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A quantum graph approach 
to metamaterial design
Tristan Lawrie1, Gregor Tanner1* & Dimitrios Chronopoulos2

Since the turn of the century, metamaterials have gained a large amount of attention due to their 
potential for possessing highly nontrivial and exotic properties—such as cloaking or perfect lensing. 
There has been a great push to create reliable mathematical models that accurately describe the 
required material composition. Here, we consider a quantum graph approach to metamaterial design. 
An infinite square periodic quantum graph, constructed from vertices and edges, acts as a paradigm 
for a 2D metamaterial. Wave transport occurs along the edges with vertices acting as scatterers 
modelling sub-wavelength resonant elements. These resonant elements are constructed with the 
help of finite quantum graphs attached to each vertex of the lattice with customisable properties 
controlled by a unitary scattering matrix. The metamaterial properties are understood and engineered 
by manipulating the band diagram of the periodic structure. The engineered properties are then 
demonstrated in terms of the reflection and transmission behaviour of Gaussian beam solutions at an 
interface between two different metamaterials. We extend this treatment to N layered metamaterials 
using the Transfer Matrix Method. We demonstrate both positive and negative refraction and beam 
steering. Our proposed quantum graph modelling technique is very flexible and can be easily adjusted 
making it an ideal design tool for creating metamaterials with exotic band diagram properties or 
testing promising multi-layer set ups and wave steering effects.

Metamaterials and quantum graphs. Since Veselago published his pioneering paper in 1968—The Elec-
trodynamics of Substances with Simultaneously Negative Values of Permeability and Permittivity1—it has been 
understood that the manipulation of electromagnetic material properties can give rise to exotic wave effects. 
In this paper, Veselago showed that when a material has both permittivity and permeability less than zero, its 
refractive index would be negative. By balancing the wave vector and the Poynting vector, it was shown that the 
electromagnetic waves within would have anti-parallel phase and group velocities. As a result, Snell’s law and the 
Doppler and Vavilov–Cherenkov effects are reversed. These results were considered purely theoretical, since no 
such material was known to exist.

In 2000, Pendry demonstrated a remarkable application of negative refractivity. Showing, given an ideal loss-
less slab of material with a refractive index of n = −1 in a medium with equal and opposite refractive index, a 
lens can be theoretically constructed that could focus light  perfectly2. Crucially such a material could overcome 
the diffraction limit of a traditional lens. Pendry presents a practical way one could engineer such a material. 
Proposing the periodic arrangement of unit cells made from C-shaped metal elements or “split-ring-resonators” 
with wires, giving rise to an effective negative refractive index within some frequency domain. This was experi-
mentally demonstrated by  Smith3. Since then, these man-made materials or “metamaterials” have been investi-
gated extensively. There have been countless proposals for different resonator designs and arrangements, giving 
rise to a large number of different wave effects.

Metamaterials function due to the interplay between the wavelength and the scale of the unit cell. For wave-
lengths of the order or less than that of the unit cell, the waves undergo Bragg scattering interacting directly with 
each resonant element. However, in the long wavelength regime, the material appears continuous with properties 
owing to the underlying  structure4,5. By varying these structural or resonant elements, one can achieve the desired 
wave effects. The required constituents of a metamaterial continue to be a matter of debate and various modelling 
techniques are used such as, transmission line  models6, boundary element  models7 and Finite Element  Analysis8 
to gain insight into the design changes required to achieve the desired effects. These simulation techniques can 
be quite time consuming when setting up the models, let alone considering design modifications, so there is a 
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need for simple and computationally cheap models for proof of principle studies. The proposed quantum graph 
approach can provide this simplified tool for designing metamaterial with a large range of different properties.

Since their introduction in  19979, quantum graphs have become a most valuable model for studying quantum 
and wave effects in the context of quantum chaos and beyond. The theory of quantum graphs describe a network 
constructed from a set of vertices that act as point scatterers connected by a set of one-dimensional edges (bonds), 
wherein waves are free to travel. The wave transport through the network depends on the chosen properties 
of the point scatterers characterised by unitary scattering matrices. By changing the elements of the scattering 
matrix, one can customise the wave transport through the network. The versatility and ease of construction of 
quantum graphs, as well as the finite dimensionality and the exactness of ‘semiclassical’ expressions, make them 
ideal toy models to test ideas and research hypothesis’—see10  and11 for an overview. Besides quantum chaos, 
applications encompass modelling the vibrations of coupled  plates12, formulating quantum random  walks13,14 as 
well as quantum search  algorithms15. One advantage of a quantum graph formulation is, that eigenvalue condi-
tions can be written in terms of a secular equation involving the determinant of a matrix of finite dimension. 
Similarly, the scattering matrix, describing the properties of open quantum graphs, can be given in terms of a 
closed form expression involving finite dimensional matrices.

