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Abstract
This paper studies a simple process of demand adjustment in cooperative games. In the pro-
cess, a randomly chosen player makes the highest possible demand subject to the demands of
other coalition members being satisfied. This process converges to the aspiration set; in con-
vex games, this implies convergence to the core. We further introduce perturbations into the
process, where players sometimes make a higher demand than feasible. These perturbations
make the set of separating aspirations, i.e., demand vectors in which no player is indispens-
able in order for other players to achieve their demands, the one most resistant to mutations.
We fully analyze this process for 3-player games.We further look at weightedmajority games
with two types of players. In these games, if the coalition of all small players is winning, the
process converges to the unique separating aspiration; otherwise, there are many separating
aspirations and the process reaches a neighbourhood of a separating aspiration.

Keywords Demand adjustment · Aspirations · Core · Stochastic stability

1 Introduction

In transferable utility cooperative games, we consider the following process. Suppose players
currently have some demands. These demands can be interpreted as what they expect from
the game. A player is randomly selected. This player is in a position to propose a coalition;
but the coalition partners agree to form it only if their demands are satisfied. The player
looks for a coalition that, after the demands of the coalition partners are subtracted from the
coalition’s worth, leaves the most to the player. The player then makes the demand equal to
the residual.

The payoff vectors that allow each player to achieve such “maximal” demands in at least
one coalition are called aspirations in Bennett (1983). (They are also called semi-stable
demand vectors in Albers, 1979; Selten, 1981). Bennett et al. (1997) show that the process
described in the previous paragraph converges to the set of aspiration payoff vectors.
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We analyze the implications of the process further. First, we show that in convex games
the Bennett et al. (1997) result implies that the demand adjustment process converges to the
core of the game.1

The set of aspirations is in general quite large, and there can be aspirations where some
players demand very little. Cross (1967) argues that “scarce” players (players that are under-
demanding and hence sought after as coalition partners) should be able to increase their
demands.We formalize this argument by adding to the process the possibility of “mutations”.
With a small probability a player makes a demand different from the maximal feasible one;
instead, the player (most likely) makes a higher demand. Since in the basic process play-
ers make the maximum feasible demands and the most likely mutations are to even higher
demands, the process overall can be seen as “greedy”. We show that separating aspirations (a
subset of partnered aspirations, defined in Albers, 1979; Bennett, 1983), i.e., demand vectors
in which no player is indispensable in order for other players to achieve their demands, are
the ones most resistant to such upward mutations.

We fully analyze the process with mutations in 3-player superadditive games. In these
games, if the core is non-empty, demand vectors that are in the core are stochastically stable
(meaning that, as the mutation probability goes to zero, the process spends almost all of
the time in the core). If the core is empty, the unique separating aspiration is stochastically
stable. We then turn to weighted majority games.2 In Montero and Possajennikov (2022), we
showed that separating aspirations are stochastically stable in symmetric weighted majority
games and in apex games. In this paper, we analyze weighted majority games with two types
of players further.3 In these games, if there are enough small players (i.e., if the coalition of
all small players is winning), the process converges to the unique separating aspiration. On
the other hand, if the coalition of all small players is losing, then there are many separating
aspirations and the process reaches a neighborhood of a separating aspiration.

The paper contributes to the literature, reviewed in Newton (2018, Sect. 6), that applies
evolutionary approaches to predicting outcomes in cooperative games. Agastya (1997) has a
demand adjustment process in which players simultaneously make demands, and a coalition
compatible with demands forms (with some probability, if several coalition structures are
compatible). Using a myopic best response to incomplete memory samples, Agastya shows
that in convex games the process converges to the core. Rozen (2013) allows the players,
in addition to demands, to also name a list of potential coalition partners, obtaining the
same result. With our process (without mutations), convergence to the core in convex games
follows from the observation that in convex games the set of aspirations coincides with the
core (Moldovanu & Winter, 1994).

As in Agastya (1997) and Rozen (2013), in our process the players need to know the
(previous) demands of other players (and the characteristic function of the game) in order to
find the best demand to make. In the demand adjustment process in Nax (2010, chapter 4),
a player can increase or decrease the demand (although only by a small amount), depending
on whether the player is in a coalition that satisfies the demand but without knowing the
demands of others. The process predicts outcomes close to the core (but not exactly in the
core, since players can temporarily increase demands with a non-zero probability) if the core

1 Agastya (1997) andRozen (2013) have this result for similar adjustment processes.Wediscuss the differences
between their and our models in the discussion of related literature later in the introduction.
2 (Weighted) majority games are a class of games in which some coalitions can “win” (have a positive worth)
while others “lose” (have zero worth). Such games are often studied in political science and economics in the
context of voting (for example, Felsenthal and Machover (1998), and, more recently, Kurz et al. (2023)).
3 These games are often found in practice. For example, the distribution of party seats in the current German
parliament (Bundestag) gives rise to such a game (see Example 2 in Sect. 5.2).
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is non-empty. Using a variant of Nax’s process, Issleib (2015) shows that in 3-player games
an equitable allocation in the core is selected; this is related to the assumption in Nax (2010)
that unsatisfied demands are more likely to be reduced the larger they are. Our process does
not select within the core, but we are able to make predictions also when the core is empty,
because demand configurations that are aspirations are stable in our process.

Other works that consider adaptive processes of demand (and coalition) adjustment also
focus on games with a non-empty core. Arnold and Schwalbe (2002) obtain convergence
to the core by allowing mutations only outside the core. Newton (2010, chapter 3; 2012)
shows convergence to the core without the need for convexity by allowing for the possibility
of jointly determined strategies. A joint adjustment of demands also allows convergence
to the core in Nax (2019). Various models of mutations lead to selection (in the sense of
stochastic stability) of some outcomes in the core in Agastya (1999), Newton (2012), and
Sawa (2019). For matching problems and assignment games, convergence to the core (and
possible selection within it) is obtained in Klaus et al. (2010), Nax and Pradelski (2015),
Newton and Sawa (2015), and Klaus and Newton (2016). The one result for games with an
empty core is in Nax (2019), where no demand configuration is stable in such games. In
contrast, with our model of mutations we are able to obtain predictions also for some games
with an empty core.

Our basic adjustment process contains an element of optimism. Because the player who
is selected to adjust can also propose a coalition, this player only reduces the demand if no
coalition can satisfy it. There is no consideration of the probability of a coalition satisfying
it in the future. This feature allows us to maintain stability in games with an empty core.
Similarly, there is a degree of optimism in our perturbed process, since mutations to a higher
demand are more likely than mutations to a lower demand.

We see the processwe discuss in the paper as one of the simplest andmost natural processes
of demand adjustment. While we think that the process has some behavioral plausibility, we
do not claim that it describes human behavior literally. Rather, our process provides dynamic
foundations for the cooperative solution concept of separating aspirations. The process allows
us tomake predictions for some classes of games, including for gameswith an empty core, for
which the literature on dynamic processes in cooperative settings did not previously provide
predictions.

