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Abstract 
This paper presents the cost-optimization of the 24 kWh battery pack of a Nissan Leaf. The optimization is based on decomposing the load 

that the battery experiences into two frequency components, which are handled by two independent batteries. The reduction in cost comes 

from the possibility of manufacturing batteries of different specifications whose cost per unit energy ($/kWh) and per unit power ($/kW) 

differ considerably from each other. The High-Capacity battery used for the low frequency part of the load has a low cost per unit energy 

capacity and a higher cost per unit power whilst the High-Power battery used for the fast-frequency part of the load is the reverse case.  

Two case studies were carried out. The first one uses the load profile seen by the battery pack when the car is subjected to the EPA-LA92 

driving cycle. The second case study considers a modified profile with a much higher crest factor. A sign-preserving filter is used in the 

study to perform the signal splitting. A two-dimensional search space is created and numerous “splits” are explored.  

Results show that an important reduction in the cost of the battery can be achieved. In the optimum configuration found (for the high crest 

factor profile) the High-Capacity battery has a capacity of 19.23kWh and sees a peak power of 37.17 kW; whereas the High-Power battery 

has a capacity of 4.77 kWh but sees a much larger peak power of 88.56 kW. The total cost of this hybrid system is $5939, which represents a 

12.7% cost reduction with respect to the original battery of the vehicle.    
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1. Introduction 

The transportation sector is of paramount importance for the 

wellbeing of the population and for promoting economic 

growth. Over the past 30 years the world’s energy use for 

transport has more than doubled [1,2] and in 2017 it accounted 

for approximately 30% of the world’s total energy 

consumption [3], from which 44% is attributable to light-duty 

cars and trucks [4].  

 

It is a well-known fact that the number of vehicles transiting on 

public roads has seen a dramatic increase in recent years. 

Approximately 393 million new vehicles have been sold 

worldwide between 1990 and 2017; of which 76% were sold 

during the past 4 years [5]. Forecasts suggest that sales will 

keep on the rise and an increase of 3.6% is projected for 2018 

[6]. 

 

The exponential growth of the transportation sector has caused, 

among other problems, an increase in harmful greenhouse gas 

emissions, particularly CO2. It is estimated that the 

transportation sector accounts for ~7.5 billion metric tons per 

year of CO2 emissions, which is equivalent to a 23% of the 

world’s total. Nearly 80% of the emissions of the 

transportation sector are attributable to light-duty vehicles [7, 

8]. 

 

The world has recognized the severe environmental impact of 

excessive and sustained carbon dioxide emissions and a global 

effort has been undertaken to shift towards a carbon neutral 

economy. The energy sector has seen a rise in renewable 

generation; nevertheless considerable improvements in the 

transportation sector are also needed since it is one of the 

economy’s largest sources of greenhouse gases.  

 

Electric vehicles (EVs) are an innovative zero-emission 

technology with the potential of playing a major role in the 

world’s transition towards a sustainable economy. 

Governments of numerous countries have created action plans, 

installed regulatory instruments and dedicated considerable 

amounts of funding to promote the development and adoption 

of EVs, as a measure not only to reduce carbon dioxide 

emissions but to diminish the global dependency to oil as well.  

 

There is undoubtedly a lot of momentum around EVs, which 

have also attracted significant interest and investment from the 

private sector. Since 2010, more than 20 automakers have 

introduced EVs to their line-ups [9] and in 2016 global electric 

vehicle ownership surpassed the 2 million mark [10]. The 

market share of EVs will continue to grow; nevertheless the 

forecast growth rate is not rapid enough. Despite changes made 

in legislations, better efficiencies achieved by all transport 

technologies and an increasing number of EVs on the road, 

emissions from the transportation sector are expected to 

increase an astounding 60% by 2050 [11].  

 

There are still several challenges and issues to address in order 

to achieve a much more widespread deployment and utilization 

of EVs. These range from vehicle-related aspects such as high 

cost and short life, battery technology limitations and 

inaccurate real-world driving range estimations to 

infrastructure-related aspects such as the capability of the 

electric grid to handle an increased demand of power 

throughout the day and the location and amount of public 

charging stations. A substantial amount of research has been 

devoted globally to find solutions to the aforementioned 

barriers; notwithstanding, considerable effort is still needed to 

promote the widespread utilization of EVs.  
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1.1 Objective of the study 

Accordingly, in this paper a study on the cost-optimization of 

the battery-pack of an EV is presented.  The study has two 

main objectives: (i) demonstrate the use of a signal processing 

tool (namely a “Sign-Preserving Filter”) in an EV context and 

(ii) understand the potential reduction in the cost of the battery 

pack (hence overall cost of the EV) if said battery is replaced 

by a hybrid 2-battery system, where one battery is used for 

bulk energy storage and the other battery is used for supplying 

power peaks.  

 

An energy consumption model is used to create the power 

profile seen by a Nissan Leaf when subjected to a standard 

driving cycle “EPA-LA92”.  This power profile is assumed to 

be representative of the driving conditions an EV is most likely 

to experience and is used as a case study. A “Sign-Preserving 

Filter” is used to split the power profile into two independent 

signals, each of which will be handled by one of the batteries 

of the hybrid system.  

 

A combinatorial space is created by varying the two control 

parameters of the filter, which in effect creates an array of 

different ways in which the power profile can be split. A cost 

model is used to evaluate the behaviour of the total cost of the 

system with respect to the control parameters and identify the 

optimum combination from an economic point of view.  

 

2. Models and Tools used for the Optimization 
 

2.1 Driving Schedule 

In the automotive industry numerous tests are carried out on 

vehicles to assess different parameters such as exhaust 

emissions, range and component durability. The vehicles are 

tested using a chassis dynamometer on which they perform a 

pre-defined driving cycle and experience simulated frictional 

losses and aerodynamic resistance. Driving cycles are usually 

defined in terms of vehicle speed and gear selection as a 

function of time [12].  

 

In the present study the California LA92 Driving Schedule of 

the Environmental Protection Agency (EPA) is used. This 

cycle was selected because it is a transient cycle (speed and 

acceleration are changing continuously) that accurately reflects 

driving conditions in an urban environment, which is the type 

of situation that electric vehicles are most likely to encounter 

[13,14].   

 

The “EPA LA92” driving schedule, shown in Figure 1, has a 

duration of 1435s in which 15.8 km are covered. The top speed 

reached is 108.1 km/hr and an average of 39.6 km/hr is 

observed. The cycle considers 233 seconds out of the 1435 at 

full stop (i.e. speed = 0). The maximum positive acceleration 

during the cycle is 3.1 m/s2 while the maximum deceleration is 

3.9 m/s2. The second-to-second dataset comprising the LA92 

driving cycle can be downloaded from the EPA’s website [15]. 

 

 
Figure 1. Speed and acceleration profiles of the EPA California 

LA92 driving schedule. 

 

2.2 Vehicle Energy Consumption Model  

In order to carry out the optimization of the duty of the battery, 

the driving cycle needs to be translated into an electric load. 