Naturally the concise language of quantum graph theory lends itself well to describing metamaterials. The 
lattice nodes act as scatterers representing sub-wavelength resonant elements and the edges model phase modula-
tion between each resonant element. For this work, the metamaterial is modeled as an infinite square periodic 
quantum graph embedded in a 2D real space. A generalisation to 3D is straightforward by adding additional 
edges and vertices in the extra dimension. With this simple quantum graph construction, a multitude of non-
trivial wave effects can be modelled by adjusting the parameters of the graph metric and the node scattering 
matrix. By manipulating the resulting band diagrams, we will demonstrate some of these effects, namely positive 
and negative refraction as well as beam steering.

The paper is structured as follows: in section “Waves in finite open quantum graphs—modelling resonant 
element” we will describe the set up of open quantum graphs which will serve as the resonant elements in 
the metamaterials. We will then construct period quantum graphs in section “A quantum graph model for a 
metamaterial” and derive the equations for constructing plane wave solutions and the dispersion curves in 
section “Wave propagation in metamaterials—plane wave solutions”. In section “Wave propagation in meta-
materials—Gaussian beams”, we consider wave energy transport based on a Gaussian beam representation of 
the wave solutions and focus then on the available parameter space used for band engineering in section “Band 
engineering”. In the last two sections, section “Wave refraction between metamaterials” and section “Waves in 
N layered metamaterials”, we focus on reflection/transmission at “interfaces” between different metamaterials 
both in the two and N-layer case.

Waves in finite open quantum graphs—modelling resonant element
Metamaterials are typically constructed from a periodic arrangement of sub-wavelength resonant elements. We 
consider here in particular two-dimensional metamaterials, a generalisation to three dimensions is straight-
forward. Using quantum graph theory, we can model a single resonant element as an open quantum graph, which 
is then periodically arranged to construct the metamaterial.

Consider a connected and open quantum graph Ŵ(V ,E, L) as a model for a resonator. The graph is constructed 
from a set of bidirectional edges E = {e0, e1, . . . , e|E|−1} with a corresponding metric L = {le0 , le1 , . . . , le|E|−1

} , 
connected by a set of vertices V = {V0,V1, . . . ,V|V |−1} with corresponding boundary conditions. In addition, a 
set of four leads L = {Ll , Lr , Ld , Lu} (semi-infinite edges) are imposed in the left(l), right(r), down(d) and up(u) 
directions serving as incoming and outgoing channels in the two dimensional lattice, see the examples in Fig. 1. 
Both the edges in E and leads in L are endowed with a one-dimensional wave equation,

(1)
(

∂2

∂z2
+ k2

)

ψ(z) = 0.

Figure 1.  Three examples of open quantum graphs are shown. (a) Represents a cross resonator, (b) a ring 
resonator and (c) some zig zag structured resonator. The edges between vertices are depicted in black and open 
leads in grey.
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Here ψ(z) = (ψL(z),ψE(z))
T is the vector of all lead and edge solutions and k is the wave number. The solu-

tion on a given edge ψej (z) exists for z ∈ [0, lej ] , while the solution on a given lead ψLj (z) exists for z ∈ [0,∞) . 
(For ease of notation, z represents the spacial coordinates on any edge or lead). The eigenfunction solution ψ(z) 
is expressed as a superposition of counter propagating plane waves,

Here a± = (a±L , a
±
E )

T represents the vector of all wave amplitudes heading in (−) or out ( + ) of a vertex 
between the leads and edges. The vertices in V are generally considered to be point scatterers, and the mapping 
from all incoming to all outgoing wave amplitudes at the vertices is described by a unitary matrix Ŝ , that is,

We assume Neumann boundary conditions at individual vertices enforcing wave continuity and flux conserva-
tion at each  vertex10 although more general vertex scattering matrices can be  considered16). Enforcing Neumann 
boundary conditions, we obtain for the pqth element of the scattering matrix associated with vertex Vj

Here, δpq is the Kronecker delta, and vVj represents the valency (number of edges and leads attached to a given 
vertex) at vertex Vj.