2 Basic demand adjustment process

2.1 Demand adjustment in TU games

A transferable utility (TU) cooperative game in characteristic function form is given by
(N , v), where N = {1, 2, . . . , n} is the set of players and v : 2N → R with v(∅) = 0 is the
characteristic function. We assume that the game is zero-normalized, v({i}) = 0 for all i . A
coalition S ∈ 2N is any subset of players. A demand vector x ∈ R

n is x = (x1, . . . , xn),
with xi being the demand of player i . Let the sum of demands of members of coalition S be
x(S) = ∑

i∈S xi .
Suppose that time is measured in discrete intervals t = 0, 1, . . .. Suppose that at the

beginning of time period t , a vector of demands is xt−1 = (xt−1
1 , . . . , xt−1

n ) (we will also
use x without the superscript if no confusion arises; at t = 0, x0 is exogenously given). One
player is randomly chosen; the only assumption on the probability of being chosen is that
it is bounded away from 0 for each player. Let i be the chosen player. Player i knows the

123



Annals of Operations Research

vector of demands xt−1, and looks for a coalition that allows i to get the most, provided that
the demands of the other coalition members are satisfied. This means that the player solves
the problem

max
S:S�i{v(S) − xt−1(S\{i})}. (1)

Suppose that a certain coalition Q � i solves the problem and yi is the maximum value of
the problem (that is, yi = v(Q)−x(Q\{i})). The player then sets the demand at yi . Coalition
Q forms (for period t) and all players in Q satisfy their demands.4 The new demand vector
at the end of period t is xt = (xt1, . . . , x

t
n), with xti = yi and xtj = xt−1

j for j �= i . This new
demand vector is then used in the next period. Coalition Q does not play a role in the next
period; it is dissolved at the end of period t .

We introduced the above process in Montero and Possajennikov (2022), in which we
analyzed it in specific classes of weighted majority games. The process is “greedy” in the
sense that the player who is chosen in a given period sets the demand to the maximum payoff
that this player can get, constrained only by the demands of other players. The player’s
decision rule is myopic, taking into account only the possibility to get the demand in the
current period, but this is justified since only this player is able to change the demand in this
period: no other player can.

2.2 Absorbing sets and aspirations

A state of the process defined above is a demand vector x = (xi )i∈N . The state can change
from one period to the next as described above; we denote the set of all possible states as S.
Let �(x) denote the set of states that the process can move to (depending on which player
is chosen) from a given state x in one step. For an arbitrary subset of states A ⊂ S, let
�(A) = ∪x∈A�(x).

An absorbing set of statesA is such set of states that the process cannot leave:�(A) ⊂ A.
The minimal absorbing set is an absorbing set that does not contain a strict subset which is
absorbing. The union of all minimal absorbing sets is a absorbing set solution. The absorbing
set solution is the set of states to which the process converges with probability 1; it contains
all the states that the process will be in, or visit, in the long run.

A demand vector x ismaximal if x(S) ≥ v(S) for all coalitions S, i.e., there is no coalition
in which players can increase their demands while still satisfying the demands of the other
members. Demand vector x is feasible if for each i , there exists S � i such that x(S) ≤ v(S),
i.e., every player can find a coalition that satisfies the demand of this player. Bennett (1983)
defines

Definition 1 A demand vector x is an aspiration if x is maximal and feasible.

Such demand vectors are also called semi-stable (Albers, 1979; Selten, 1981). Given an
aspiration x , the set of coalitions GC(x) = {S : x(S) = v(S)} that can satisfy the demands
of their members is called the generating collection of aspiration x .

Based on the more general adjustment process in Bennett et al. (1997), we show the
following result in Montero and Possajennikov (2022):

Proposition 1 The absorbing set solution for the basic process is the set of aspirations.

4 If there are several coalitions that solve (1), then any of them can be formed. Note that Q can be a singleton
coalition {i} if {i} solves (1).
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The intuition for the proof runs as follows. If a state (current demand vector) is an aspiration,
then every player already makes the maximal demand possible: by maximality, there is no
coalition in which a player can get a higher demand; by feasibility, each player has a coalition
which is able to satisfy this player’s demand, so the player does not need to lower the demand.
Thus every aspiration is a minimal absorbing state. If the current state is not an aspiration,
there are players that either can increase their demands, or have to lower them to find a feasible
coalition. There is always a sequence of players, some lowering, some increasing demands
such that the new demand vector is an aspiration. Since the probability of this sequence is
non-zero, the process eventually gets to an aspiration, thus there are no other absorbing sets
outside of the aspiration set.

2.3 Core convergence in convex games

For a cooperative TU game (N , v), the core C(v) is the set of (demand) vectors that are
maximal and feasible for the coalition S = N of all players: C(v) = {x : x(S) ≥
v(S) for all S and x(N ) = v(N )}. The core is one of the main solution concepts for coop-
erative games; however, it can be empty for some games. Obviously, demand vectors that
are in the core are maximal; they are also feasible for all players since they are feasible for
coalition N . Therefore, core allocations are also aspirations. The converse statement is not
true, that is, there can be aspirations outside the core even if the core is nonempty, as the
following ”glove game” illustrates.

Example 1 (see Bennett, 1983) N = {1, 2, 3, 4, 5}, R = {1, 2}, L = {3, 4, 5}, v(S) =
min(|S ∩ R|, |S ∩ L|). In particular, v({1, j}) = 1 for j = 3, 4, 5 , v({2, j}) = 1 for
j = 3, 4, 5 and v(N ) = 2. The only point in the core is (1, 1, 0, 0, 0), but any vector of the
form (a, a, 1 − a, 1 − a, 1 − a) with 0 ≤ a ≤ 1 is an aspiration demand vector.

A convex game (Shapley, 1971) is a game in which the marginal contribution of each
player is larger to a larger (in terms of set inclusion) coalition: for all i and all T , S such that
T ⊂ S ⊂ N\{i}, v(S ∪ {i}) − v(S) ≥ v(T ∪ {i}) − v(T ). The core of a convex game is
non-empty; indeed, it contains many outcomes. In particular, Shapley (1971) shows that the
marginal contribution vectors are the vertices of the core, hence for each player i there are
core outcomes that give this player his or her stand-alone value v({i}).

Moldovanu and Winter (1994, Lemma 3.5) show that the set of semi-stable vectors (i.e.
aspirations) coincides with the core in convex games. In particular, they show that in convex
games an aspiration (that is, a demand vector that is maximal and feasible) has to be feasible
for coalition N (intuitively, in convex games demands that are feasible for smaller coalitions
are also feasible for larger coalitions). But then such an aspiration is in the core. Since, from
the first paragraph of this subsection, demand vectors that are in the core are aspirations, it
follows that the core and the set of aspirations coincide in convex games.

An immediate consequence of Proposition 1 for convex games (nevertheless, stated as a
proposition rather than a corollary, to emphasize its importance) is that the “greedy” process
converges to the core in these games.

