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Abstract 

The optimization of a packed bed for utility-scale applications is presented in this paper. The effects that particle size, aspect ratio 

and storage mass have on the roundtrip exergy efficiency of the store are thoroughly analysed. The paper seeks to provide a clear 

insight of what ranges of values for the aforementioned design parameters are adequate to consider when designing a grid-scale 

packed bed. Simulations were carried out using a one-dimensional model that accounts for temperature-dependent properties and 

self-discharge losses. The assumed operating temperature range for the packed bed is 290-823 K, which is typical of CSP plants 

and CAES systems. A 24-hour work cycle (12 hr charge / 12 hr discharge) with variable power (10 MW peak) and a total energy 

storage requirement of 79.4 MWhth has been considered for the study.  

It has been found that exergy losses are minimized if a configuration based on an aspect ratio between 0.5 and 0.8 is adopted and 

the size of the rocks is finely tuned for the specific shape of container. In this work—unlike similar studies—a cost-benefit analysis 

has been carried out, which indicates that increasing the thermal storage mass leads to a considerable increase in efficiency. A mass 

overrating of 50% yields the lowest levelized cost of storage for the economic scenario considered. The optimum design obtained 

from the optimization process has an aspect ratio of 0.6, a particle size of 4mm and a mass overrating factor of 1.5. This packed bed 

attained a roundtrip exergy efficiency of 98.24 % 
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1 Introduction 

Thermal energy storage (TES) technologies are deemed as a 

very flexible, promising and economically attractive solution 

to the increasingly challenging problem of the time mismatch 

between periods of energy availability and demand created by 

the introduction of renewable-based generation to the grid [1]. 

There is a wide range of approaches, materials and 

configurations that have been studied by many authors. A 

broad overview on the state of the art of high temperature TES 

technologies is provided in [2-4]. Packed beds are a type of 

passive TES that store energy as sensible heat. These type of 

thermal stores have received great interest due to the high 

efficiencies attainable, low cost and overall simplicity for 

being used in CSP plants to decouple electricity production 

from solar irradiation periods and within compressed air 

energy storage (A-CAES) systems, which are used for 

balancing the power fed into the grid by other renewable 

sources, such as wind [5-7].  

Some of the main features or advantages of packed beds are 

the following: (1) the storage material (commonly rocks) is 

abundant and economical. (2) Different types of heat transfer 

fluids (HTF) can be used, such as: molten salts, synthetic oils 

or air. (3) They can be used over a very broad temperature 

range; the upper temperature limit being the melting point of 

the rocks employed (~1200 K). (4) A direct heat transfer 

between the HTF and the storage material is possible. 

However, if the HTF is pressurized it may be more cost-

effective to adopt an indirect charging/discharging scheme via 

an intermediate heat exchanger. (5) There is practically no 

degradation or chemical instability of the storage medium, 

especially if the HTF used is air. (6) Reduced capital cost due 

to the use of a single container in comparison to the two-tank 

system used in CSP plants.  

The TES unit used in an energy storage or power generation 

plant is a key component as it influences directly the efficiency 

and cost effectiveness of the system. Consequently, special 

attention should be paid to their design. A vast amount of 

research has been devoted to develop accurate analytical 

models for simulating the behaviour and performance of 

packed beds under different work cycles, which allows 

studying the effect that different geometrical and operational 

have on the performance of the storage unit. Following, a 

review of some relevant literature is presented. 

Bayón and Rojas [8] developed a single phase one-

dimensional model for characterizing the behaviour of 

thermocline tanks with an effective storage medium formed by 

a liquid (molten salt, thermal oil or water) and a packed-bed 

(rocks or sand). The model considers losses to the 

environment, axial heat conduction and temperature 

independent properties of the materials. The authors present 

guideline plots for designing thermocline stores with 

maximum efficiency at various temperature intervals. Thermal 

power was found to be a critical parameter because the larger 

the power the higher the degree of freedom for choosing tank 

dimensions. 
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Nomenclature 

Acronyms g Gravitational acceleration (m/s2) 

A-CAES Adiabatic compressed air energy storage η Roundtrip exergy efficiency 

CAPEX Capital expenditure ℎ Convection heat transfer coefficient (W/m2·K) 

CSP Concentrated solar power 𝐻 Height of the packed bed (m) 

HTF Heat transfer fluid 𝑘 Thermal conductivity  (W/m·K) 