The speed-to-electric power conversion is carried out by means 

of the power-based vehicle energy consumption model (VT-

CPEM) developed by Virginia Tech. [16]. 

 

The model computes the instantaneous energy consumption of 

an EV using second-by-second vehicle speed, acceleration and 

roadway grade data as input variables. Additionally, it 

computes the regenerative braking efficiency using the 

instantaneous vehicle operation variables in contrast to other 

models that use average constant regenerative braking 

efficiency [17-19]. 

 

The VT-CPEM is a general model that can be applied to any 

electric vehicle. The model was validated by the authors with 

experimental data from a Nissan Leaf [20, 21]. For this study 

the same reference vehicle is used. 

 

The model calculates the power at the wheels (𝑃𝑤(𝑡)) by 

means of Eq. (1) using as inputs the speed of the vehicle (given 

by the driving schedule), its physical characteristics and the 

road’s conditions [16].  

 

𝑃𝑤(𝑡) = [𝑚𝑎(𝑡) + 𝐹1 + 𝐹2 +𝑚𝑔 ∙ sin⁡(𝜃)] ∙ 𝑣(𝑡) (1) 

 

Where:  

 

𝐹1 = 𝑚𝑔 ∙ cos(𝜃) ∙
𝐶𝑟
1000

∙ (𝐶1𝑣(𝑡) + 𝐶2) (2) 
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𝐹2 =
1

2
∙ 𝜌 ∙ 𝐴𝑓 ∙ 𝐶𝐷 ∙ 𝑣

2(𝑡) (3) 

 

In Equations (1)-(3) m is the mass of the vehicle, v(t) is the 

velocity (given by the driving schedule), a(t) is the acceleration 

(which takes negative values when the vehicle brakes), g is the 

gravitational acceleration and θ is the road grade (or slope). 

The coefficients Cr, C1 and C2 are rolling resistance parameters 

that vary as a function of road surface type, road condition and 

vehicle tire type, respectively. The density of the air is 

represented by ρ, Af is the frontal area of the car and CD is the 

aerodynamic drag coefficient of the vehicle. 

 

The model calculates the power at the electric motor (𝑃𝑒(𝑡)) 
based on the power seen at the wheels, by means of Eq. (4), 

which takes into consideration the efficiency of the drivetrain 

(𝜂𝐷) and the efficiency of the electric motor itself (𝜂𝑒) [16]. 

The parameters used in the study to calculate the electric power 

at the wheels are given in Table 1. 

 

 

𝑃𝑒(𝑡) = ⁡

{
 
 

 
 

𝑃𝑤
𝜂𝐷 ∙ 𝜂𝑒

𝑃𝑤 > 0

0 𝑃𝑤 = 0

⁡⁡⁡
𝑃𝑤

𝜂𝐷 ∙ 𝜂𝑒
∙ 𝜂𝑟𝑏 𝑃𝑤 < 0

 (4) 

 

Where:  

 

𝜂𝑟𝑏 = exp⁡(
0.0411

𝑎(𝑡)
) (5) 

 
 

With the values listed in Table 1, the EPA-LA92 drive cycle 

translates into the power profile shown by Figure 2. The power 

profile shown in the figure is specific of a Nissan Leaf; a 

different vehicle subjected to the same driving cycle would 

exhibit a different power profile.  
 

Table 1. Input parameters for the VT-CPEM model. 

 

Parameter Value Units Reference 

m 1521 kg [22] 

g 9.81 m/s2 -- 

θ 0 ° -- 

Cr 1.75 -- [23] 

C1 0.033 -- [23] 

C2 4.575 -- [23] 

ρ 1.226  kg/m3 -- 

Af 2.332  m2 [16] 

CD 0.28 -- [22] 

ηD 0.92 -- [24] 

ηe 0.91 -- [16] 

 

 
Figure 2. Electric power profile of a Nissan Leaf when subjected to 

the EPA-LA92 drive cycle. 

 

2.3 The Signal Splitting Tool 

The objective of this study is, as aforementioned, to explore the 

possibility of achieving a reduction in the cost of the electric 

battery of an EV. The premise is that the energy store could be 

hybridized in the following way: The duty (profile illustrated 

in Fig. 2) can be split into a predominantly low frequency 

profile and a predominantly high frequency profile. The low-

frequency profile will have a large energy content and a 

reduced peak power whereas the high-frequency profile will 

have a small energy content but a comparatively large peak 

power.  

 

Instead of having a single battery servicing the load in its 

entirety, the EV will have 2 batteries, one for each of the two 

frequency components (low and high) of the load.  The two 

batteries will be based on different compositions/technologies 

and therefore their cost will be different. The low-frequency 

battery will have a much lower cost per unit of energy storage 

capacity ($/kWh) while it will have a high cost per unit power 

($/kW). Conversely, the high-frequency battery will have a 

much lower cost per unit power but will have an increased cost 

per unit energy. Therefore, the low-frequency battery will 

supply the bulk of the energy and the high-frequency battery 

will mainly function as a peak-shaver. The low and high 

frequency batteries will be hereafter referred to as “High 

Capacity” and “High Power”, respectively.  

 

The intention of this paper is to demonstrate the use of a signal 

splitting tool (namely the sign preserving filter) for the cost 

optimization of the battery pack in an EV. The optimization 

presupposes the possibility of manufacturing batteries of 

different specifications whose cost per unit energy and per unit 

power differ considerably from each other. The selection of the 

two specific types of technologies for the High-Capacity and 

High-Power batteries is out of the scope of the paper. 

Nonetheless, section 3.1 presents a qualitative discussion on 

different types of battery chemistries together with examples of 

possible combinations thereof. 
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The most straightforward way to divide a signal (electric load 

in this case) is to employ a traditional signal-processing 

method, such as a Fourier analysis, to obtain the different 

frequency components and group them into a low frequency 

signal and a high frequency signal. However, such methods are 

not appropriate for an EV application for one reason: counter-

flow of energy. Figure 3 shows an example of two signals 

obtained after decomposing the EPA-LA92 power profile via a 

Fourier analysis.  

 

 
Figure 3. Example of a Fourier decomposition (and grouping) of the 

power profile  

 

It can be seen that in many instants one signal is positive while 

the other is negative.  In the context of a car this implies that 

one battery is being charged by the regenerative brakes while 

at the same time the other battery is in discharge (power 

flowing to the wheels). Needless to say, the situation described 

does not make sense; both batteries should be either charging 

or discharging at the same time. The case where one battery is 

idle while the other one is active is possible because there is no 

work in opposite directions.  