Proposition 2 In convex games, the basic process converges to the core with probability 1.

This result relates to the results in Agastya (1997) and Rozen (2013), who show conver-
gence to the core in convex games for similar processes. Intuitively, so long as coalitions
that make demands of one player “maximal” while satisfying the demands of other players
can form with a positive probability, processes similar to ours eventually hit the core and
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stay there. In our process, such “maximal” demand coalitions form with probability 1; in
Agastya’s paper, such “maximal” demand adjustments by only one player can happen with
a positive probability because of incomplete sampling of past observations.5

In games that are not convex there can be aspirations that are not in the core (Example 1).
In the next section we introduce certain perturbations in the process that can help to select
among various aspirations.

3 Perturbed demand adjustment process

3.1 Introducing“greedy” perturbations

Wenow introduce certain perturbations of the process. To have a finite state space, we assume
that the set of possible demands that players can make is a finite grid. To have the grid cover
relevant allocations, we assume that all v(S) are rational numbers. Taking m as the common
denominator of these numbers, let δ = 1

lm , where l > 0 is a natural number. Let the grid

be �δ = {kδ : k ∈ {0, 1, . . . , K }}, where K = maxS v(S)
δ

. If l ≥ n, then for any choices
x j ∈ �δ of players in S\{i} with ∑

j∈S\{i} x j < v(S), player i can choose demand xi ∈ �δ

so that x(S) = v(S). Therefore the set of demand vectors restricted to the grid contain (some)
aspirations. The state space of the process is the finite space S of demand vectors on the grid.
The process then is a finite Markov chain.

Let matrix M with elements mab describe the probability of moving from state a to state
b in one period. Vector μ of size |S| (with ∑

μi = 1) is a stationary distribution for M
if μM = μ. Proposition 1 from the previous section implies that for the basic demand
adjustment process we have considered, any probability distribution with the support on
the set of aspirations on the grid is a stationary distribution. In particular, any degenerate
distribution with all the mass on one particular aspiration is a stationary distribution.

As in Montero and Possajennikov (2022), we consider the following perturbation of the
process from the previous section. With probability 1− ε, the choice of demand still follows
from maximization problem (1). With probability ε, the adjusting player i chooses a demand
differently; we refer to such an event as a “mutation”. In particular, if the player experiences
a mutation, then, with probability 1 − ε, the demand is in the set {xt−1

i , . . . ,maxS v(S)};
with probability ε the demand is in the set {0, . . . , xt−1

i }. If ε is small, mutations in general
are rare, but mutations to a higher demand are more likely than to a lower demand. This
mutation model is based on intentional play in Naidu et al. (2010), and also has a flavor of
“greediness”: players hope to get a higher demand satisfied.

Let Mε denote the transition matrix of the Markov chain of the process with mutation
probability ε. The process is irreducible, since any demand vector can be obtained by a
sequence of nmutations. Therefore, for ε > 0, the process has a unique stationary distribution
με . Let μ0 = limε→0 με . States x that have a positive probability in μ0 are stochastically
stable: the process is much more likely to be in them as the mutation probability becomes
arbitrarily small.

Stochastically stable sets are contained in the absorbing set solution of the process with
ε = 0, which is the set of aspiration demand vectors. However, some aspirations are more
easily disturbed than others with the kind of mutations that we consider.

5 Since in Rozen (2013) players also name a list of potential coalition partners, the adjustment path to the
core is more complicated. The part that is similar to setting “maximal” demands is the inclusion of one player
into an already existing coalition, which in convex games leads to the core.
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3.2 Perturbed process and separating aspirations

For an aspiration x , consider its generating collection GC(x). Let Ci (x) = {S ∈ GC(x) :
i ∈ S} be the set of coalitions in GC(x) that contain player i . Aspiration x is partnered if
Ci ⊆ C j ⇒ C j ⊆ Ci for all i, j (Bennett, 1983). In a partnered aspiration, for any pair of
players i, j , either they are together in all their feasible coalitions, or, if player i has a feasible
coalition without j , then so does j without i .

The latter property (that each player has a feasible coalition without any other particular
player) is the one that is important for stochastic stability. In Montero and Possajennikov
(2022) we consider the following definition:

Definition 2 Aspiration x is separating if Ci\C j �= ∅ and C j\Ci �= ∅ for all i, j .

(payoff vectors that are feasible for the grand coalition N with this property are called
“completely separating” by Maschler and Peleg (1966), and “minimally partnered” by Reny
et al. (2012)). In a separating aspiration, each player can find a coalition to satisfy his or her
demand that does not contain any other particular player. Therefore mutations to a higher
demand by any one player will not induce any other player to lower his or her demand.

With M0 denoting the process without mutations (ε = 0), let A ⊆ S be its absorbing set
solution (from Proposition 1, it is the set of aspiration demand vectors in the game). For an
arbitrary set B ⊆ S, let �ε(B) denote the set of states that can arise from states in B with
one most likely mutation: of one player to a higher demand. Let �0∞(B) denote the set of
states that the process without mutations can reach (in any number of steps) starting from a
state in set B.

Following (Nöldeke & Samuelson, 1993), we define

Definition 3 A set of states B ⊆ A is called minimal locally stable if �0∞(�ε(B)) ⊆ B,
and there is no proper subset of B that has this property.

Starting from a state in a (minimal) locally stable set, one mutation can temporarily take the
process out of it, but the process will converge back to it without further mutations.

Nöldeke and Samuelson (1993) show that the set of stochastically stable states is a subset
of the set of states that are inminimal locally stable sets. InMontero and Possajennikov (2022,
Lemma 3), we show that each separating aspiration is a minimal locally stable set. We also
show that in general games there can be minimal locally stable sets different from separating
aspirations. However, if a given game has no minimal locally stable sets other than the set of
separating aspirations, then the set of separating aspirations contains all stochastically stable
states.

4 Demand adjustment process in 3-player games

In this section, we apply the demand adjustment process (including perturbations) to 3-player
superadditive games. Reordering players if necessary, a superadditive 3-player game is given
by v({12}) = a ≤ v({13}) = b ≤ v({23}) = c ≤ v(N ).

The following lemma is well known (see, for example, Okada (2014), p. 965, Equation
4.19). We include its proof for completeness.

Lemma 1 A 3-player superadditive game has a non-empty core if and only if a + b + c ≤
2v(N ).
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Proof A vector x = (x1, x2, x3) with x1 + x2 + x3 = v(N ) is in the core if x1 + x2 ≥ a,
x1 + x3 ≥ b and x2 + x3 ≥ c. Consider x = (x1, a − x1, v(N ) − a). It is in the core
if x1 + v(N ) − a ≥ b and v(N ) − x1 ≥ c, or if a + b − v(N ) ≤ x1 ≤ v(N ) − c. If
a + b + c ≤ 2v(N ), then a + b − v(N ) ≤ v(N ) − c, thus there exists x1 satisfying the
inequalities. Also, x1 + x2 + x3 = 1

2 (x1 + x2 + x1 + x3 + x2 + x3). If the core inequalities
are satisfied, then x1 + x2 + x3 ≥ 1

2 (a + b + c). However, if 2v(N ) < a + b + c, then no x
with x1 + x2 + x3 = v(N ) satisfies the core inequalities. ��

We know that if an aspiration x has GC(x) � N , then x is in the core. The following
lemma describes the generating collections that aspirations outside the core can have in
3-player superadditive games.