To treat the connected graph as a model for a resonator, we wish to understand how waves incoming from 
any of the leads are redistributed and modulated into outgoing waves leaving through the leads. To do this a four 
dimensional graph scattering matrix ŜŴ is constructed,

reducing the entire connected graph in Ŵ(V ,E, L) to a single scatterer illustrated in Fig. 2.
To construct ŜŴ from the underlying connected quantum graph, one decomposes the scattering matrix into dis-

crete events. First, one accounts for the prompt reflections from the leads back to the leads in a matrix ŜLL . Second, 
the waves on the leads are coupled to the edges in E with a matrix ŜEL . Third, the edge dynamics are described by 
an infinite series of scattered paths expressed as a Neumann series, 

∑∞
n=0(P̂(k)ŜEE)

nP̂(k) := [Î− P̂(k)ŜEE]−1P̂(k) . 
Here, P̂(k) maps the outgoing wave amplitudes on the edges a+E  to the incoming wave amplitudes a−E  , taking 
account of the phase modulation owing to the metric L , and ŜEE represents the vertex scattering between edges. 
Fourth and finally, the waves on the edges are coupled back onto the leads using a matrix ŜLE . Explicitly, we can 
write

see Kottos and  Smilansky17 for details. The matrix terms in ŜŴ can be deduced from the open graph scattering 
matrix Ŝ in (3) using the block-matrix representation,

In the next step, we will use this graph based resonator to construct a periodic metamaterial.

(2)ψ(z) = a+eikz + a−e−ikz .

(3)a+ = Ŝa−.

(4)
{

ŜVj

}

pq
= 2

vVj
− δpq.

(5)a
+
L = ŜŴ(k)a

−
L ,

(6)ŜŴ(k) = ŜLL + ŜLE

[

Î− P̂(k)ŜEE

]−1

P̂(k)ŜEL,

(7)
(

a
+
L

a
+
E

)

=
(

ŜLL ŜLE
ŜEL ŜEE

)(

a
−
L

a
−
E

)

Figure 2.  (a) Some arbitrary compact quantum graph Ŵ(V ,E, L) . (b) The graph having been reduced to a single 
vertex. Noted are the lead wave amplitudes a±L .
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A quantum graph model for a metamaterial
By periodically arranging these graph based resonant elements we will now model metamaterial behaviour. 
Consider placing each resonant element in a mesh, spaced by edges of length l. To keep track of the wave loca-
tion in the graph, indices nm are introduced, where n representing steps in the horizontal direction and m in 
the vertical, as illustrated in Fig. 3. We use z again for the coordinate on the edges with z = 0 at a given resonant 
element and z = l at the neighbouring element for all edge (where we leave out the indices nm for convenience).

As before, all graph edges are endowed with the one dimensional wave equation (1). The vector of solutions 
is restricted to the edges (l, r, d, u) in each unit cell of the material at location nm,

To solve for the wave solution across the metamaterial, we begin by evaluating the scattering at the central vertex 
n = m = 0 . Let a± = (a±l , a

±
r , a

±
d , a

±
u )

T be the vector of wave amplitudes heading in (−) or out (+) of the central 
vertex, see Fig. 3. We have

The waves once scattered, undergo phase modulation as they move along each edge allowing one to express the 
outgoing waves at the central vertex a+ in terms of the incoming wave amplitudes c− = (c−l , c

−
r , c

−
d , c

−
u )

T at the 
neighboring vertices,

Due to the periodicity of the structure we can use Bloch’s theorem to describe the wave solution in any unit 
cell nm in terms of the solution at the central vertex nm = 0018, that is,

Here, κx and κy are the Bloch wave numbers in the horizontal and vertical direction, respectively. The incom-
ing wave amplitudes at a given vertex and its neighbours are thus related by

where

By combining Eqs. (9), (10) and (12), we find the condition

(8)ψnm(z) =







ψnm,l(z)
ψnm,r(z)
ψnm,d(z)
ψnm,u(z)






.

(9)a+ = ŜŴ(k)a
−.

(10)c− = eikla+.

(11)ψnm(z) = ei(κxn+κym)lψ00(z).

(12)a− = B̂(κx , κy)c
−

(13)B̂(κx , κy) :=









0 e−iκx l 0 0

eiκx l 0 0 0

0 0 0 e−iκy l

0 0 eiκy l 0









.