 

A “Sign-Preserving Filter” capable of splitting a signal A into 

two components B and C in such a way that at every point in 

time (t) the two components have the same sign as A and their 

sum equals A has been proposed by Cárdenas et al. [25] 

 

𝐴(𝑡) = 𝐵(𝑡) + 𝐶(𝑡) (6) 

 

𝑠𝑔𝑛[𝐴(𝑡)] = 𝑠𝑔𝑛[𝐵(𝑡)] = 𝑠𝑔𝑛[𝐶(𝑡)] (7) 

 

The main difference between the sign-preserving filter and 

other Fourier-based filters is that the condition described by 

Eq. (7) is true at all times. During the periods when the original 

signal 𝑨 is positive, 𝑩 and 𝑪 are also positive. Similarly, 

during the periods when 𝑨 is negative, both components have a 

negative value as well. The component B produced by the filter 

contains mainly low-frequency (smooth) content while C is 

predominantly comprised of high frequency (not-so-smooth) 

content. 

The aforementioned sign-preserving filter is used as a tool in 

this study for the cost-optimization of the battery pack of an 

EV. A brief explanation of the operation of the filter is 

provided but its particularities are not addressed in depth. A 

comprehensive explanation of the mechanics of the filter, 

together with examples of other applications, can be found in 

[25]. 

 

The operation of the filter is based on wavelets. The inputs to 

the filter are a discrete signal (in this case the electric power 

profile of a Nissan Leaf when subjected to the EPA-LA92 

driving cycle) and two user-defined parameters: maximum 

width of the wavelets (𝜔𝑚𝑎𝑥) and number of runs (𝑛𝑟𝑢𝑛).  

 

Figure 4 shows the process followed by the filter. In every one 

run the filter generates co-sinusoidal wavelets of 3, 5, 7…𝜔𝑚𝑎𝑥  

number of points. An important consideration is that the 

wavelets should be relatively small compared to the length 

(total number of points) of the signal.  

 

 
 

Figure 4. Simplified flowchart of the operation of the Sign-

Preserving Filter 
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The low-frequency component B starts the process being an 

identical copy of the original signal A while the high-frequency 

signal C starts being completely zero. Every wavelet marches 

through the signal, the smallest one (3 points) is the first while 

the widest one (𝜔𝑚𝑎𝑥)⁡is the last one. As a wavelet moves 

through the signal it defines an “interval of interest”.   

 

Within that “interval of interest” the filter calculates (based on 

the shape of the wavelet) the maximum amount of non-

smoothness (i.e. high frequency) that it can remove from the B 

component and add to the C component without causing a sign 

change in either of them.   
 

Once a wavelet has passed throughout the complete signal the 

process is repeated with the following wavelet. One run of the 

filter is completed when all the wavelets comprised in the 

interval between 3 points and 𝜔𝑚𝑎𝑥 ⁡ have passed through the 

signal. The filter can run as many times as the user defines via 

𝑛𝑟𝑢𝑛 .  
 

As expected, a larger 𝑛𝑟𝑢𝑛 yields a smoother low-frequency 

signal. However, the maximum wavelet width has a stronger 

effect on the performance of the filter. When a small value for 

𝜔𝑚𝑎𝑥  is used the filter can only remove a very small amount of 

“non-smoothness” on every run because it does fewer passes 

per run (proportional to the number of wavelets). Conversely, 

when a larger value for 𝜔𝑚𝑎𝑥   is considered, more wavelets are 

used per run therefore the filter is able to subtract larger 

amounts of high-frequency in every run and produces a much 

smoother curve in less iterations.  

 

Figure 5 shows an example of a split of the EPA- LA92 power 

profile done with the sign-preserving filter using a 𝜔𝑚𝑎𝑥 ⁡of 25 

and 50 runs. The figure shows only a small segment of the 

profile (between 570 and 750 seconds) for the sake of an easier 

visualization. It can be seen that the conditions stated by 

Eqs.(6)-(7) are effectively met at all times.  

 

 
Figure 5. Example of a signal split produced by the sign-preserving 

filter 

 

Another particularity of the Sign-Preserving filter that should 

be pointed out is the fact that the filter does not have a stopping 

condition other than the specified number of runs.  As 

aforementioned, the signal B is initialized as a copy of the 

original signal A and the signal C starts the process being a flat 

line at zero. The filter removes “high frequency” content from 

signal B and adds it to signal C. If 𝑛𝑟𝑢𝑛⁡is sufficiently large, 

the signal B will end up being completely smoothed down to 

zero and signal C will end up being an identical copy of the 

original signal A.  The key point is that the operation of the 

filter is a selective process: the highest-frequencies found in 

each pass are removed first and the lower frequencies are left 

behind for a subsequent pass. 
 

3. Analysis of Results and Discussion 

 

3.1 Case study 1: Nissan Leaf under EPA-LA92 

The use of the sign preserving filter will be demonstrated 

through the optimization of a Nissan Leaf’s battery pack. It 

must be highlighted that the optimization technique presented 

in this paper is not limited to cars, but could be equally applied 

to other types of EVs, being particularly beneficial to vehicles 

that are likely to experience drastic or very frequent 

acceleration and braking, such as electric bikes and city buses. 

 

 The signal used for the case study no. 1 is the electric power 

profile of the vehicle (see Fig. 2) when it is subjected to the 

EPA-LA92 driving cycle. The signal has a maximum peak 

power of 102.35 kW and an average (RMS) power of 16.22 

kW. With those two values a crest factor with a magnitude of 

6.31 is calculated via Eq. (8). The crest factor is a measure of 

how extreme peaks are in a given signal; the closer that 

number is to one the closer the signal is to a straight line. At 

the end of the drive cycle the net energy outflow from the 

battery is 1.84 kWh; throughout the cycle the battery supplies 

the 3.07 kWh to the electric motor but 1.23 kWh are 

recuperated thanks to the regenerative brakes of the vehicle.  

 

𝐶𝑟𝑒𝑠𝑡(𝑥) =
|𝑥𝑝𝑒𝑎𝑘|

𝑥𝑅𝑀𝑆
 (8) 

 

The Nissan Leaf has a total energy storage capacity of 24 kWh 

provided by a single Li-ion battery pack (comprised of 192 

cells) [26]. In this study, the total storage capacity of the 

vehicle is treated as a constraint and is maintained constant at 

24 kWh, which is supplied by the combined capacities of the 

High-Capacity and High-Power batteries.  

 

The original battery of the Nissan Leaf has a Peak Power to 

Energy Capacity ratio (PPtE) of 4.26 (considering the EPA-

LA92 profile). In the cost-optimization of the battery pack the 

PPtE for the High-Capacity battery needs to be minimized 

while the PPtE of the High-Power battery needs to be 

maximized. That is to say, the High-Capacity battery will have 

a large storage capacity (most of the 24 kWh) and will handle a 

reduced (or steady) power demand while the High-Power 

battery will be much smaller in capacity but will experience 

comparatively large power peaks. 
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There is a wide range of battery chemistries, each with 

different advantages and drawbacks. Traditional batteries such 

as Lead and Ni-MH, although still used for numerous 

applications, are not used in EVs as they are considered as 

mature technologies that have reached their peak in cost 

reduction and performance. Li-ion is regarded as the most 

promising battery technology for the near future due to its 

favorable characteristics: high energy density, high efficiency, 

long lifespan. Among the most relevant commercially available 

Li-ion batteries we can find the following chemistries: 

 Lithium-Cobalt Oxide (LiCoO2) 

 Lithium Manganese-Oxide (LiMn2O4),  

 Lithium Nickel Manganese Cobalt-Oxide 

(LiNiMnCoO2) 

 Lithium Iron-Phosphate (LiFePO4) 

 Lithium Nickel Cobalt Aluminium-Oxide 

(LiNiCoAlO2)  

 Lithium Titanate (Li4Ti5O12) 

Figure 6 shows a graphic summary of the main characteristics 

of said commercially available batteries [27]. It can be easily 

seen that there are trade-offs between the different 

characteristics of the batteries; generally one parameter cannot 

be improved without worsening another.  