Lemma 2 In a 3-player superadditive game, for an aspiration x outside the core either
GC(x) = {{i j}, {ik}, { jk}}, or GC(x) = {{i j}, {ik}}, or GC(x) = {{i j}, {ik}, {i}}.
Proof We divide the proof into two cases, depending on whether there is a singleton coalition
inGC(x). Suppose first that there are no singleton coalitions inGC(x). Since all players need
to have a feasible coalition and N is not feasible for x , then eitherGC(x) = {{i j}, {ik}, { jk}}
or GC(x) = {{i j}, {ik}}. Suppose now that {i} ∈ GC(x). Suppose also that { j} ∈ GC(x).
By feasibility, either {k} ∈ GC(x), or {ki} ∈ GC(x), or {k j} ∈ GC(x): in all cases, by
superadditivity N is feasible, a contradiction. Hence, there is a most one singleton coalition
in GC(x). Thus, if {i} ∈ GC(x), then GC(x) = {{i}, {i j}, {ik}}. ��

The first result for our process in 3-player games is about the games with non-empty core.

Proposition 3 If the core of a 3-player superadditive game is non-empty (a+b+c ≤ 2v(N )),
then all states in the core are stochastically stable, and there are no other stochastically stable
states.

Proof Consider aspiration x that is in the core, with N ∈ GC(x). Suppose player i mutates
to a higher demand xi + �. If { jk} ∈ GC(x), then players j and k do not adjust their
demand. Player i will lower the demand back to xi ; the process without mutations returns to
x . Suppose now that { jk} /∈ GC(x), and suppose that player j is chosen to adjust. If N is
one of the coalitions that solve the maximization problem (1), then another aspiration in the
core is reached.

Suppose N is not a solution of problem (1). Since x is an aspiration, xi + x j ≥ v({i j}).
Player j can form N , setting a demand equal to x j − �i or player j can form {i j}, getting
v({i j}) − (xi + �i ). If player j strictly prefers {i j} to N , it would be the case that v({i j}) −
(xi +�i ) > x j −�i , contradicting xi + x j ≥ v({i j}). Therefore, j forms either { jk} or { j},
setting demand x j − � j , where � j ≥ 0.

After the adjustment of player j , player i has no feasible coalition. In aspiration x , since
N is feasible, v(N ) − x j − xk ≥ v({i j}) − x j . Therefore, v(N ) − (x j − � j ) − xk ≥
v({i j}) − (x j − � j ). Therefore player i cannot strictly prefer {i j} to N now. Also, in x ,
v(N )−x j −xk ≥ v({ik})−xk , thus v(N )−(x j −� j )−xk ≥ v({ik})−xk and player i cannot
strictly prefer {ik} over N . Finally, in x , v(N )−x j−xk ≥ v({i}), thus v(N )−(x j−� j )−xk ≥
v({i}) and i cannot strictly prefer {i} over N . Therefore i sets a demand for which N is a
feasible coalition and the demand vector is in the core.

If j has formed { j}, then player k may need to adjust the demand, but, using an analogous
reasoning to the one above, k adjusts to a demand that makes N feasible, thus to a core
demand vector.
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We have shown that, starting from an aspiration in the core, a mutation of one player to
a higher demand leads to another aspiration in the core. Consider now aspiration x that is
not in the core. By Lemma 2, such aspirations have {i j} and {ik} in GC(x), meaning that
xi + x j = v({i j}) and xi + xk = v({ik}). If also { jk} ∈ GC(x), then 2x(N ) = a + b + c,
and, since a + b + c ≤ 2v(N ), then N is feasible, contradicting that x is not in the core.
Therefore { jk} /∈ CG(x), i.e., x j + xk > v({ jk}).

Since {i j} and {ik} in GC(x), 2xi + x j + xk = v({i j}) + v({ik}). Thus, 2xi + v({ jk}) <

v({i j}) + v({ik}), and, therefore, xi <
v({i j})+v({ik})−v({ jk})

2 .

Suppose i mutates to v({i j})+v({ik})−v({ jk})
2 . Since v({i j}) + v({ik}) + v({ jk}) ≤ 2v(N ),

then v({i j})+v({ik})+2v({ jk})−v({ jk})
2 ≤ v(N ), and thus v({i j})+v({ik})−v({ jk})

2 ≤ v(N )−v({ jk}).
Therefore, forming N is at least as good as forming { jk} for any of the players j and k.
Hence, either of them adjusts to a demand that makes N feasible and thus a demand vector
in the core is reached.

The previous reasoning shows that the core is a locally stable set, and no aspiration outside
the core is in a locally stable set. Consider any two aspirations in the core, x = (x1, x2, x3)
and y = (y1, y2, y3). If x �= y, then there exists player i with xi < yi and player k with
xk > yk . Suppose that x j = y j . If player i mutates to yi , and player k adjusts, aspiration y
is reached. If x j �= y j , the aspiration z reached after adjustment of player k (and possibly
j) is not y but it is a core aspiration with zi = yi . One further mutation of the remaining
“underdemanding” player would lead to y then.

Therefore, from any aspiration in the core another aspiration in the core can be reached
by a sequence of most likely mutations, one at a time. Thus all core states are in the same
locally stable set (component). From Proposition 1 in Nöldeke and Samuelson (1993), all
aspirations in the core are stochastically stable. ��

That the core is the unique minimal locally stable set is specific to 3-player games. For
larger games, there are other locally stable sets: namely, separating aspirations (Lemma 3 in
Montero and Possajennikov (2022)).

Example 1 (continued) In the 5-player glove game, aspirations (a, a, 1 − a, 1 − a, 1 − a)

are separating for any 0 ≤ a ≤ 1, since each player can pair with at least two other players.
Thus, any aspiration (a, a, 1 − a, 1 − a, 1 − a) is a (minimal) locally stable set, but only
aspiration (1, 1, 0, 0, 0) is in the core.

Consider now 3-player games with an empty core. In these games, the result for our
process is actually stronger.

Proposition 4 If the core of a superadditive 3-player game is empty (a+b+c > 2v(N )), then
the aspiration x∗ = ( a+b−c

2 , a+c−b
2 , b+c−a

2 ) is the unique stochastically stable aspiration.

Proof Consider x∗ = ( a+b−c
2 , a+c−b

2 , b+c−a
2 ). Its generating collection is GC(x∗) =

{{1, 2}, {1, 3}, {2, 3}}. Therefore it is a separating aspiration and thus is a minimal locally
stable set.