(14)
[

Î− eikl B̂(κx , κy)ŜŴ(k)
]

a− = 0,

Figure 3.  A 2D square periodic arrangement of quantum graph based resonant elements Ŵ(V ,E, L) connected 
by edges of length l as a model for a 2D metamaterial. Location n = m = 0 shown in the subplot with labeled 
wave amplitudes, a± and c− , traveling on the edges in the neighbourhood of the central vertex.
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which is satisfied if the wave vector k on each edge and the quasi-wave vectors κx and κy fulfill the secular equation

In satisfying this condition, the incoming amplitudes at the central vertex a− can be found by solving for the 
eigenvector in Eq. (14). We then obtain the wave solutions in each unit cell nm throughout the metamaterial 
in the form

where a+ is obtained via (9).

Wave solutions for the infinite lattice
In the following, we will show how to construct plane wave and then beam-like solutions for the infinite lattice. 
The starting point for the construction are the solutions of Eq. (15) giving rise to dispersion curves of the form 
k(κx , κy) or κx(k, κy) . We encounter real or imaginary solutions of κx(k, κy) corresponding to propagating or 
evanescent waves, respectively, the latter occurring in band gaps. The full wave solution can then be constructed 
from the corresponding eigenvectors in (14) extended throughout the lattice using the Bloch condition (11), as 
formulated in (16).

Wave propagation in metamaterials—plane wave solutions. We start by constructing plane wave 
solutions and will discuss a particular simple case here, where the dispersion curves can be given analytically. 
That is, we consider a lattice without resonators where each edge is directly connected through the vertex. Here, 
the vertex acts as a point scatterer, where the scattering matrix ŜŴ(k) in (6) is given by the Neumann scattering 
matrix (4) with vV = 4 , that is,

A generalisation to arbitrary ŜŴ(k) is straightforward, examples will be shown in later sections. By solving 
Eq. (15), the dispersive properties of the lattice are given by the relation

The resulting surface, or band, is shown in Fig. 4; it is periodic in κ-space over the Brillouin Zone (BZ), where 
BZ ∈ [−π

l ,
π
l ]2 . The shape of the band is a function of the square periodic graph topology and the symmetry of 

the scattering matrix. To generate a solution consider taking a single value of k, resulting in a discrete ring of κ 
solutions on an iso-frequency contour. By picking a point on the contour, one constructs the full wave solution 
from the corresponding eigenfunction in Eq. (16) as plotted in Fig. 5.

The phase of the resulting eigenfunction is given by the chosen Bloch wave vector κ = (κx , κy)
T , while the 

energy flow is given by the Poynting vector J = (Jx , Jy)
T normal to the iso-frequency contour. To construct the 

components of J explicitly, one evaluates the flux on the graph edges. The 1D flux J of the wave function ψnm 
on edge p is

(15)det

[

Î− eikl B̂(κx , κy)ŜŴ(k)
]

= 0.

(16)ψnm(z; k, κx , κy) = ei(κxn+κym)l
(

a+(k, κx , κy)e
ikz + a−(k, κx , κy)e

−ikz
)

,

(17)ŜŴpoint =
1

2







−1 1 1 1

1 − 1 1 1

1 1 − 1 1

1 1 1 − 1






.

(18)2 cos (kl) = cos (κxl)+ cos (κyl).

Figure 4.  The band diagram for a lattice without resonant elements. Shown are iso-frequency contours for 
various values of k in the κx , κy plane.
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with ψ̄ denoting the complex conjugate of ψ . The horizontal and vertical components of the Poynting vector can 
then be evaluated in terms of the waves on edges right(r)(or left(l)) and up(u)(or down(d)), respectively, that is

A point on notation. In the example shown in Fig. 5, for every value of κy , there are two corresponding 
values of κx . Naturally, the choice of κx informs the direction of energy flow. To delineate between waves traveling 
in opposite horizontal directions, the following notation is used: eigenfunction solutions with Poynting vector 
heading to the right are given index → and the corresponding eigenvector in Eq. (14) is expressed as a− as before 
where a± := a±(k, κ→x , κy) ; eigenfunction solutions with Poynting vector heading to the left are given index ← 
with the corresponding eigenvector in (14) relabeled as b− where b± := a±(k, κ←x , κy) . Explicitly,

In choosing the value of κx ( κ→x  or κ←x  ), one implicitly chooses the wave direction. For this reason the κx 
dependence is dropped from the eigenfunction.