LCOS Levelized cost of storage 𝜆 Component of total cost ($) 

TES Thermal energy storage 𝐿 Lithostatic pressure of bed of rocks (Pa) 

Sub-indices 𝜇 Dynamic viscosity (Pa·s) 

0 Ambient conditions m Mass  (kg) 

𝑐 Container 𝑚𝑔  Mass flow rate of air (kg/s) 

𝑔 Gas 𝑁𝑢 Nusselt number 

𝑝 Particle Ø Diameter of container (m) 

𝑟 Rocks 𝜌 Density (kg/m3) 

Symbology 𝜓 Value of total exergy input throughout lifespan ($) 

𝛼 Individual aspect ratio 𝑃𝑟 Prandtl Number 

𝐴 Mean cross sectional area (m2) 𝑃 Pressure (Pa) 

𝛽 Overall aspect ratio 𝑄𝑎 Heat transferred by advection (J) 

𝐵𝑖 Biot number 𝑄𝑐𝑜𝑛𝑣 Heat transferred by convection (J) 

�̇�𝑔   Exergy content of the air stream (W) 𝑄𝑘 Heat transferred by conduction (J) 

𝐵𝑖𝑛  Total exergy input during work cycle (J)  𝑟 Radius of container (m) 

𝐵𝑙−𝐸𝑥 Exhaust exergy losses (J) R Air specific gas constant  (J/kg·K) 

𝐵𝑙−𝐻𝑇 Exergy losses due to heat transfer (J) Re Reynolds number 

𝐵𝑜𝑢𝑡  Total exergy output during work cycle (J) s Surface area (m2) 

𝐵𝑙−𝑃𝐷 Exergy losses due to pressure drops (J) S Allowable stress of structural steel (Pa) 

𝐵𝑙−𝑆𝐷 Exergy losses due to self-discharge (J) τ Wall thickness (m) 

𝐶𝑝 Specific heat capacity (J/kg·K) t Time (s) 

𝛿𝑡 Duration of time step (s) T Temperature (K) 

𝛿𝑥 Height of a slice of geometry (m) 𝜐𝑔 Superficial velocity (m/s) 

𝛥𝐵𝑟 Change in exergy content of packed bed (J) V Volume (m3) 

𝛥𝑃 Pressure drop  (Pa) ω Number of cycles operated during lifespan 

𝐷𝑝 Particle diameter (m) W Work cycle 

𝜀 Void fraction x Number of slices in the geometry 

𝐸 Energy storage requirement (MWhth) z Cost per unit of exergy ($/MWh) 

𝑓 Friction factor   

Modi and Pérez [9] investigated the effect of the type of heat 

transfer fluid (molten salts and thermal oils), the storage 

temperature difference and the cycle cut-off criterion on the 

performance of the system. The study was carried out using a 

1-D two-phase model that considered thermal losses from the 

lateral walls, neglected axial conduction and used temperature 

dependent properties only for the fluid phase. The authors 

pointed out that two important aspects for assessing the 

performance of the system are the cyclic behaviour and the 

time required to attain equilibrium conditions, which are 

highly sensitive not only to the storage temperature difference, 

but also to the cut-off temperature difference. 

Van Lew et al. [10,11] developed a simplified 1-D two-phase 

model that employs constant fluid (thermal oil) and solid 

(granite rocks) properties and assumes null heat losses for 

investigating the effect of different parameters such as 

container aspect ratio, particle size, and void fraction on 

performance. The authors found that for the particular scenario 

studied the efficiency of the store increases as the aspect ratio 

increases (with a constant storage volume). Additionally, the 

efficiency decreases as the void fraction increases, reaching a 

minimum at 0.7. The energy storage efficiency decreases with 

the increase in the average diameter of rocks as a greater heat 

transfer resistance is encountered. 

Xu et al [12, 13] investigated the effects of the type and size 

of rocks on the temperature distribution of a packed bed with 

molten salt as HTF. The study was based on a transient 2-D 

model with the following considerations:  thermal losses from 

the lateral walls of the container, constant rock properties, 

temperature dependent properties of the HTF and more 

importantly, the temperature distribution within the solid 

particles is accounted for. Five storage materials (quartzite 

rock, ceramics, concrete, alumina and cast iron) were 

evaluated. The results show that increasing the particle 

diameter reduces heat transfer rate between solid particles and 

molten salt (due to particles limited thermal conductivity), 

which decreases the efficiency. However, it was found that the 

efficiency of the store is nearly independent from the 

properties of the solid material if the particle size is small 

enough. 