Consider aspiration x different from x∗. From Lemma 2, GC(x) contains {i j}, {ik} (and
possibly {i}), i.e., players j and k depend on player i to get their demands. Since { jk} is
not feasible in x , xi < x∗

i = v({i j})+v({ik})−v({ jk})
2 and x j > x∗

j , xk > x∗
k . Suppose that

player i mutates to x∗
i . If subsequently players j and k are selected to adjust, they adjust their

demand to the corresponding demands in x∗. Separating aspiration x∗ is thus reached with
one mutation.

Therefore, there are no other minimal locally stable sets in such games. Being the only
aspiration in a (minimal) locally stable set, the separating aspiration x∗ is the only stochas-
tically stable one. ��
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Wehave shown in this section that the process allows selection of aspirations in all 3-player
(superadditive) games, including games with an empty core. The next section considers the
application of the process to another class of games with an empty core.

5 Demand adjustment in weightedmajority games

5.1 Weightedmajority games and separating aspirations

A TU game in characteristic function form is a weighted majority game if there are weights
(w1, . . . , wn) of n players and a quota q such that v(S) = 1 if

∑
i∈S wi ≥ q and v(S) = 0

otherwise. If v(S) = 1, then coalition S is considered winning; otherwise coalition S is
losing. Coalition S is minimal winning if no T � S is winning. We assume that there are
no null players, that is, each player belongs to at least one minimal winning coalition (and
hence all weights must be strictly positive). We consider constant-sum games, in which
v(S) + v(N\S) = 1 for any S: if a coalition is winning, then its complement is losing, and
vice versa.

A weighted majority game can be represented by the quota and the weights as
[q;w1, . . . , wn]. In general, there are many representations for the same game. A repre-
sentation is homogeneous if for all minimal winning S,

∑
i∈S wi = q . A weighted majority

game is called homogeneous if there exists a homogeneous representation of it. If the game is
moreover constant-sum, then the homogeneous representation is unique up to amultiplicative
constant (Peleg, 1968).

If (N , v) is a constant-sum homogeneous game with homogeneous representation
[q;w1, . . . , wn], then vector x = 1

q (w1, . . . , wn) is a separating aspiration (we show this
in Montero and Possajennikov, 2022; from Peleg 1968 it also follows that there exists a
representation with integer weights thus x has rational coordinates). In general, there can be
other separating aspirations in constant sum homogeneous games: consider the game with
representation [4; 2, 2, 1, 1, 1]: any aspiration x = (a, a, 1−a

2 , 1−a
2 , 1−a

2 ) with 1
2 ≤ a ≤ 1 is

separating. In Montero and Possajennikov (2022) we show that in some classes of weighted
majority games, namely symmetric games and apex games, the separating aspiration is unique
and also the unique stochastically stable one in our “greedy” process. In the next section we
analyze a more general class of weighted majority games.

5.2 Weightedmajority games with two types of players

5.2.1 Symmetric and ı-symmetric aspirations

In a weightedmajority game, two players i and j are said to be of the same type if substituting
one by the other does not change the value of a coalition: v(S ∪ {i}) = v(S ∪ { j}) for all
S ⊂ N , i, j /∈ S. In a homogeneous representation of a weighted majority game players i, j
of the same type have the same weight,wi = w j . In this section, we consider games with two
types of players.6 Such games have practical relevance as the following example illustrates.

Example 2 The 2021 German Federal Election resulted in the following distribution of
seats: SPD 206, CDU/CSU 197, Grüne 118, FDP 92, AfD 83, DIE LINKE 39, SSW 1.

6 If there is only one type of player in a game, then the game is symmetric. We analyzed symmetric majority
games in Montero and Possajennikov (2022).
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Assuming a majority of 369, this situation is equivalent to the weighted majority game
[4; 2, 2, 1, 1, 1, 0, 0]. This is a game with two types of (non-null) players.

For a (constant-sumhomogeneous)weightedmajority game, theminimal integer represen-
tation has the smallestweight equal to 1.Accordingly, a constant-sumhomogeneousweighted
majority game with two types of players can be represented as [q; a, . . . , a, 1, . . . , 1], with
integer a > 1. Let p be the number of large players (with weight a) and n − p the number
of small players. Without loss of generality, the players are ordered in decreasing order of
weights. We denote the large players as belonging to type ta , and small players as belonging
to type t1 (we use tw for a generic player type).

Let x be a vector of demands. Let di j (x) = |xi −x j | be the absolute value of the difference
in demands of players i and j . We denote da(x) = maxi, j∈ta di j (x) the maximal difference in
demands of large players, and d1(x) = maxi, j∈t1 di j (x) themaximal difference in demands of
small players. Further, let d(x) = max{da(x), d1(x)}. Aspiration x is within-type symmetric,
or simply symmetric, if all players of the same type make the same demand, d(x) = 0.

We will show that only symmetric aspirations can be separating. A useful auxiliary result
is the following:

Lemma 3 Consider an aspiration x with d(x) > 0, i.e., xi < x j for some players i, j ∈ tw .
Then for any coalition S ∈ GC(x) such that j ∈ S, for any i with xi < x j , i ∈ S.

Proof Suppose for a player i with xi < x j , i /∈ S. Consider coalition T = S\{ j} ∪ {i}.
T has a lower sum of demands but, since players i and j are of the same type, the same
v(T ) = v(S). This means that x is not maximal, contradicting that x is an aspiration. ��
Lemma 4 Consider an aspiration x. If x is separating, then d(x) = 0.

Proof Consider aspiration x that has d(x) > 0 and let xi < x j for players i, j of the same
type. By Lemma 3, j does not have a feasible coalitionwithout i , therefore x is not separating.

��
Not all symmetric aspirations are separating (for example, aspiration (0, 1, 1, 1) in the

apex game [3; 2, 1, 1, 1] is symmetric but not separating).
The lemma says that aspirations that are not symmetric cannot be separating, thus they are

vulnerable to upward mutations of some players. However, sometimes symmetric aspirations
cannot be easily reached by such mutations, as the following example shows.

Example 3 (seeMontero andPossajennikov, 2022).Consider the game [8; 2, 2, 2, 2, 2, 2, 1, 1, 1],
with nine players; players 1-6 have weight a = 2 and players 7-9 have weight 1.

Consider aspiration x = ( 28 ,
2
8 + δ, . . . , 2

8 + δ, 1
8 − δ, 1

8 − δ, 1
8 − δ) in this game. With

one mutation of player 1 (and adjustment of any of the players 2–6) the process would move
to an aspiration which is a permutation of x (within type t2), or, with adjustment of any of
the players 7–9, to a permutation (within type t1) of aspiration y = ( 28 + δ, 2

8 + δ, . . . , 2
8 +

δ, 1
8 − 2δ, 1

8 − δ, 1
8 − δ), but not to a symmetric aspiration.