 

The Nissan Leaf uses a battery pack based on Lithium 

Manganese-Oxide (commonly known as LMO) due to a 

reasonable good specific power. However the specific energy 

of the composition is somewhat compromised, which 

ultimately results in a reduced driving range. Tesla, on the 

other hand, employs batteries based on Lithium-Nickel-Cobalt 

Aluminum-Oxide (commonly known as NCA) for its EVs. The 

NCA composition has clear advantages over LMO; 

nevertheless it compromises power in favor of energy. 

 

The Lithium-Nickel-Manganese Cobalt-Oxide (NMC) batteries 

offer the best balance among all commercial solutions. A 

remarkable feature of this composition is that the proportions 

can be varied to modify the characteristics of the battery. 

Increasing the share of nickel favours the specific energy while 

increasing the share of manganese increases the specific 

power. The NMC batteries dominate the electric vehicle 

market [28]. 

 

There are other battery chemistries not based on lithium such 

as the Sodium Nickel-Chloride (Na/NiCl2) composition. 

Batteries based on this chemistry can achieve a cost of about 

one third of the cost of a Li-ion battery while having a 

comparable specific energy, they have a long lifecycle and can 

be discharged almost completely without suffering any 

degradation. However their specific power is much lower than 

Li-ion; hence they haven’t been considered as the main battery 

for EVs [29]. 

 

The High-Capacity battery of the proposed 2-battery hybrid 

system could be based, for example, on a chemistry that has a 

high specific energy such as NCA, NMC or even Na/NiCl2. 

The HP battery, on the other hand, could be based on a 

chemistry with a high specific power such as LFP. 

 
Figure 6. Summary of characteristics of commercial Li-ion 

chemistries 

 

It is important to highlight that the aforementioned 

combination of chemistries (NMC + LFP) is merely an 

example. As mentioned in section 2.3, the paper is not aimed at 

designing a specific hybrid battery pack; instead its intention is 

to demonstrate the use of the sign preserving filter for 

optimizing (in terms of cost) the battery pack of an EV. It 

could very well be the case that the tool is used in future years 

when new battery compositions that are currently under 

development become available.   

 

To carry out the cost optimization of the battery-pack of the 

Nissan Leaf, a 2D combinatorial space is created with different 

values for the two input parameters to the filter:⁡𝜔𝑚𝑎𝑥 ⁡and 

𝑛𝑟𝑢𝑛.  The maximum wave width spans a range from 3 to 71 

points (excluding even values) while the number of runs goes 

from 1 up to 100. In other words, 3500 different filtering 

operations will be carried out with the EPA-LA92 power 

profile, which will produce 3500 different load profiles for 

each one of the batteries (High-Capacity and High-Power). The 

ranges for ⁡𝜔𝑚𝑎𝑥 and 𝑛𝑟𝑢𝑛 may seem to be rather arbitrarily 

defined; however Figure 10 demonstrates that the optimum 

solution (least cost) is contained within the defined 2D search 

space.  
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A capacity ratio (𝐸𝐻𝐶) defined as the net amount of energy 

supplied by the High-Capacity battery with respect to net 

energy supplied by the original battery is calculated, through 

Eq. (9), for all of the 3500 different signal splits generated. The 

High-Power battery provides the difference in capacity 

between the original battery (24 kWh) and the capacity of the 

High-Capacity battery. Therefore its capacity ratio (𝐸𝐻𝑃) is 

simply 1 minus the capacity ratio of the High-Capacity battery. 

 

𝐸𝐻𝐶 = ∫ 𝐵(𝑡)⁡𝑑𝑡

𝑡=1435

𝑡=0

⁡ ⁡ ∫ 𝐴(𝑡)⁡𝑑𝑡

𝑡=1435

𝑡=0

⁄  (9) 

 

𝐸𝐻𝑃 = 1 − 𝐸𝐻𝐶 (10) 

 

Figure 7 shows how the capacity ratio of the High-Capacity 

battery (𝐸𝐻𝐶) varies with respect to the filter’s control 

parameters.  It can be seen that the capacity ratio is high (> 

95%) for small values of ⁡𝜔𝑚𝑎𝑥  and small values of 𝑛𝑟𝑢𝑛⁡, 
which indicates that the High-Capacity battery is supplying 

almost all of the energy required by the driving schedule. This 

occurs because when the filter operates with a small maximum 

wave-width (𝜔𝑚𝑎𝑥) it is only capable of removing a very small 

amount of non-smoothness per run; therefore signal B (low 

frequency) ends up being very similar to the original signal A. 

Conversely, for large values of 𝜔𝑚𝑎𝑥  and large values of 𝑛𝑟𝑢𝑛 

the capacity ratio (𝐸𝐻𝐶) is very low (<0.3), which indicates that 

the High-Capacity battery is doing very little and the majority 

of the work is being done by the High-Power battery. 

 

 
Figure 7. Variation of the capacity ratio of the High-Capacity battery 

(𝐸𝐻𝐶) with respect to the filter’s control parameters 

 

Figure 8 shows the peak power demand experienced by both 

batteries with respect to the control parameters of the filter. It 

can be observed that at low values of 𝜔𝑚𝑎𝑥  and 𝑛𝑟𝑢𝑛⁡ the peak 

power seen by the High-Capacity battery is very close to the 

peak power of the original unfiltered EPA-LA92 signal 

(102.35 kW) and that the peak power handled by the High-

Power battery is very low. The foregoing is caused by the 

filter’s inability to remove significant amounts of non-

smoothness per run when it operates with small values of 

𝜔𝑚𝑎𝑥 . 

 

At high values of 𝜔𝑚𝑎𝑥 ⁡and 𝑛𝑟𝑢𝑛⁡the inverse case occurs. The 

peak power experienced by the High-Capacity battery reduces 

dramatically while the peak values seen by the High-Power 

battery approximate the absolute maximum peak power of the 

unfiltered EPA-LA92 signal. 

 

It is very important to emphasize that even though the sum of 

the low-frequency (B) and fast-frequency (C) signals replicate 

exactly the original signal (A), the sum of the peak powers of B 

and C might exceed the peak power of A because they might 

not occur at the same instant in time.  