Wave propagation in metamaterials—Gaussian beams. Plane wave solutions travel in the direction 
of the wave vector κ , which does not necessarily agree with the direction of energy flow given by the Poynting 
vector J in (20). This can be observed when considering Gaussian beam solutions constructed via Fourier series 
with the eigenfunctions, shown above, as a basis. The solution of the Gaussian beam with focal point at n = n′ , 
expressed in components �nm(z) = (�nm,l(z),�nm,r(z),�nm,d(z),�nm,u(z))

T , is given as,

(19)J(ψnm,p(z)) := ℜ
(

ψ̄nm,p(z)
1

i

∂ψnm,p(z)

∂z

)

= k(|a+p |2 − |a−p |2)

(20)J =
(

Jx
Jy

)

:= k

(

|a+r |2 − |a−r |2
|a+u |2 − |a−u |2

)

= k

(

|a−l |2 − |a+l |2
|a−d |2 − |a+d |2

)

.

(21)ψnm(z; k, κx , κy) :=
{

ψ→
nm(z; k, κy) = ei(κ

→
x n+κym)l

(

a+eikz + a−e−ikz
)

, Jx > 0

ψ←
nm(z; k, κy) = ei(κ

←
x n+κym)l

(

b+eikz + b−e−ikz
)

, Jx < 0
.

Figure 5.  Iso-frequency contour of Fig. 4 with possible wave vectors κ = (κ→x , κ ′y)
T in (a) and κ = (κ←x , κ ′y)

T 
in (b), both shown in green, with corresponding Poynting vector J = (Jx , Jy)

T and J = (−Jx , Jy)
T normal to 

the contour shown in blue. (See next section for the choice of notation). The resulting real components of the 
eigenfunction solutions ψ⇋

nm(z; k, κx , κy) for the values of the wave vectors used in (a) and (b) are also shown.
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where the integral is performed over the domain � = �(k) of the iso-frequency contour. Solutions outside � are 
evanescent and so contribute nothing in the far field. The expansion coefficients αn′ describing the beam profile 
at the focal point in terms of the eigenfunctions, given by the inverse transform,

Here, ψ̄→
n′m,u is the complex conjugate of the right moving eigenfunction expressed for all m at horizontal loca-

tion n = n′ along the upward edges u and �n′m,u(z) is the beam profile for all m with focal point n = n′ expressed 
on edge u. We chose the beam profile to be Gaussian, such that

where σ is the width of the beam and the phase eiκ
′
y l determines the tilt angle of the beam with respect to the 

horizontal axis of the lattice. Since the space on the graph is discretised, so too are the spacial integrals. Figure 6 
illustrates how varying the parameters σ and κ ′y effect the shape and direction of the resulting Gaussian beam 
for a given iso-frequency contour �(k).

(22)�nm(z; k) =
1√
2π

∫

�

αn′(κy; k)ψ→
nm(z, κy; k)dκy ,

(23)αn′(κy; k) =
1√
2π

∞
∑

m=−∞

{∫ l

0

ψ̄→
n′m,u(z, κy; k)�n′m,u(z; κy)dz

}

.

(24)�n′m,u(z) =
1

√

σ
√
π
e
−
(

z+ml√
2σ

)2

eiκ
′
y l ,

Figure 6.  Iso-frequency contour for a metamaterial with resonant elements ŜŴpoint as defined in (17) at k = 1/l 
together with the expansion coefficients αn′=0 in Eq. (23) and the resulting real components of the Gaussian 
beam profile �nm with focal point set to n′ = 0 . The beam profiles, Eq. (24), shown here are characterised by the 
parameters κ ′y = 0 , 0 and 1/l and beam widths σ = 2.2l , 6.6l and 6.6l for (a), (b) and (c), respectively.
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Band engineering
In a next step, we will use the quantum graph formulation for designing resonant elements leading to materials 
with “exotic” wave properties. As a simple example, we consider using the cross resonator illustrated in Fig. 1a 
as a resonant element for the metamaterial illustrated in Fig. 3. By setting the metric of the cross resonator to 
L = {lx/2, lx/2, ly/2, ly/2} as shown in Fig. 7a, one can modulate the phase in the horizontal and vertical direc-
tion across the resonant element thus breaking the scattering symmetry between the four leads. By enforcing 
Neumann boundary conditions at the vertices as defined by Eq. (4), the scattering matrix between the four leads 
L has solution,

found by Eq. (6). By solving Eq. (15) the dispersion relation is now given as

By comparing Fig. 7b with 7c, we see that varying the phase modulation across each resonant element only 
in one dimension breaks the symmetry of the scattering and gives rise to a saddle shaped band, which can be 
exploited to yield negative refraction as shown in the next section.