Motivated by this example, we consider “nearly” symmetric aspirations. We call an aspi-
ration x δ-symmetric if d(x) ≤ δ, where δ is the finite grid step size. (We will refer to
symmetric aspirations as 0-symmetric.)

The following proposition shows that the process can always reach the set of δ-symmetric
aspirations with a sequence of most likely mutations, although, as we will see later, it is not
always the case that the process stays within this set.
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Proposition 5 From any aspiration x, the process can reach a δ-symmetric aspiration with
a sequence of mutations, one player at a time.

Proof If d(x) ≤ δ, then x is already the required aspiration. Suppose thus that d(x) > δ.
Then either da(x) > δ, or d1(x) > δ, or both.

Let tw be the “winning” type, meaning that there exists a winning coalition S made
exclusively of players of this type (there exists S such that v(S) = 1 and for all i ∈ S,
i ∈ tw). Let t−w denote the other type (in a constant-sum game, one type is winning and the
other is not: it cannot be that both are winning or both are losing). Let xm,w = mink∈tw xk ,
xM,w = maxk∈tw xk , and xm,−w = mink∈t−w xk , xM,−w = maxk∈t−w xk .

Case 1: At x there exists a feasible coalition U containing only players of type tw (there
exists U such that x(U ) = 1 and for all i ∈ U , i ∈ tw).

Case 1(a): Demands of players of type tw are asymmetric (dw > 0). Suppose xi =
xm,w > 1

|U | − δ and x j = xM,w . Then every player in U demands 1
|U | and thus j /∈ U .

By Lemma 3, any feasible coalition for j must contain all players in U , a contradiction.
Therefore xm,w ≤ 1

|U | − δ. Suppose xM,w < 1
|U | + δ. For U to be maximal, i /∈ U . But

a coalition U\{ j} ∪ {i} is then not maximal. Therefore xM,w ≥ 1
|U | + δ. Suppose player

i mutates to xi + δ. Player j then has to adjust to x j − δ. If there are further players with
xm,w, they would not need to adjust downwards, and no player with xi ≤ 1

|U | would need to
adjust downwards. In a new aspiration y, either dw(y) = dw(x) but there are fewer players
with ym,w = xm,w and yM,w = xM,w, or dw(y) < dw(x). Continuing, an aspiration z with
dw(z) = 0 can be reached.

Case 1(b): Demands of players of type tw are symmetric but demands of players of type
t−w are asymmetric (dw = 0 and d−w > δ). Suppose xi = xm,−w , x j = xM,−w . If player i
mutates to xi +δ, player j would need to adjust to x j −δ. No player of type tw needs to adjust;
also no player of type t−w with xi ≤ xm,−w + δ would need to adjust downwards. Therefore
in a new aspiration y, either d−w(y) = d−w(x) but fewer players have ym,−w = xm,−w and
yM,−w = xM,−w, or d−w(y) < d−w(x). Continuing, an aspiration z with d−w(z) = 0 (and
dw(z) = 0 still) can be reached.

Case 2: Any coalition U of players of type tw is infeasible (for any U ⊂ tw ,
∑

k∈U xk >

v(U )).
Case 2(a):Demands of players of type t−w are asymmetric (d−w > 0).Consider i, j ∈ t−w

such that xi = xm,−w < x j = xM,−w . Consider any player k ∈ tw and consider any
U ∈ GC(x), U � k. Suppose i /∈ U . If j ∈ U , then coalition U\{ j} ∪ {i} is not maximal;
thus j /∈ U and j does not have a feasible coalition. Therefore, i ∈ U . Suppose i mutates
to xi + δ. Player k would need to adjust to xk − δ. No other player with xm,w or xm,w + δ

would need to adjust. In a new aspiration y, either a coalition of players of type tw will
be feasible (Case 1), or d−w(y) = d−w(x) (and yM,−w ≤ xM,−w) but fewer players have
ym,−w = xm,−w, or d−w(y) < d−w(x). In the latter two cases, continuing, an aspiration z
with d−w(z) = 0 can be reached.

Case 2(b): Demands of players of type t−w are symmetric but demands of players of type
tw are not δ-symmetric (d−w = 0 and dw > δ). Consider i, j ∈ tw such that xi = xm,w <

x j = xM,w . By Lemma 3, any coalition containing j also contains i . If player i mutates
to xi + δ, player j would need to adjust to x j − δ. No player of type t−w would need to
adjust, thus d−w stays at 0. In a new aspiration y, either a coalition of players of type w

will be feasible (Case 1), or dw(y) = dw(x) (and yM,w ≤ xM,w) but fewer players have
ym,w = xm,w, or dw(y) < dw(x). In the latter two cases, continuing, an aspiration z with
dw(z) = δ can be reached. ��
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As we have seen in Example 3, Proposition 5 cannot be strengthened to convergence to
0-symmetric aspirations.

For further analysis, we consider the following division of the class of constant-sum
weighted majority games with two types. Either there are enough large players to form a
winning coalition (pa ≥ q , for example, game [4; 2, 2, 1, 1, 1]), or there are enough small
players to form a winning coalition (n − p ≥ q , for example, game [3; 2, 1, 1, 1]). Since the
game is constant-sum, it cannot be that both a coalition of only large players and a coalition
of only small players are winning. We consider each of the subclasses in turn.

5.2.2 Apex-like games

Suppose that n − p ≥ q , so that small players can form a winning coalition. Such
games include apex games and other similar games, such as [5; 3, 1, 1, 1, 1, 1, 1] and
[5; 2, 2, 1, 1, 1, 1, 1]. In this class of games, there is a unique separating aspiration as the
following lemma shows.

Lemma 5 If n− p ≥ q, aspiration vector z = ( aq , . . . , a
q , 1

q , . . . , 1
q ) is the unique separating

aspiration.

Proof Let x be a separating aspiration. We know from Lemma 4 that x must be symmetric,
hence all players of the same type must make the same demand. Since n − p ≥ q , there is a
minimal winning coalition S comprised of q players.

Case 1: If S ∈ GC(x), symmetry and maximality of x then imply that xi = 1
q for all

small players. It then follows that xi = a
q for all large players (otherwise either feasibility or

maximality of x would be violated).
Case 2: If S /∈ GC(x), xi > 1

q for all small players and no coalition consisting exclusively
of small players is feasible. In order for small players to be able to obtain their demands,
x j < a

q for all large players. Any feasible coalition T ∈ GC(x) must then contain all large
players; if there was a large player k /∈ T , this player could replace a small players in T (T
contains more than a small players since the set of all large players is losing) and the new
coalition would have the same value but a lower total demand, contradicting maximality of
x . Since any feasible coalition for a small player must contain all large players, x cannot be
a separating aspiration. ��

The next proposition shows that this unique separating aspiration is the unique stochasti-
cally stable one.