Yang and Garimella [14,15] investigated the effect of particle 

diameter (quartzite rock), tank dimensions and mass flow rate 

of the HTF (molten salt) on the performance of a packed bed. 

The researchers developed a 1-D two-phase model that 

considered no heat losses to the surroundings, constant rock 

properties with no axial conduction and temperature 

dependent properties for the HTF. The authors reported that 

the storage efficiency increases with tank height and decreases 

as Reynolds number increases. Additionally, it was found that 



smaller filler particles can greatly increase the discharge 

efficiency. For instance, a thermocline storage unit (2 MW, 5 

MWh and Ø = 5 m) with a particle size of 50 mm has a 

discharge efficiency that exceeds by 12.9% that of a store with 

a particle size of 100 mm. 

The great majority of the studies on packed beds of an 

industrial relevant scale that are available in the literature have 

been carried out considering molten salts or thermal oil as heat 

transfer fluids, given that those are the most commonly used 

HTF in CSP plants. Most of the models developed could be 

applicable to other heat transfer fluids, with due considerations 

and changes in properties. Nevertheless, some studies on 

packed beds that consider air as the HTF for being used in 

next-generation CSP plants and A-CAES systems have been 

realized.  

Hänchen et al. [16] presented the analysis of a high 

temperature packed bed (steatite, rock, aluminium and steel) 

with air as HTF. The 1-D two-phase model developed 

considers conduction and convection inside the container, 

uniform temperature within the particles, thermal losses 

through the walls and constant properties for the solid 

material. The study showed that smaller particle sizes lead to 

higher overall efficiencies (notwithstanding pumping work 

increases significantly) due to the sharper temperature front 

obtained. Additionally, it was noted that increasing the mass 

flow rate and reducing the container height leads to markedly 

higher outlet temperatures during the charge. 

Anderson et al. [17,18] proposed a simplified one-equation 

thermal model for the behaviour of a packed bed with alumina 

spheres as the storage medium and air as HTF. The model 

considers temperature dependent properties for both phases 

and assumes thermal equilibrium between the solid and fluid 

phases. The researchers reported a good agreement between 

the temperature predictions from the model and experimental 

measurements. It is highlighted that the model developed is 

only valid in cases where the heat capacity and thermal 

conductivity of the solid medium are high with respect to those 

of the fluid.  

Zanganeh et al. formulated a two-phase dynamic numerical 

model for a packed bed with air as the HTF that considers 

variable thermo-physical properties for both phases. [19,20]. 

Subsequently the authors carried out a parametric study on the 

design of a 7.2 GWhth  packed bed (mix of quartzite, limestone 

and sandstone) for a CSP plant (8hr-charge/ 16hr-discharge) 

with aims at understanding the impact of design parameters 

(such as particle size) on thermal losses, pumping power, 

discharge temperature and overall storage efficiency [21]. It is 

pointed out that there are no general design rules for packed 

beds. Each unit must be optimized for performance 

(efficiency, outflow temperature profile) and costs (thermal 

losses, pumping work, and materials costs) given the 

requirements (capacity, charging and discharging duration, 

mass flow rate and temperature).  

Opitz and Treffinger [22] developed a lumped element model 

with a two-phase formulation for the modelling of a packed 

bed. Steatite and steel were evaluated as storage materials 

while air and flue gas were used as HTFs. The model accounts 

for the variation on the void fraction with radial position. Heat 

transfer through the wall as well as radial and axial conduction 

in the solid phase are considered. The scheme adopted by the 

authors allows the implementation of the model in object 

oriented modelling environments (such as Modelica), which 

offers the possibility of integrating it within bigger plant 

models.  

Mertens et al [23] carried out an optimization of an 18.6 

MWhth quartzite packed bed for a CSP power plant that 

utilizes air as the HTF.  A 1-D two phase model that accounts 

for losses through the wall, non-spherical particles and change 

of void fraction with particle size was used. The authors found 

that—within the range of values explored—a packed bed with 

an aspect ratio of 0.75 and a particle size of 0.5 mm attained 

the highest thermal efficiency (97.4%); however it is remarked 

that a  full-system optimization is important as well since the 

packed bed design deemed as the optimum from a thermal 

performance point of view might not lead to an optimum 

overall electric efficiency of the plant due to other operational 

parameters such as the cut-off temperature of the steam 

generator .  