 

The peak power plots (Fig.8) reveal important information 

about how the sign-preserving filter is acting. The objective of 

the optimization process is in effect to reduce the power 

requirement for the High-Capacity battery in order to reduce its 

cost and shift those power peaks to a more suitable High-

Power battery. Nevertheless; these results can be misleading 

and conclusions should not be drawn exclusively from this 

point of view.  

 
 
Figure 8. Variation of the peak power seen by the High-Capacity (top) 

and High-Power (bottom) batteries with respect to the filter’s control 

parameters 

 

In the figures, the portion of the surface where the High-

Capacity battery experiences a small peak power (large 𝜔𝑚𝑎𝑥  

+ large 𝑛𝑟𝑢𝑛) is also the same region where it has a small 

contribution to the energy supplied (i.e. low capacity ratio); 
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this effect is contrary to what is desired. Analogously, the 

regions where the High-Power battery observes a high peak 

power coincide with the areas of the 2D space where it has a 

very high capacity ratio and again, this is not desirable because 

this kind of battery has a high cost per unit energy capacity.  

 

The peak power to energy capacity (PPtE) ratio, calculated via 

Eq. (11), provides a much clearer view of the aforementioned 

trade-off. The capacity of either battery (High Capacity and 

High Power) is proportional to its contribution to the energy 

requirement in the EPA-LA92 cycle. It should be remembered 

that the study considers the capacity of the original battery 

pack in the vehicle (24 kWh) as a constraint and the sum of the 

capacities of the High-Capacity and High-Power batteries 

should be equal to it.  

 

𝑃𝑃𝑡𝐸𝐻𝐶 =
|𝑃𝑒𝑎𝑘𝐻𝐶|

24 ∗ 𝐸𝐻𝐶
 (11) 

 

Figure 9 shows how the PPtE ratio of both batteries varies with 

respect to the input parameters of the filter.  For the case of the 

High-Capacity battery, the PPtE ratio needs to be minimized 

because these batteries have a low cost per unit energy capacity 

and a high cost per unit power. It can be seen that the region 

where the ratio is minimized is the region where capacity ratio 

of the battery (𝐸𝐻𝐶) oscillates between 0.73 and 0.78. The 

absolute minimum value for 𝑃𝑃𝑡𝐸𝐻𝐶  is 2.67, which is obtained 

with a 𝜔𝑚𝑎𝑥  = 45 and a 𝑛𝑟𝑢𝑛=9; here 𝐸𝐻𝐶  has a value of 0.75.  

 

On the other hand, the PPtE ratio for the High-Power battery 

should be maximized because these batteries have a low cost 

per unit power and a high cost per unit energy capacity. Due to 

the way the load decomposition is carried out, the region where 

the PPtE ratio is maximized is the region where the filter has 

the minimum possible effect (𝜔𝑚𝑎𝑥 = 3 ,𝑛𝑟𝑢𝑛 = 1). This is a 

trivial finding since it suggests that the High-Power battery 

should be as small as possible, to the point where its presence 

in the system is almost negligible. Figure 9 (bottom) does not 

show the aforementioned region and focuses only on 𝜔𝑚𝑎𝑥 ≥
25 and 𝑛𝑟𝑢𝑛 ≥ 10. It is interesting to note that (unlike the case 

for the High-Capacity battery) the PPtE ratio for the High-

Power battery decreases continuously with increasing values 

for 𝜔𝑚𝑎𝑥  and number of runs. 

 

Equations (12) and (13) are the assumed cost models for the 

High-Capacity and High-Power batteries, respectively. It 

should be emphasized that these simplified models are merely 

illustrative. Up to now there are no models available in the 

literature that allow calculating the cost of an electric battery 

by independently assigning a monetary value to its energy 

storage capacity and peak power capability. 

 

𝑐𝑜𝑠𝑡𝐻𝐶 = 20 ∙ (24 ∙ 𝐸𝐻𝐶) + 60 ∙ 𝑃𝑒𝑎𝑘𝐻𝐶 (12) 

 

𝑐𝑜𝑠𝑡𝐻𝑃 = 140 ∙ (24 ∙ 𝐸𝐻𝑃) + 30 ∙ 𝑃𝑒𝑎𝑘𝐻𝑃 (13) 

 

𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑜𝑠𝑡𝐻𝐶 + 𝑐𝑜𝑠𝑡𝐻𝑃 (14) 

 

 

The closest to this is a model developed by Sakti et al. [30], 

which calculates the cost of a NMC Li-ion battery based on 

experimental data.  This work presupposes that the High-

Power battery will have a different chemistry to the High-

Capacity battery that would allow reducing the cost per unit 

power. Therefore, Sakti’s model could only be applied for the 

High-Capacity battery. The linear equation proposed for the 

High-Capacity battery (Eq. (12)) yields very similar costs to 

Satki et al. model for a battery with specs in the range studied.  

 
Figure 9. Effect of the filter parameters on the PPtE ratios seen by the 

High-Capacity (top) and High-Power (bottom) batteries 

 

Using Eq. (12) the cost for the original battery pack of the 

vehicle (24 kWh and 102.35 kW) is estimated to be $6621.1, 

which is in agreement with the prices quoted by Nissan for the 

Leaf’s battery pack [31]. It should be noted that the cost of the 

battery pack not only accounts for the Li-ion cells (192 in the 

case of the Nissan Leaf) but it also considers the battery 

management system, sensors, internal wiring, plugs, etc., used 

to monitor the state of charge of the pack and control some 

critical parameters such as the temperature of the modules [32]. 

 

Figure 10 shows the total cost of the different combinations of 

batteries (High Capacity + High Power) contained in the two-

dimensional search space (𝜔𝑚𝑎𝑥 and 𝑛𝑟𝑢𝑛). The total cost is 

calculated, as aforementioned by Eqs. (12)-(14). In the surface, 

the result of every combination of the filter’s control 

parameters: 𝑛𝑟𝑢𝑛 and 𝜔𝑚𝑎𝑥is shown.  
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Figure 10. Variation of the total cost of the hybrid battery (HC + HP) 

with respect to the filter’s control parameters 

 

As earlier explained, each one of those combinations is a 

different split of the vehicle’s load (in this case the EPA-LA92 

profile).  The High-Capacity and High-Power batteries of 

every combination presented in the surface has different 

operating parameters: different capacity ratios (See Fig. 7) and 

different maximum peak powers (see Fig. 8).  