Proposition 6 Consider a constant-sum homogeneous weighted majority game with repre-
sentation [q; a, . . . , a, 1, . . . , 1] and suppose n − p ≥ q. Then z = ( aq , . . . , a

q , 1
q , . . . , 1

q ) is
the unique stochastically stable state of the process.

Proof In the proof of Proposition 5 (Case 1), if there is a feasible coalition of only players of
the winning type (in the class of apex-like games under consideration, this is type t1), then a
0-symmetric aspiration can be reached, with still a feasible coalition of only players of type
t1. In this class of games, there is only one such aspiration, namely the aspiration z.

Consider therefore aspirations with any winning coalition of small players infeasible. In
the proof of Proposition 5 (Case 2), an aspiration with da = 0 and d1 ≤ δ can be reached.
Let this be aspiration x = (b, . . . , b, c, . . . , c, c + δ, . . . , c + δ). (There may be no players
with demand c + δ.)
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In x , any coalition in GC(x) contains all large players. Suppose player 1 mutates to b+ δ

and a player with c + δ (or, if there is no such player, a player with c) adjusts downwards.
(Other small players may be also infeasible; they would also adjust downwards.) If there is
a feasible coalition of small players, then Case 1 applies and the aspiration z can be reached
with a sequence of mutations, one player at a time. If not, then we can apply Case 2(a) to get
all large players demand b + δ. Then all small players would lower demands to c or c − δ.
If a coalition of small players is not feasible, then we have an aspiration like x but with the
minimal demand of large players larger than before. Mutations of one large player can be
continued until large players demand a

q , and small players demand 1
q , i.e., the separating

aspiration. ��
This result generalizes the result in Montero and Possajennikov (2022) for apex games,

which are a subset of the games with two types. In apex games, there is only one large player,
and the coalition of all small players is (minimal) winning. That in the process with mutations
the unique separating aspiration is the stochastically stable one applies also for other games
in this class, for example, [5; 2, 2, 1, 1, 1, 1, 1].

5.2.3 Games with large players winning

Consider nowweightedmajority gameswith pa ≥ q , so that large players can form awinning
coalition. Examples of such games are [4; 2, 2, 1, 1, 1] and [8; 2, 2, 2, 2, 2, 2, 1, 1, 1].

Let u ≤ p be the number of large players necessary for winning by themselves (ua = q).
Then, winning coalitions consist of either u large players, or u − 1 large players and a small
players, or u − 2 large players and 2a small players, etc, until ra > n − p. The maximal
number r of small players that can be in a winning coalition is thus r = a

⌊ n−p
a

⌋
. The

minimal number of large players that can be in a winning coalition is s = q−r
a . Separating

aspirations in these games are z = ( bq , . . . , b
q , c

q , . . . , c
q ), for all 0 ≤ c ≤ 1 and b = q−cr

s

(then a ≤ b ≤ aq
ap−q+2 ). (For example, in game [4; 2, 2, 1, 1, 1], a = 2, q = 4, p = 2,

n − p = 3, r = 2, s = 1 and 2 ≤ b ≤ 4.)
If in an aspiration there is a feasible coalition consisting of players of only winning type

ta , then from the proof of Case 1 of Proposition 5 a 0-symmetric aspiration can be reached,
still with a feasible coalition of players of winning type. There is only one such aspiration,
namely the aspiration ( aq , . . . , a

q , 1
q , . . . , 1

q ). However, if no coalition of players of type ta
is feasible, then a separating aspiration may not necessarily be reached with a sequence of
upward mutations, one player at a time.

Example 4 Consider game [10; 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1], with n = 11 players, p = 8,
n − p = 3. Winning coalitions have either 5 large players, or 4 large players and 2 small
players.

Consider aspiration x (1) = ( aq , a
q , a

q + δ, . . . , a
q + δ, 1

q − δ, 1
q − δ, 1

q − δ). There are two
players with demand a

q that are in any feasible coalition.
Suppose player 1 mutates upward. Any of the other players would have to include one

more player with demand a
q + δ into a feasible coalition thus a player lowers the demand

by δ. If it is one of the players 3-8, then the process reaches a permutation of x (1). If it is
player 2, then we have, as a result of the basic process, a permutation of x (2) = ( aq − δ, a

q +
δ, . . . , a

q + δ, 1
q − δ, 1

q − δ, 1
q − δ). If it is one of the players 9-11, we have a permutation

of x (3) = ( aq , a
q + δ, . . . , a

q + δ, 1
q − 2δ, 1

q − δ, 1
q − δ).
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Consider aspiration x (2) = ( aq − δ, a
q + δ, . . . , a

q + δ, 1
q − δ, 1

q − δ, 1
q − δ). Any feasible

coalition includes player 1. If player 1 mutates to a
q , then if one of players 2-8 adjusts, we are

back to a permutation of x (1); if one of players 9-11 adjusts, we have a permutation of x (3). If
player 1 mutates to a

q +δ or more, then if one of players 2-8 adjusts, we have a permutation of

x (2). If one of players 9-11 adjusts, we have x (4) = ( aq + δ, . . . , a
q + δ, 1

q −3δ, 1
q − δ, 1

q − δ).

Consider aspiration x (3) = ( aq , a
q + δ, . . . , a

q + δ, 1
q − 2δ, 1

q − δ, 1
q − δ). All feasible

coalitions include player 1 and player 9. Suppose player 1 mutates. If one of players 2-
8 adjusts, we have a permutation of x (3). If player 9 adjusts, we have a permutation of
x (4). If one of players 10-11 adjusts, then so does the other, reaching separating aspiration
( aq + δ, . . . , a

q + δ, 1
q − 2δ, 1

q − 2δ, 1
q − 2δ). Suppose player 9 mutates. If player 1 adjusts,

we have x (2). If one of players 2-8 adjusts, we have x (1). If one of players 10-11 adjusts, we
have x (3).

Finally, consider aspiration x (4) = ( aq + δ, . . . , a
q + δ, 1

q − 3δ, 1
q − δ, 1

q − δ). All feasible

coalitions include player 9. Suppose player 9 mutates to 1
q −2δ. If one of players 1-8 adjusts,

we have x (3). If one of players 10-11 adjusts, then so does the other, reaching separating
aspiration ( aq + δ, . . . , a

q + δ, 1
q − 2δ, 1

q − 2δ, 1
q − 2δ). Suppose player 9 mutates to 1

q − δ

or more. If one of players 1-8 adjusts, then we have x (2); if one of players 10-11 adjusts, we
have x (4) as the result of the basic process.

Putting everything together, one-player mutations make the process stay within permu-
tations of x (1), x (2), x (3), x (4), but there is a non-zero probability of reaching separating
aspiration ( aq + δ, . . . , a

q + δ, 1
q − 2δ, 1

q − 2δ, 1
q − 2δ). Once the process is in a separating

aspiration, no mutation of one player can disturb it. Therefore, (minimal) locally stable sets
coincide with separating aspirations in this game.