Klein et al [24, 25] proposed a pressurised packed bed of 

alumina spheres that uses air as the HTF. The transient model 

developed considers all relevant heat transfer mechanisms and 

was experimentally validated for the temperature range of 

350-900 °C. The model was used to conduct a parametric 

study of a 1.55MWhth TES unit with a volume of 7m3 to be 

used with a micro gas turbine. The design obtained achieved 

an efficiency of 78% with an aspect ratio of 4 and 110 mm 

diameter particles.  Similarly, Agalit et al. [26] proposed a 1-

D two-phase model that considers radiative heat transfer 

between the solid particles (quartzite rocks and asbestos-

ceramic) as well as between the particles and the container’s 

wall. The authors analysed two high temperature packed beds 

to be used in hybrid solar power plants that operate in the 

temperature ranges of 1200-800 °C and 653-350 °C, reporting 

that overall storage efficiencies of up to 94% are achievable.  

1.1 Objectives 

A considerable amount of research has been devoted in recent 

years to the study of packed beds for energy storage 

applications, as the literature review shows. Parametric studies 

aimed at understanding the effect that different design and 

operational parameters (particle size, void fraction, mass flow 

rates, charging/ discharging times, materials used, etc.) have 

on the performance of the TES units have been carried out by 

numerous authors; however there are some important aspects 

that still have not been formally studied. 

i) There are no parametric studies in the literature where the 

thermal storage mass is treated as a variable, despite it is 

widely known that a larger mass (for the same duty) will 

improve the efficiency of a TES unit. 

ii) Although the effect of the shape of the container has been 

discussed in the literature there is no clear guidance available 

with respect to what is a good value (or range of values) to 

consider for the aspect ratio when designing a packed bed. The 

present work seeks to fill this gap.  

In this paper the optimization of a packed bed for an A-CAES 

system is presented. The study is aimed at understanding the 



effect that aspect ratio, particle size and storage mass have on 

the exergy losses of the store. A simple cost model is included 

which allows analysing the trade-off between efficiency and 

the cost per unit of exergy storage capacity of the packed bed. 

The results of the optimization work carried out are presented 

in terms of exergy and exergy losses rather than energy. The 

rationale behind this is rather simple: Electricity is 100% 

exergy whereas heat has some exergy only, the amount 

depends on the temperature. In other words 1 J of heat is not 

equivalent to 1 J of electricity; therefore if a packed bed can 

store 1 MWh of heat, the amount of electricity that it can take 

in and store is much less, ~500 kWh. Expressing losses, 

storage capacity and efficiency in terms of exergy allows a 

quicker understanding of the real capacity of the unit and 

enables a much more straightforward comparison with other 

storage technologies, such as electrical batteries. 

2 Optimization process 

There is a virtually endless array of designs that a packed bed 

sized for a certain load may take. For example, a thin and tall 

packed bed (α>1) may be desirable because exergy losses due 

to self-discharge (heat conducted down the thermal front) are 

reduced—or slowed down—due to a smaller cross-sectional 

area and a greater separation between the hot and cold ends of 

the store; however the container will have a greater surface 

area and more insulation will be required. This kind of 

configuration is particularly attractive for locations where 

space is limited and maintaining a small footprint is crucial. 

On the other hand, a short and wide design (α<1) has the 

advantage of a lower pumping load due to the reduced height 

and larger cross-sectional area of the container. A further 

benefit of a small α is a lower cost for the container and 

thermal insulation required. The minimum wall thickness 

required reduces considerably with the height of the packed 

bed while the surface area of the container reaches a minimum 

at an α=1; both of these parameters are good indicators of cost.   

Figure 1 shows the algorithm followed in the optimization 

process. Several different mass overrating factors (β) are 

studied (1.0≤ β ≤3.0), for each one of which a range of aspect 

ratios are evaluated (0.2≤ α ≤1.5). Additionally, for every 

design of packed bed (combination of α and β) an optimum 

size of rock is determined. Small particles provide a large 

surface area thus heat transfer losses are reduced but entail 

increased pressure drops across the store. 

It is recognized that the optimum design for a certain duty may 

not be optimal for different operating conditions; 

notwithstanding, the results from this parametric study will 

provide a solid reference of what are the appropriate ranges to 

consider for each variable (α & β) when designing a utility-

scale packed bed and what are the effects on performance and 

cost of shifting the design of the store towards smaller or larger 

values.  