 

It can be seen in Figure 10 that the total cost surface has local 

maxima and minima. This behaviour is caused by the shape of 

the reference signal and the way the filter works, together with 

the form of Eqs. (12)-(14). The highest overall costs observed 

are around~$7500. These are obtained from combinations of 

𝜔𝑚𝑎𝑥  and 𝑛𝑟𝑢𝑛 that yield an 𝐸𝐻𝐶  in the range between 0.25 to 

0.5 

 

The lowest overall costs, ranging from $6250 to $6350, are 

found in the region where the capacity ratio of the High-

Capacity battery is between 0.92 and 0.96. The absolute lowest 

total cost found is $6227.8, which is obtained by means of a 

𝜔𝑚𝑎𝑥=15 and 𝑛𝑟𝑢𝑛=22. In the optimum configuration found 

(minimum cost), the High-Capacity battery has a capacity ratio 

(𝐸𝐻𝐶) of 0.93 which is equivalent to 22.36 kWh and it sees a 

maximum peak power of 75.56 kW. Meanwhile, the High-

Power battery has a capacity of 1.63 kWh and sees a 

comparatively large peak power of 33.93 kW  

 

The total cost of $6227.8 represents a 5.9% cost reduction in 

comparison to the cost of the original battery pack of the 

vehicle. 
 

Figure 11 provides a different angle at the overall system costs. 

Here all the 3500 different signal splits (combinations of 𝜔𝑚𝑎𝑥  

and 𝑛𝑟𝑢𝑛) are presented in the form of a Pareto front with 

respect to the capacity ratio of the High-Capacity battery 

(𝐸𝐻𝐶). As it can be seen, many different combinations of 

parameters yield the same capacity ratio (+/- 0.1%) but some 

of them are more expensive than others. The lowest cost of 

$6227.8 is obtained, as aforementioned, with a capacity ratio 

(𝐸𝐻𝐶) of 0.93. 

 

 
Figure 11. Total cost of the hybrid battery system for different values 

of capacity ratio (𝐸𝐻𝐶) 

 

It has been demonstrated that the cost of the battery pack can 

be reduced if the load of the electric motor is split into two 

frequency components which are handled by two separate 

batteries: High Capacity (for the low frequency part) and High 

Power (for the high frequency part).  

 

An important aspect to address regarding the implementation 

of the hybrid system described (HC+ HP batteries) is the 

possibility of incurring into additional costs in the rest of the 

components of the vehicle’s powertrain.  As Figure 12 shows, 

the powertrain required for a hybrid battery pack (bottom) will 

differ slightly from the configuration used in a normal battery-

powered EV, such as the Nissan Leaf (top).  
 

In the standard configuration (Fig. 12 top), the battery pack is 

first connected to a DC/DC converter and a DC Link.  In the 

Nissan Leaf, these two components are integrated into a single 

unit known as the “DC Junction Box” (part number 292C0-

3NA0C). The main functions of the DC Junction Box are 

acting as a coupling interphase between the battery pack and 

the inverter and to supply low-voltage power for the 12V 

electric devices in the car.  The output of the DC Junction Box 

is fed into an inverter which produces AC to drive the electric 

motor [33]. Needless to say, all the aforementioned 
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components are bidirectional to allow the recharge of the 

batteries through the regenerative braking system. 
 

 
 

Figure 12. Comparative diagram of the two powertrains: Single 

battery and hybrid (HC+HP) battery 

 

The inverter, electric motor and transmission remain 

unchanged in the hybrid-battery configuration (Fig 12 bottom), 

thus the potential for an increase in cost in these components is 

discarded. However, the DC/DC converter and DC Link 

(known collectively as the Junction Box) will be slightly 

different. In the hybrid-battery configuration two independent 

DC/DC converters will be required because it is likely that the 

output voltages of the High Capacity and High Power batteries 

differ from each other (given that different chemistries will be 

used). If the output voltages of the two batteries were the same, 

probably one DC/DC converter (with capability for two 

simultaneous inputs) would be enough.  

 

The junction box of the Nissan Leaf costs approximately $650 

[34,35]. The cost of the power electronics contained in it is 

given primarily by their power rating. Even if two junction 

boxes were required for the proposed hybrid-battery 

configuration, the overall cost would remain the same, or very 

similar, because (as explained in section 2.3) the sum of the 

power supplied by the two batteries at any one time is the same 

as in the single battery configuration.  

 

In reality the cost of installing two smaller junction boxes will 

be higher than installing a single larger box due to the cost of 

the casings, connectors, wiring etc; however the cost of these 

components is negligible in comparison to the cost of the 

whole unit. It should also be noted that only one of the two 

DC/DC converters (linked to the HC battery) will act as a low 

voltage source for the vehicle’s peripheral electronics, while 

the other one (linked to the HP battery) will be a much simpler 

circuit. 

 

Because the two batteries will not always operate in parallel, 

(e.g. when one is active and the other one is idle) a control unit 

is required. This unit will monitor the load of the electric motor 

and will identify which battery should supply the power at any 

given time. The hardware for the control unit will not be 

considerably different from any other ECU (electronic control 

unit) found in the vehicle thus its cost should not exceed 

~$100. Perhaps the main difference is that the control unit will 

be required to pass high voltage lines (~360V) coming from 

the batteries and to switch them on/off as appropriate.  

 

The software programmed in the control unit will indeed be 

complex but it will not have a perceivable effect on the cost 

when these control units are mass produced. The software 

could be based on a modified version of the sign-preserving 

filter presented herein. For this it would need to be modified to 

work on a rolling basis and having only a short forecast (of a 

few seconds at most) instead of knowing the shape of the full 

signal. Alternatively, the software could be based on a 

conventional (albeit advanced) control strategy that takes into 

account, among other parameters, the state of charge of both 

batteries and the change in the motor’s load in order to predict 

if there is a peak in power demand coming.  

 

It results credible, based on the above, that the hybrid 2-battery 

system proposed can be implemented in an EV with only a 

marginal increase in the cost of the other components of the 

vehicle’s powertrain. Therefore, the reduction achieved in the 

cost of the battery pack will be reflected in the overall cost of 

the vehicle.  

 

Besides the reduction in the capital cost of the battery pack, the 

proposed signal-splitting methodology offers a secondary 

benefit. Because the hybrid battery consists in two separate 

batteries, one tailored for bulk energy storage and another one 

tailored for peak power, the life expectancy of both is 

increased in comparison with the normal single battery 

approach.  

 

In the single battery approach, the chemistry of the battery is 

tuned to achieve a middle-point between specific power and 

specific energy. Because of this, the battery sustains damage 

and its lifespan is reduced when it is required to supply power 

peaks. In the 2-battery approach, the power peaks are handled 

by the HP battery. This battery has been purposely designed 

for high PPtE ratios, so it will not degrade when subjected to 

intense discharges. The HC battery supplies a much steadier 

load and sees a considerably lower PPtE ratio, thus its lifespan 

is not shortened. 

 

The prolonged (or better preserved) life expectancy of the HC 

and HP batteries improves the cost of running the EV vehicle 

since they won’t need to be replaced so often. For reference, in 

a Nissan Leaf the battery lasts on average 5 years (or 60,000 

miles) [31]. An assessment of the improvement in battery life 

is out of the scope of this paper given that the models available 

in the literature (e.g.[36]) are chemistry-specific. It is 
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impossible to quantify the improvement in lifespan achieved 

by means of the proposed hybrid system without defining the 

specific chemistries of both, the HC and HP batteries. 
 