Wave refraction between metamaterials
To exemplify the engineered refractive properties, consider two metamaterials represented by semi infinite 
square periodic quantum graphs, one with resonant elements given by ŜŴ1

 and the other with resonant elements 
given by ŜŴ2

 . The two materials are connected along the y direction and material 1 exists for the set of unit cells 
n1 = (−∞, . . . ,−2,−1} and material 2 exists for the set of unit cells n2 = {0, 1, . . . ,∞) , as illustrated in Fig. 8.

The full wave solution �nm = (�nm,l ,�nm,r ,�nm,d ,�nm,u)
T across the two materials can be constructed by a 

linear superposition of counter propagating eigenfunction solutions ψ⇋

j,nm in material j = 1 and 2, as expressed 
in Eq. (21), that is,

where H(nj) is the discretised Heavyside step function, that is,

for j = 1, 2 and the coefficients Aj and Bj are associated with left and right moving waves, respectively. Thus, 
solutions with coefficients A1 and B2 represent waves incident on the interface, while solutions with coefficients B1 
and A2 represent waves scattered from the interface. To determine the coefficients, we must satisfy the boundary 
conditions at the material interface. Naturally the wave solutions are given for a single value of k between the two 
materials enforcing k1 = k2 := k . As the system stays periodic in the y direction, the Bloch phase tangential to 
the interface also remain constant across the interface leading to the boundary condition κ1,y = κ2,y := κy . This 
condition is illustrated in Fig. 9 for a chosen value of κy = κ ′y by a horizontal dashed grey line connecting the 

(25)ŜŴcross (k; lx , ly) =
1

2

















−eiklx eiklx e
ik
�

lx+ly
2

�

e
ik
�

lx+ly
2

�

eiklx − eiklx e
ik
�

lx+ly
2

�

e
ik
�

lx+ly
2

�

e
ik
�

lx+ly
2

�

e
ik
�

lx+ly
2

�

− eikly eikly

e
ik
�

lx+ly
2

�

e
ik
�

lx+ly
2

�

eikly − eikly

















,

(26)cos(κxl)e
ik(lx+l)

(

e2ik(ly+l) − 1

)

+ cos(κyl)e
ik(ly+l)

(

e2ik(lx+l) − 1

)

− e2ik(lx+ly+2l) + 1 = 0.

(27)
�nm(z, κy; k) = H(n1)

[

A1(κy; k)ψ→
1,nm(z, κy; k)+ B1(κy; k)ψ←

1,nm(z, κy; k)
]

+H(n2)
[

A2(κy; k)ψ→
2,nm(z, κy; k)+ B2(κy; k)ψ←

2,nm(z, κy; k)
]

,

(28)H(nj) =
{

1, ∀n ∈ nj
0, ∀n /∈ nj

Figure 7.  (a) Shows the cross resonator plugged into the metamaterials unit cell with scattering matrix defined 
as ŜŴcross (k; lx , ly) in (25). Both (b) and (c) show the resulting band for different values of lx and ly . Also plotted in 
the κx , κy plane are the iso-frequency contours of the second band for various values of k. Plot (b) is for lx = 1 , 
ly = 1 . Plot (c) is for lx = 0 , ly = 1.
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iso-frequency contours at k = 1/l in material 1 and 2. The remaining unknowns are then the wave vectors normal 
to the interface κ⇋j,x (k, κ ′y) which can be obtained from the dispersion curve determined by solving Eq. (15) for 
each material, see the vertical dashed grey lines illustrated below.

To determine the scattering coefficients Aj and Bj , we rescale the eigenfunction solutions of each material 
such that the magnitude of the horizontal flux of each component is equal, that is,

assuming κ⇋j,x ∈ R . Equally, the same condition can be enforced on the right edges, r. With the scaling choice 
(29), flux conservation across the interface

reduces to

and wave scattering at the interface can then be described in terms of a unitary scattering process. The corre-
sponding interface scattering matrix Ŝ1,2 performing the mapping,

(29)J(ψ→
1,nm,l) = J(ψ→

2,nm,l) = −J(ψ←
1,nm,l) = −J(ψ←

2,nm,l) ,

(30)J
(

A1ψ
→
1,0m,l + B1ψ

←
1,0m,l

)

= J
(

A2ψ
→
2,0m,l + B2ψ

←
2,0m,l

)

(31)|A1|2 + |B2|2 = |B1|2 + |A2|2

Figure 8.  Boundary region between metamaterials 1 and 2, understood as all right(r) edges for n = −1 and all 
left (l) edges for n = 0 . Here, wave scattering from the boundary is divided into event I and II, where rp and tp 
represent reflection and transmission amplitudes for event p = I or II.