3 Mathematical modelling 

A transient 1-D two-phase model has been developed to 

simulate the charging and discharging of a packed bed and 

evaluate its performance.  The model is based on a discretised 

explicit scheme that allows its implementation in numerical 

solvers (such as Matlab). Among the assumptions and 

simplifications made by the model it is worth highlighting: (1) 

Temperature dependent physical properties are used for both 

materials. (2) A temperature gradient in the radial direction is 

not considered. (3) A uniform temperature within the solid 

particles is assumed. (4) A 1-D Newtonian plug flow for the 

HTF is assumed. (5) Geometric properties are assumed to be 

constant throughout the packed bed. (6) Heat conduction down 

the thermal front is considered in both materials. (7) Heat 

losses through the wall are neglected as well as all heat transfer 

by radiation. 

 

Figure 1. Algorithm of the optimization process 

The process followed by the calculation algorithm is explained 

graphically by Figure 2. The work cycle (represented by a time 

dependent function) to which the TES unit will be subjected is 

analysed to determine the duty of the store. The packed bed is 

sized accordingly 

The total mass of rock (𝑚𝑟) required is calculated through Eq. 

(1), where E is the amount of heat to be stored by the packed 

bed (dictated by the work cycle) and 𝐶𝑝−𝑟 is the specific heat 

capacity of the rocks. The factor β is known as the mass 

overrating factor. This scaling factor—as its name suggests—

allows increasing the mass of rocks used in the store whereby 

an improvement in performance can be achieved. A β equal to 



one yields the absolute minimum mass of rock required for 

storing the energy contained in the work cycle. 

𝑚𝑟 = 𝛽 ∙
𝐸

𝐶𝑝−𝑟 ∙ ∆𝑇
 (1) 

 

 

Figure 2. Algorithm for the modelling 

The operating temperatures considered for the packed bed are 

823 and 290 K for the hot and cold ends respectively, which 

are typical operation temperatures in CSP plants [27] and high 

temperature A-CAES systems [28]. The steel used for the 

container provides an additional storage capacity; however it 

is very small compared to the thermal mass of the rocks and it 

is almost never accounted for. In this study the thermal 

capacity of the container is neglected. 

Once the storage mass has been determined, the geometry of 

the packed bed can be characterized. A number of geometric 

parameters such as the volume of the container (based on the 

void fraction (ε) and the density of the rocks (𝜌𝑟)) and its shape 

(dictated by α) are calculated at this stage, together with the 

size of the rocks. 

Several different particle sizes are evaluated to determine the 

optimum one for a given shape of container. The maximum 

allowable particle size is established based on the criterion that 

a Biot number greater than 0.1 (maximum value for assuming 

a constant temperature within the rock particles) should not be 

observed at any one section of the packed bed at any time 

during the work cycle. 

A state vector containing information of the temperatures of 

the two materials (rock and air) in each of the x slices of the 

geometry and the different components of exergy loss is 

initialized. The algorithm moves forward in time through the 

work-cycle function simulating —as appropriate— the charge 

or discharge of the packed bed. A very important aspect of the 

simulation is that convergence is checked once a full work 

cycle has been concluded. Several work cycles are simulated 

until the convergence criteria is met, in this way it is ensured 

that the initial conditions assumed in the first run do not have 

an effect in the results obtained. The convergence criteria in 

place are two ratios: The first is a ratio between the exergy 

content of the packed bed at the end and at the start of the work 

cycle. The second is a comparison of the exergy loses at the 

end of the current work cycle and at the end of the previous 

work cycle. These ratios should have a value of 1, however 

due to numerical inaccuracies this is never the case. A 

tolerance of ± 0.01% is used.  

The following subsections (3.1-3.3) describe the calculations 

that take place as the algorithm progresses in time through the 

work-cycle. The calculations can be classified in 3 groups: 1) 

determination of pressure drops and flow characteristics, 2) 

heat transfer calculations (which are the core of the simulation) 

and 3) the calculation of the different components of exergy 

loss.  

3.1 Determination of flow characteristics 

As aforementioned, the model simulates the charging (or 

discharging) of a packed bed as a load is passed through it. 

Once the load at a specific time has been translated into a mass 

flow of air (�̇�𝑔), the pressure drops along the height of the 

packed bed and the flow characteristics are determined.  