3.2 Case study 2: Modified profile based on EPA-LA92 

In section 3.1 the optimization of the battery pack for a Nissan 

Leaf was carried out using as a reference load the electric 

power profile of the car when subjected to the EPA-LA92 

driving cycle. The results presented are positive and show that 

a reduction in the total cost of the battery of about 5.9 % can be 

achieved.  

 

Although a meaningful percentage in cost reduction was 

achieved, the number is limited by the power profile used for 

the analysis and does not fully demonstrate the potential of the 

sign-preserving filter. The filter would certainly be more 

effective if the signal to be split had a larger crest factor (i.e. a 

peakier profile). This section of the paper presents a second 

case study in which a signal with a higher crest factor is used 

with aims at further demonstrating the capabilities of the sign-

preserving filter as a tool for optimizing the battery pack of an 

EV.   

 

Instead of using an entirely arbitrary signal with a higher crest 

factor, a structured approach to define the signal used for the 

second case study was followed. The signal for the case study 

no. 2 is created by modifying the electric power profile used in 

the previous case study by means of Eqs.(15)-(17), where x are 

the data-points from the EPA-LA92 power profile (in kW) and 

𝑓(𝑥)⁡is their equivalent value in the modified profile. For 

example, at any time (t) when the original power profile has a 

value of 40 kW, the modified signal will have a value of 23.88 

kW and at any time (t) when the original power profile has a 

value of 100 kW, the modified signal will have a value of 

102.9 kW 

 

𝑓(𝑥) =

{
 
 

 
 

1

2.5
∙ (𝑀 + 𝐿) 𝑥 > 0

0 𝑥 = 0

−
1

2.5
∙ (𝑀 + 𝐿) 𝑥 < 0

 (15) 

 

Where: 

𝑀 = 300 ∗ exp (−(⁡
|𝑥| − 130

50
)

2

) (16) 

 

𝐿 = 100 ∗ exp (−⁡⁡(⁡
|𝑥| − 70

35
)

2

) (17) 

 

The form of Eqs. (15)-(17) was purposely chosen to perform a 

“selective squashing function” on the original signal. |The 

points that are closer to zero are scaled down by a larger factor 

than those points further away from zero; thus the most 

prominent peaks of the original signal remain almost 

unmodified. This allows reducing the RMS value while 

maintaining a large peak value, which yields an increased crest 

factor.   

The objectives of following the procedure above-described 

over simply utilizing an arbitrary signal are:  

1) If the signal generated is converted back to a speed profile 

applying the VT-CPEM model backwards it will still resemble 

a driving pattern, albeit a more aggressive one.  

2) It enables the results presented in the paper to be reproduced 

more easily. The reader can download the full EPA-LA92 

driving profile (1435 data points) from [15] and generate the 

same signal via Eqs. (15)-(17). 

 

Figure 13 shows the modified power profile, hereafter referred 

to as “Mod-EPA”. It can be seen in the figure that the Mod-

EPA profile appears to be peakier, which is confirmed by its 

increased crest factor of 11.49 (in contrast to the 6.3 of the 

original EPA-LA92). 

 

 
Figure 13. Modified power profile based on EPA_LA92 

 

The Mod-EPA profile has a peak power of 105.4 kW and an 

average (RMS) power of 9.17 kW. At the end of the “driving 

cycle” the net energy outflow from the battery is 0.54 kWh; 

throughout the cycle the battery supplies 1.15 kWh to the 

electric motor but receives back 0.61 kWh from the 

regenerative brakes of the car.  

 

The cost-optimization is carried out in the same way as in the 

case study no.1. A two-dimensional search space is created 

with different values for 𝜔𝑚𝑎𝑥 ⁡and 𝑛𝑟𝑢𝑛.  The maximum wave 

width in this case goes from 3 to 45 points (excluding even 

values) while the number of runs goes from 1 up to 100, which 

results in 2200 different combinations of parameters. 

 

Figure 14 shows the capacity ratio of the High-Capacity 

battery obtained for different combinations of filter parameters. 

A very similar behaviour to that observed in the previous case 

study can be seen. For small values of 𝜔𝑚𝑎𝑥 ⁡and 𝑛𝑟𝑢𝑛 the 

capacity ratio of the High-Capacity battery is very high, while 

it decreases with increasing values for the maximum wave-

width and number of runs.  
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Figure 14. Behaviour of the capacity ratio of the High-Capacity 

battery for different splits (𝜔𝑚𝑎𝑥 ⁡+ 𝑛𝑟𝑢𝑛) of the Mod-EPA profile 

 

The variation of the peak power observed by both batteries 

High-Capacity and High-Power, as the filter parameters change 

is shown by Figure 15. Similarly to case study no. 1, at low 

values of 𝜔𝑚𝑎𝑥 ⁡and 𝑛𝑟𝑢𝑛⁡the peak power seen by the High-

Capacity battery approximates the peak power of the unfiltered 

Mod-EPA profile (105.4 kW) and the peak power seen by the 

High-Power battery is very low. Inversely, at high values of 

𝜔𝑚𝑎𝑥 ⁡and 𝑛𝑟𝑢𝑛  the peak power values seen by the High-

Capacity battery markedly reduce whilst the peak powers 

experienced by the High-Power battery approximate the 

absolute maximum peak power of the unfiltered Mod-EPA 

signal. 

 
Figure 15. Behaviour of the peak power seen by the High-Capacity 

(top) and High-Power (bottom) batteries for different splits of the 

Mod-EPA profile 

Combining the results shown in Figures 14 and 15 it is possible 

to calculate a Peak Power to Energy Capacity (PPtE) ratio for 

both batteries by means of Eq. (11). This ratio is useful 

because it reveals the combinations of parameters that 

simultaneously maximize the energy contribution and 

minimize the power seen by the High-Capacity battery or the 

inverse case for the High-Power battery.  

 

Figure 16 shows the behaviour of the PPtE ratios of both 

batteries with respect to the filter’s control parameters.   For 

the case of the High-Capacity battery it can be seen that the 

region where the ratio is minimized is the region where the 

capacity ratio of the battery (𝐸𝐻𝐶) neighbours 0.55-0.65. The 

absolute minimum value for 𝑃𝑃𝑡𝐸 is 1.69, which is obtained 

with a 𝜔𝑚𝑎𝑥  = 41 and a 𝑛𝑟𝑢𝑛=56; here 𝐸𝐻𝐶  has a value of 0.61. 

 

Similar to the case study no.1, the region where the PPtE ratio 

for the High-Power battery is maximized is the region where 

the minimum 𝐸𝐻𝑃 is found (𝜔𝑚𝑎𝑥 = 3 ,𝑛𝑟𝑢𝑛 = 1). The figure 

does not show this region of the combinatorial space as it is a 

trivial finding and focuses only on 𝜔𝑚𝑎𝑥 ≥ 15 and 𝑛𝑟𝑢𝑛 ≥ 10. 