Figure 9.  The iso-frequency contours for k = 1/l for a scattering matrix with ŜŴ1
:= ŜŴpoint and 

ŜŴ2
:= ŜŴcross (k; 0, 1) representing the two metamaterials. The horizontal dashed grey line represents a single 

value of κy = κ ′y . Intersections with contour lines give the corresponding values of κ⇋j,x  for j = 1 and 2.
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can then be constructed by decomposing the interface scattering into two events. Event I describes a wave inci-
dent from material 1 onto material 2 with amplitude A1 = 1 and B2 = 0 , producing a reflected and transmitted 
wave with respective amplitudes rI and tI . Event II describes a wave incident from material 2 onto material 1 
with amplitude B2 = 1 and A1 = 0 , producing a reflected and transmitted wave with respective amplitudes rII 
and tII , see Fig. 8. The interface scattering matrix takes on the form

To evaluate the matrix elements, consider first event I. For simplicity we choose to evaluate the waves at 
location n = 0 , at coordinate z = 0 on edge l. Since the phase κy is the same in both materials, it is sufficient to 
evaluate the solutions at m = 0 . Here,

�(∀n≤−1)0,l(0)|n=0 and �(∀n≥0)0,l(0)|n=0 both exist on the same edge in the boundary region, so to stay consistent, 
there must be an equivalence between the incoming(−) and outgoing(+ ) wave amplitudes of these solutions, 
that is,

This can be solved to give

Exactly the same procedure can be done for event II where

which yields the equivalence condition

with solutions

The results of this unitary interface scattering is shown in Fig. 10 for a Gaussian beam incident from material 
1 with amplitude A1 = 1 and no incident beam from material 2, that is, B2 = 0.

The Gaussian Beam is constructed based on the method described in section “Wave propagation in metama-
terials—Gaussian beams”, where the basis is the full wave field �nm(x, κy; k) as defined in Eq. (27),

The expansion coefficients α−60
 are as in Eq. (23) for a beam focal point n′ = −60 and tilt given by κ ′y = 1/l.

As was shown in section “Band engineering”, breaking the symmetry of the scattering matrix gives rise to a 
saddle shaped band resulting in the property of negative refraction at appropriate κy values, see Fig. 7c. When 
choosing such a material on the right hand side, one obtains the reflection/transmission behaviour shown in 
Fig. 11.

(32)
(

B1
A2

)

= Ŝ1,2

(

A1

B2

)

(33)Ŝ1,2 =
(

rI tII
tI rII

)

.

(34)
�(∀n≤−1)0,l(0)|n=0 =

(

a+
1,l + a−

1,l

)

+ rI

(

b+
1,l + b−

1,l

)

�(∀n≥0)0,l(0)|n=0 = tI

(

a+
2,l + a−

2,l

)

.

(35)
tIa

+
2,l = a+

1,l + rIb
+
1,l

tI a
−
2,l = a−

1,l + rIb
−
1,l .

(36)

rI =
a+
2,la

−
1,l − a−

2,la
+
1,l

a−
2,lb

+
1,l − b−

1,la
+
2,l

t1 =
a−
1,lb

+
1,l − b−

1,la
+
1,l

a−
2,lb

+
1,l − b−

1,la
+
2,l

.

(37)
�(∀n≤−1)0,l(0)|n=0 = tII

(

b+
1,l + b−

1,l

)

�(∀n≥0)0,l(0)|n=0 =
(

b+
2,l + b−

2,l

)

+ rII

(

a+
2,l + a−

2,l

)

,

(38)
tIIb

+
1,l = b+

2,l + rIIa
+
2,l

tII b
−
1,l = b−

2,l + rIIa
−
2,l

(39)

rII =
b+
1,lb

−
2,l − b−

1,lb
+
2,l

a+
2,lb

−
1,l − a−

2,lb
+
1,l

tII =
a+
2,lb

−
2,l − a−

2,lb
+
2,l

a+
2,lb

−
1,l − a−

2,lb
+
1,l

.

(40)�nm(z) =
1√
2π

∫

�

α−60
(κy)�nm(z, κy; k)dκy .
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Figure 10.  A refracted beam incident on a material interface with material properties defined by ŜŴ1
:= ŜŴpoint 

and ŜŴ2
:= ŜŴcross (k; 0, 1).