The inlet pressure required for the air to leave exit the packed 

bed at ambient pressure is calculated in an iterative way. In 

other words, the inlet pressure is only marginally higher than 

ambient in order to sustain flow and overcome friction with 

the rocks.  

A vector of initial guesses for the pressure (P) at each slice is 

created. Based on this vector the density (ρ) of the air at each 

of the slices is determined through Eq. (2).The superficial flow 

speed of the air (υg) can be subsequently calculated by means 

of Eq. (3), where 𝐴𝑐 is the total cross-sectional area of the 

container. Even though a part of the cross sectional area of the 

container is occupied by rocks, the velocity is calculated as if 

air was flowing freely. The “packed-bed-specific” Reynolds 

and Ergun equations (Eq. (4) and (6), respectively) account for 

this.  

𝜌𝑔 =
𝑃

𝑅 ∙ 𝑇𝑔

 (2) 

 



𝜐𝑔 =
�̇�𝑔

𝜌𝑔 ∗ 𝐴𝑐

 (3) 

 
The Reynolds number for flow through a packed bed is given 

by Eq. (4) [29], where μ is the dynamic viscosity of the fluid 

and Dp is the particle diameter, defined by Eq. (5) [30]. In the 

case of this study, the particles are considered to be perfectly 

spherical, whereby Eq. (5) is reduced to 2*r.  

𝑅𝑒 =
𝜌𝑔 ∙ 𝜐𝑔 ∗ 𝐷𝑝

𝜇
 (4) 

 

𝐷𝑝 = (
6

𝜋
∙ 𝑉𝑝)

1 3⁄

 (5) 

 
The air flow is obstructed by the rocks inside the container, 

which generates friction and results in a loss of pressure. The 

pressure drops (∆𝑃) across each of the slices of the geometry 

can be calculated by means of Eq. (6) [31], where 𝛿𝑥 is the 

height of the slice, f is the friction factor given by Eq. (7) [32] 

and ε is the void fraction (space not occupied by rocks). 

 

∆𝑃 =
𝑓 ∙ 𝛿𝑥 ∙ 𝜌𝑔 ∙ 𝜐𝑔

2 ∙ (1 − 𝜀)

2 ∙ 𝐷𝑝 ∙ 𝜀3
 (6) 

 

𝑓 = 258(1 − 𝜀) ∙ 𝑅𝑒−1 + 4.36 ∙ (
2

3
∙

𝑅𝑒

1 − 𝜀
)

−0.12

 (7) 

 

Typically the friction factor is calculated through the 

experimental correlation proposed by Ergun [33]; however 

several authors have reported that it is only accurate for a very 

limited range of Reynolds numbers [34-38].  

 

The vector of pressures across the height of the packed bed is 

subsequently updated by adding the accumulated pressure 

drops calculated through Equation (6). The iterative loop is 

repeated until the variation in the vector of pressures is 

negligible. After this, the heat transfer coefficient (ℎ) can be 

calculated by means of Eq. (8) where 𝑘𝑔 is the thermal 

conductivity of the gas. The Nusselt (Nu) and Prandtl (Pr) 

numbers are given by Eqs. (9) and (10), respectively [39]. 

ℎ = 𝑁𝑢 ∙ 𝑘𝑔 ∙ 𝐷𝑃
−1 (8) 

 

𝑁𝑢 = 2.0 + 1.1𝑃𝑟1 3⁄ ∙ [𝑅𝑒 ∙ (1 − 𝜀)]3 5⁄  (9) 

 

𝑃𝑟 = 𝜇 ∙ 𝐶𝑝𝑔 ∙ 𝑘𝑔
−1

 (10) 

 

3.2 Heat transfer calculations 

Thermal calculations are expressed in a discretised explicit 

form. In every slice of the geometry there is an elemental 

volume of rock whose mass and surface area are the sum of 

the individual masses and surface areas of all the rock particles 

in that slice. Likewise, there is an elemental volume of air 

which occupies the void space in the slice. It is assumed that 

the temperatures and properties of both elements, rock and air, 

are uniform throughout the volume of the slice. 