The PPtE of the High-Power battery decreases as the 𝜔𝑚𝑎𝑥  

and number of runs increase. It is interesting to note that the 

slope of the surface is much more pronounced at the corners of 

the search space, that is small 𝜔𝑚𝑎𝑥  and small 𝑛𝑟𝑢𝑛 or for large 

values of both variables.  

 

 
 

Figure 16. Behaviour of the PPtE ratio of the High-Capacity (top) and 

High-Power (bottom) batteries for different splits of the Mod-EPA 

profile 
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The cost model described in the previous section (3.1) is used 

for this case study as well. The cost of the original battery is 

estimated at $6804.5 (24 kWh + 105.4 kW). The total system 

cost for each of the 2200 combinations of High-Capacity and 

High-Power batteries is calculated by means of Eq.(12)-(14) 

using as inputs the results for capacity ratio (see Fig. 14) and 

peak power (see Fig.15) obtained from the exploration of the 

two-dimensional search space (𝜔𝑚𝑎𝑥  and 𝑛𝑟𝑢𝑛) 
 

Figure 17 shows how the total system cost varies with respect 

to the two signal-splitting parameters (𝜔𝑚𝑎𝑥  and 𝑛𝑟𝑢𝑛). The 

highest overall costs observed range between $6700 and 

$6800. These costs are found in the region formed by a 𝜔𝑚𝑎𝑥  ≤ 

15 and a 𝑛𝑟𝑢𝑛⁡≤ 10. In this region the capacity ratio 𝐸𝐻𝐶  is 

higher than 0.97; in other words, the High-Capacity battery 

provides 97% or more of the total energy required by the 

electric motor.  

 
Figure 17. Total cost of the hybrid battery (HC + HP) obtained for 

different splits of the Mod-EPA profile 

 

It can be seen that the search-space contains a region where a 

local minimum is found. In this region the capacity ratio is in 

the range of 0.9≤ 𝐸𝐻𝐶  ≤0.93 and system costs around $6350 are 

attained. This feature of the total-cost surface is caused by the 

combination of diverse factors: 1) the shape of the reference 

signal being used (Mod-EPA), 2) the mechanics of the 

operation of the sign-preserving filter and 3) the cost model 

employed. 

 

A low-cost area (the objective of the optimization) with costs 

between $5950 and $6050 is found in the region where the 

capacity ratio 𝐸𝐻𝐶   is in a range between 0.78-0.82. The 

absolute minimum total cost of $5939.3 is obtained with a 

combination of 𝜔𝑚𝑎𝑥  = 33 and a 𝑛𝑟𝑢𝑛⁡= 22. In the optimum 

configuration found (minimum cost) the High-Capacity battery 

has a capacity ratio (𝐸𝐻𝐶) of 0.80 which is equivalent to 19.23 

kWh and it sees a maximum peak power of 37.18 kW. On the 

other hand, the High-Power battery has a capacity of 7.77 kWh 

and sees a much larger peak power of 88.55 kW 

 

Figure 18 shows how the overall system cost varies with 

respect to the capacity ratio of the High-Capacity battery 

(𝐸𝐻𝐶). The fact that there are many different combinations of 

filter parameters (𝜔𝑚𝑎𝑥  and 𝑛𝑟𝑢𝑛) that yield the same capacity 

ratio becomes evident in the figure. It is also clear that for the 

same capacity ratio some of those combinations are more 

expensive than others.   

 

 
Figure 18. Relationship between the total cost of the hybrid battery 

and the capacity ratio of the High-Capacity battery (𝐸𝐻𝐶) 

 

A point that is worth noting is that in this case study 

(considering the Mod-EPA profile) there are no combinations 

of filter parameters (within the space studied) that produce a 

higher system cost than that of the reference battery. In other 

words, regardless of how the hybrid battery system is 

embodied a reduction in cost will be achieved.  

 

It can be observed in Figure 18 that, as aforementioned, a local 

minimum of $6298 exists at a 𝐸𝐻𝐶 ⁡of 0.92, while the global 

minimum $ 5939.3 is located at a 𝐸𝐻𝐶  of 0.80.  The optimum 

value found is equivalent to a 12.7% reduction in cost in 

comparison to the cost of the original battery pack of the 

vehicle. 
 

4. Conclusions 

A study on the cost-optimization of the battery-pack of an EV 

has been undertaken and is presented in this paper. The study 

has two main objectives: (i) demonstrate the use of a “Sign-

Preserving” signal processing tool in an EV context and (ii) 
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explore the possibility of reducing the cost of an EV’s battery 

pack by replacing it with a hybrid 2-battery system, in which 

one battery (low frequency) is used for bulk energy storage and 

the other battery (high frequency) is used for supplying power 

peaks.  

 

Two case studies were carried out using the Nissan Leaf 

(which has a 24kWh battery) as the reference vehicle. The 

optimization methodology is not limited to passenger cars but 

could be applied to electric bikes, city buses, etc., being 

particularly effective for vehicles that experience frequent of 

drastic acceleration/braking.  

 

The first case study is based on the EPA-LA92 driving cycle. 

The optimum design for the hybrid system found has a total 

cost of $6227.8.In this configuration the High-Capacity battery 

contributes 93.18% of the 24kWh total energy storage capacity 

and sees a maximum peak power of 75.56 kW. On the other 

hand, the High-Power battery has a capacity of 1.63 kWh 

(6.8% of the total system capacity) and experiences a 

comparatively large peak power of 33.93 kW. The High-

Capacity battery accounts for 79.9 % of the cost of the hybrid 

battery pack whilst the rest is attributable to the High-Power 

counterpart. The total cost of $6227.8 attained is equivalent to 

a 5.9% cost reduction in comparison to the cost of the original 

battery pack of the vehicle.  

 

The second case study uses a modified profile based on the 

EPA-LA92 but with an 80% larger crest factor. The optimum 

design found attained a cost as low as $5939.3. In this 

configuration the High-Capacity battery has an energy storage 

capacity of 19.23 kWh, which is ~80.14% of the total capacity 

of the vehicle and sees a maximum peak power of 37.18 kW. 

The High-Power battery has a smaller capacity of 7.77 kWh 

but handles a much larger maximum peak power of 88.55 kW. 

The total cost of the hybrid battery pack is split in a 44-56% 

proportion between the High-Capacity and High-Power 

batteries, respectively. The total cost of $5939.3 achieved by 

the optimization represents a 12.7% reduction in cost with 

respect to the cost of the original 24kWh battery pack of the 

vehicle. 

 

The study has demonstrated the usefulness of the “Sign-

Preserving filter” in the context of electric vehicles, where the 

two frequency components need to have the same sign at all 

times (i.e. no counter-flow of energy). By replacing the battery 

pack of the vehicle with a hybrid system comprising two 

batteries (one for bulk energy storage and one for peak-power) 

cost reductions of 12.7%, or more depending on the load used 

as a reference,  can be achieved.   
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