Example 5 Consider game [16; 2, . . . , 2, 1 . . . , 1], with n = 18 players, p = 13, n − p = 5.
Winning coalitions have 8 large players, 7 large players and 2 small players, and 6 large
players and 4 small players.

Suppose b = 2
16 and c = 1

16 . Consider aspiration x (1) = (b, b, b + δ, . . . , b + δ, c −
δ, . . . , c − δ), with coalitions of 6 large players and 4 small players in GC(x (1)). All such
coalitions contain players 1 and 2. If player 1 (or 2) mutates, the basic process of adjustment
reaches a permutation of either x (1), or of x (2) = (b− δ, b+ δ, . . . , b+ δ, c− δ, . . . , c− δ),
or of x (3) = (b, b + δ, . . . , b + δ, c − 2δ, c − δ, . . . , c − δ).

Consider x (2). All coalitions in GC(x (2)) contain player 1. If player 1 mutates, we reach
a permutation of either x (1), or of x (2), or of x (3), or of x (4) = (b+ δ, . . . , b+ δ, c− 3δ, c−
δ, . . . , c − δ).

Consider x (3). All feasible coalitions contain player 1 and player 14 (with demand c−2δ).
If player 1 mutates, we reach a permutation of either x (4) or of x (5) = (b+ δ, . . . , b+ δ, c−
2δ, c − 2δ, c − δ, c − δ, c − δ). If player 14 mutates, we reach a permutation of either x (1),
or of x (2), or of x (3).

Consider x (4). All coalitions in GC(x (4)) contain player 14 with demand c− 3δ. If player
14 mutates, we reach a permutation of either x (2), or of x (3), or of x (4), or of x (5) after an
adjustment by the basic process.

Finally, consider x (5). All feasible coalitions contain player 14 with demand c − 2δ. If
player 14 mutates, the basic adjustment process reaches a permutation of either x (2), or of
x (3), or of x (4), or of x (5).

The set of aspirations that are permutations of x (1), x (2), x (3), x (4), x (5) is a (minimal)
locally stable set in this game. Aspirations that are permutations of x (4) are 2δ away (by
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maximal coordinate-wise difference) from the separating aspiration (b+ 2
3δ, . . . , b+ 2

3δ, c−
δ, . . . , c−δ) and permutations of x (2) are 2δ away from (b+δ, . . . , b+δ, c− 3

2 δ, . . . , c− 3
2 δ),

while permutations of x (1), x (3), x (5) are less than 2δ away from a separating aspiration.
Example 5 illustrates that there may be locally stable sets that do not coincide with

(indeed, do not even contain) separating aspirations. Nevertheless, Proposition 5 shows that
a sequence of mutations, one at a time, can come close to a symmetric aspiration (within δ)
in any two-type game. The following proposition describes how far away from a separating
(and therefore symmetric) aspiration can such a sequence get.

Proposition 7 Consider a constant-sum homogeneous weighted majority game with repre-
sentation [q; a, . . . , a, 1, . . . , 1] and suppose ap ≥ q. Then, for any δ, there exists k such
that all aspirations in locally stable sets are kδ-close to separating aspirations. (In particular,
one can choose k = s.)

Proof From the proof of Proposition 5, either a 0-symmetric aspiration is reached (Case 1;
it is then separating in the class of games under consideration), or an aspiration with d1 = 0
and da ≤ δ can be reached (Case 2(b)). Let this latter aspiration be x (1) = (b, . . . , b, b +
δ, . . . , b+ δ, c, . . . , c). For it to be an aspiration (i.e. to have all coalitions maximal) b ≥ a

q ,

c < 1
q and there is a feasible coalition with the maximal number r = a

⌊ n−p
a

⌋
of small

players and the minimal number s = q−r
a of large players in it.

In x (1), all feasible coalitions contain all players with demand b, while for any other player
j (with demand b + δ or c), for any other player i there exists S such that i ∈ S, j /∈ S. If
any of players like j mutates upwards, no other player would need to adjust and the process
would return to x (1).

Suppose s′ < s players demand b. If each of themmutates in turn, and each time the same
small player adjusts, then, like in Examples 4 and 5, an aspiration x (k) = (b + δ, . . . , b +
δ, c − s′δ, c, . . . , c) can be reached. As in the examples, of all the aspirations that can be
reached by a sequence of one-player upwardmutations, x (k) has the smallest demand (c−s′δ)
of a small player.

If s ≤ r +1 (as in Example 4), then a separating aspiration can be reached with a non-zero
probability because those small players who demand more than others adjust, and all r small
players demand c− δ. In this case, aspirations in (minimal) locally stable sets are separating,
in particular, they are 0-close to separating aspirations thus also k-close. If s > r + 1 (as in
Example 5), then there are not enough small players for all to demand c−δ. Then a separating
aspiration is never reached. But among aspirations in locally stable sets, the one furthest away
from a separating aspiration is x (k), which is at most sδ away from (b, . . . , b, c, . . . , c). ��

Therefore, even if the process with mutations has locally stable sets that do not coincide
with separating aspirations, these locally stable sets, for any given game, only have aspirations
that are close to separating aspirations (especially for small δ).

On the other hand, for any fixed number k one can construct a game (with many players)
such that locally stable sets contain aspirations that are more than kδ away from separating
aspirations. In particular, to move kδ away from a separating aspiration, consider a game
with an aspiration in which r = a

⌊ n−p
a

⌋
small players demand δ less than in a separating

aspiration, r large players demand δ more, and k < r demand exactly what is in a separating
aspiration. A minimal winning coalition S contains k + r large players and r small players.
This coalition has weight

∑
i∈S wi = a(k + r) + r = q . The total weight of players is∑

i∈N wi = 2q − 1 = 2a(k + r) + 2r − 1. With r + 1 small players, there are thus
2a(k+r)+r−2

a large players. For any r , a game with the total number of players larger than
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2(k + r)+ r−2
a + r + 1 can therefore have locally stable sets that contain aspirations that are

kδ away from separating ones.

6 Conclusion

This paper presented a simple “greedy” process of demand adjustment in cooperative games,
in which players set maximal demands compatible with the demands of other players. This
basic process converges to the set of aspirations; in convex games this means that it converges
to the core.

We further extended the process by introducing “greedy” mutations, that is, mutations
to higher demands. Separating aspirations then play an important role since they are the
most resistant to such mutations. We analyzed this process in 3-player games and weighted
majority games with two types of players.

For 3-player games, we derived complete results: either the core (when non-empty), or the
unique separating aspiration (when the core is empty) are stochastically stable. For weighted
majority games with two types of players, we found the following. In games in which the
coalition of all small players is winning, there is a unique separating aspiration, which is
stochastically stable. However, in games in which the coalition of large players is winning,
the process does not necessarily converge to a separating aspiration. Instead, it will reach a
neighborhood of such aspirations, where it remains. Hence, the simple process, augmented
with appropriate mutations, can provide useful predictions for many games, also for those
with an empty core.
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