Figure 11.  Top: Iso-frequency contours for k = 1/l for a scattering matrix with ŜŴ1
:= ŜŴpoint and 

ŜŴ2
:= ŜŴcross (k; 0, 4.45) . Bottom: The resulting real component of the Gaussian beam �nm constructed from the 

full wave field �nm across the two materials with incident wave amplitudes A1 = 1 and B2 = 0 . The focal point 
of the Gaussian Beam is set to n′ = −60 with tilt given by κ ′y = 1/l.
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Waves in N layered metamaterials
Consider now a system of N layered metamaterials as shown in Fig. 12, each with their own properties as defined 
previously.

Each material spans a domain defined by the set of unit cells nj . Here the wave function across all N materials 
is expressed as a linear superposition of counter propagating eigenfunction solutions of each material, that is,

To evaluate the full wave function across all N materials, one must determine the coefficients Aj and Bj that 
satisfy the boundary conditions at all material interfaces. This is done by the Transfer Matrix  Method19. In the 
previous section, the wave amplitudes between two materials were determined by constructing a scattering matrix 
mapping incoming to outgoing wave amplitudes between the metamaterials 1 and 2 as defined in Eq. (32). This 
matrix can be rearrange to give a transfer matrix that maps wave amplitudes from material 1 to material 2, ˆ̃S1,2.

This procedure can be generalised to any arbitrary materials j and j + 1 giving

Waves propagating across a given material j accumulate a Bloch phase which can be expressed in terms of 
the matrix

where Wj = (max (nj)− min (nj))l is the width of material j. Having now formulated both scattering and 
propagation, one can express the wave amplitudes in material N in terms of the wave amplitudes in material 1.

We can now rearrange this transfer operator ˆ̃S1,N such that the entire system of layered materials acts as a 
single point scatterer by introducing the scattering matrix Ŝ1,N defined as

Now by setting the incident wave amplitudes A1 and BN , we determine the amplitudes of the scattered field by 
direct substitution into Eq. (46). Knowing the wave amplitudes in material 1, A1 and B1 , it is trivial to determine 
all other amplitudes using P̂j−1

ˆ̃Sj,j+1 . The results of this procedure is plotted in Fig. 13 for a three layered material.

Conclusion
We propose here a graph based technique for designing metamaterials allowing for a fast and flexible way to test 
resonant element proposals embedded periodically within a 2D square lattice. By modelling resonant elements in 
terms of open, graph-based scattering systems, we retain a connection with the underlying geometrical structure 
of the element which will inspire the engineering of physical metamaterials. This will make it possible to search 
for exotic band-diagrams, dispersion curves and wave effects linking these to an underlying array of resonant 
scattering systems. In this paper, we introduce the principles of graph based metamaterial construction includ-
ing the set-up and we show how to obtain plane wave and beam-like solutions in the infinite medium. We then 
demonstrate the handling of boundary conditions at interfaces as well as the generalisation to N layered media. 
In each case, the computation can be reduced to low-dimensional matrix problems with the help of Bloch’s 
theorem. Further results modelling various special wave effects will be presented in forthcoming publications.

(41)�nm(x, κy; k) =
N
∑

j=1

H(nj)
[

Aj(κy; k)ψ→
j,nm(x, κy; k)+ Bj(κy; k)ψ←

j,nm(x, κy; k)
]

.

(42)
(

A2

B2

)

= ˆ̃S1,2
(

A1

B1

)

=
(

tI − rI rII
tII

rII
tII

− rI
tII

1
tII

)(

A1

B1

)

.

(43)
(

Aj+1

Bj+1

)

= ˆ̃Sj,j+1

(

Aj

Bj

)

.

(44)P̂j(κy; k) =
(

e
iκ→j,x (κy;k)Wj 0

0 e
iκ←j,x (κy;k)Wj

)

,

(45)
(

AN

BN

)

= ˆ̃SN−1,N

(

P̂N−1
ˆ̃SN−2,N−1

)

. . .

(

P̂3
ˆ̃S2,3

)(

P̂2
ˆ̃S1,2

)

(

A1

B1

)

:= ˆ̃S1,N
(

A1

B1

)

.

(46)
(

B1
AN

)

= Ŝ1,N

(

A1

BN

)

.

Figure 12.  A system of N layered metamaterials with wave amplitudes, Aj and Bj , noted at each interface.
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