · 101 1.5 · 104 1.9 · 105 6.2 · 10−1 1.0 · 100

10 9.0 · 10−1 1.9 · 10−1 9.9 · 10−1 2.4 · 10−1 4.4 · 106 1.1 · 106 9.1 · 10−1 2.2 · 10−1

11 9.1 · 10−1 1.6 · 10−1 9.9 · 10−1 3.7 · 10−3 1.3 · 109 4.8 · 106 9.9 · 10−1 3.7 · 10−3

12 9.2 · 10−1 1.4 · 10−1 9.9 · 10−1 5.0 · 10−5 3.7 · 1011 1.8 · 107 1.0 · 100 5.0 · 10−5

· · ·
30 9.7 · 10−1 2.6 · 10−2 1.0 · 100 3.2 · 10−49 4.0 · 1055 1.3 · 107 1.0 · 100 3.2 · 10−49

Table B.2: Computational analysis of random WSP instances; k = 30, γ = k, e = ePT = 50, n = 10k. b is the number
of blocks in the solution. Columns 2 to 4 show probabilities of a random plan with the given number of blocks satisfying
corresponding constraint. Using the estimates of the number of eligible patterns and authorised plans per pattern, we
compute the average number of valid plans. We also estimate the probability of existence of at least one valid pattern.

20 30 40 50
0

0.5

1

k

β

Figure B.15: Predicted values of β by our improved annealed estimate method. Recall that, by definition, the correct value
of β is 1 for any k.

[20, 38, 45, 42]). In the context of standard graph colouring, the permutation symmetry means no
vertex can be forced to have a particular colour. Hence, the forcing is instead considered in terms of
whether different vertices are forced to have the same colour, or else forced to have different colours. In
other words, an instance might imply separation-of-duty and/or binding-of-duty constraints that are not
explicitly listed in its description. This directly corresponds to whether M variables become forced.

We have performed experiments to determine this empirically in the WSP instances in the region
of the PT. Determining whether a particular value of M is forced can be done directly by adding the
negation to the instance and then testing for unsatisfiability.

The results for the WSP are summarised in Table C.3. Note that there is a difference between a forced
binding-of-duty (equals) constraint, denoted ‘=’, and a forced separation-of-duty (not-equals) constraint,
denoted ‘ 6=’. Although a forced not-equals is more likely as there are usually more zeros than ones in the
M matrix, and as Ms1,s2 = 0 is a weaker decision than Ms1,s2 = 1, we still observe quite a lot of forced
equals constraints. We also see that as we move through the PT region from slightly under-constrained
to slightly over-constrained, the number of forced M variables increases rapidly. Similar behaviour has
been empirically seen in Random 3SAT (see e.g. [45]). This is important in that it again gives evidence
that the WSP instances are behaving like a PT would be expected to behave, and so can be expected to
be a good and effective test of algorithms for the WSP.

Note that we have only studied the freezing of the M variables, but due to the user authorisations (or
list-colouring) it is quite possible that other notions of freezing also emerge. We also believe it further
supports that the PT is worthy of study in its own right.

Another observation is that the information on forced variables (or constraints) could actually be
useful to the users of the WSP decision support system. Indeed, knowing which of the constraints are
forced might help the user to understand the instance and change it when necessary. A fast effective

33

β Avg. = Avg. 6= = 6=

0.8 0 12

0 20 40
0

0.1

0.2

0 50 100 150
0

0.1

0.2

1.0 16 91

0 20 40
0

0.1

0.2

0 50 100 150
0

0.1

0.2

1.2 31 112

0 20 40
0

0.1

0.2

0 50 100 150
0

0.1

0.2

Table C.3: Forced constraints. In this experiment, k = 20 and the total number of M -variables is 190 (recall that
Mij = Mji; we count such a pair as one variable). Constraints explicitly defined by the instance are not counted as forced.

solver such as PBT can be used to produce such information, as well as specific solutions.

Appendix D. A supplementary “vary-k” slice

Figure D.16 shows how the solvers perform on the n = 100k slice (for the n = 10k slice, see Figure 8).

20 25 30 35 40 45 50 55

10−3

10−2

10−1

100

101

102

103

104

Number of steps k

R
u

n
n

in
g

ti
m

e,
se

c

PBT
PUI

PBPB (Res)

PBPB (CutP)

CSP (CP-SAT)
PBT n=5k
CSP k=5n

Figure D.16: Performance of the solvers on the n = 100k slice. [[AJP: Adding CSP for the n=5k slice, just for comparison.
]]

The poor performance of UDPB (Res) made it impractical to include it in this experiment; this is
due to the non-FPT scaling of UDPB. The performance of most of the solvers in the n = 100k slice
closely matches that in the n = 10k slice. On changing from n = 10k to n = 100k, the performance
of PBT barely changes, which is consistent with its low dependence on n in the fixed-k slice. The two
PBPB solvers became a little faster, and the CSP became a bit slower. 34PUI is slower by a constant
factor of about 10 on the unsat instances, which is the expected result as it iterates over all the users.

34

	Introduction
	Structure of the paper

	Background
	Parameterized Algorithms and Complexity
	The WSP
	Connection with Graph Colouring and Constraint Satisfaction

	Patterns
	Equivalence Classes and Patterns
	Finding an authorised plan within an equivalence class

	The New PBT Algorithm
	Pattern-Backtracking Algorithm (PBT)
	Authorisation-Based Pruning
	Eligibility-Based Pruning
	Branching Heuristic
	Worst-Case Analysis of PBT

	Pseudo-Boolean and Constraint Satisfaction Formulations
	Old Pseudo-Boolean Formulation (UDPB)
	New Pseudo-Boolean Formulation (PBPB)
	CSP Formulation

	Analysis of WSP Solution Approaches
	Branching Strategies
	Properties of the New Pseudo-Boolean Formulation PBPB

	Instance Generator and Phase Transitions
	The Instance Generator
	Thresholds from the Instance Generator

	Computational Experiments
	Slices in Studying Algorithm Scaling
	Performance Comparison: Slice ``vary-k''
	Performance Comparison: Slice ``fixed-k"

	Conclusion
	Future Directions

	Encoding Constraints
	Easy Cases
	At-least and At-most Constraints with Scope Size up to Five
	Other Constraints

	Estimation of the Critical Point
	Emergence of Forced Variables
	A supplementary ``vary-k'' slice