 

Figure 3. One-dimensional finite element model of packed bed 

showing gas and solid elements and their interactions 

The heat transfer model is created considering the energy 

balance of the elemental volume of gas contained in a slice 𝑖 
of the geometry, as Figure 3 shows. As it can be observed, the 

change of energy within the gas is equal to the net heat flow 

by advection (𝑄𝑎−𝑖𝑛 − 𝑄𝑎−𝑜𝑢𝑡) plus the net heat flow by 

conduction (𝑄𝑘−𝑖𝑛 − 𝑄𝑘−𝑜𝑢𝑡) minus the heat transferred by 

convection to the element of rock in a charging period (𝑄𝑐𝑜𝑛𝑣). 

The above can be expressed mathematically through Eq. (11), 

in which the indices 𝑖 and 𝑗 represent the position in space and 

time, respectively. 

𝜌𝑔𝐶𝑝𝑔𝐴𝑐𝜀𝛿𝑥(𝑇𝑔
(𝑖,𝑗+1)

− 𝑇𝑔
(𝑖,𝑗)

) =… 

… (𝑄𝑎−𝑖𝑛 − 𝑄𝑎−𝑜𝑢𝑡) + (𝑄𝑘−𝑖𝑛 − 𝑄𝑘−𝑜𝑢𝑡) − 𝑄𝑐𝑜𝑛𝑣  
(11) 

 
Where: 

𝑄𝑎−𝑖𝑛 = �̇�𝑔𝐶𝑝𝑔 (
𝑇𝑔

(𝑖−1,𝑗)
+ 𝑇𝑔

(𝑖,𝑗)

2
) 𝛿𝑡 (12) 

 

𝑄𝑎−𝑜𝑢𝑡 = �̇�𝑔𝐶𝑝𝑔 (
𝑇𝑔

(𝑖+1,𝑗)
+ 𝑇𝑔

(𝑖,𝑗)

2
) 𝛿𝑡 (13) 

 

𝑄𝑘−𝑖𝑛 = 𝑘𝑔𝐴𝑔 (
𝑇𝑔

(𝑖−1,𝑗)
− 𝑇𝑔

(𝑖,𝑗)

𝛿𝑥
) 𝛿𝑡 (14) 

 

𝑄𝑘−𝑜𝑢𝑡 = 𝑘𝑔𝐴𝑔 (
𝑇𝑔

(𝑖,𝑗)
− 𝑇𝑔

(𝑖+1,𝑗)

𝛿𝑥
) 𝛿𝑡 (15) 

 

𝑄𝑐𝑜𝑛𝑣 = ℎ𝑠𝑟(𝑇𝑔
(𝑖,𝑗)

− 𝑇𝑠
(𝑖,𝑗)

)𝛿𝑡 (16) 

 
The rate of change of the temperature of the gas at time j, can 

then be expressed as Eq. (17): 



𝛿𝑇𝑔

𝛿𝑡
=

𝑄1 + 𝑄2 − 𝑄𝑐𝑜𝑛𝑣

𝜌𝑔𝐶𝑝𝑔𝐴𝑐𝜀𝛿𝑥
 (17) 

 
Where: 

𝑄1 =
𝑚�̇�𝐶𝑝𝑔

2
(𝑇𝑔

(𝑖−1,𝑗)
− 𝑇𝑔

(𝑖+1,𝑗)
) (18) 

 

𝑄2 = 𝑘𝑔𝐴𝑔 (
𝑇𝑔

(𝑖−1,𝑗)
− 2𝑇𝑔

(𝑖,𝑗)
+ 𝑇𝑔

(𝑖+1,𝑗)

𝛿𝑥
) (19) 

 
Similarly, the change of energy in the element of rocks can be 

calculated by means of Eq. (20): 

𝑚𝑟𝐶𝑝𝑟 (𝑇𝑟
(𝑖,𝑗+1)

− 𝑇𝑟
(𝑖,𝑗)

) = (𝑄𝑘−𝑖𝑛 − 𝑄𝑘−𝑜𝑢𝑡) + 𝑄𝑐𝑜𝑛𝑣 (20) 

 
Where: 

𝑄𝑘−𝑖𝑛 = 𝑘𝑟𝐴𝑟 (
𝑇𝑟

(𝑖−1,𝑗)
− 𝑇𝑟

(𝑖,𝑗)

𝛿𝑥
) 𝛿𝑡 (21) 

 

𝑄𝑘−𝑜𝑢𝑡 = 𝑘𝑟𝐴𝑟 (
𝑇𝑟

(𝑖,𝑗)
− 𝑇𝑟

(𝑖+1,𝑗)

𝛿𝑥
) 𝛿𝑡 (22) 

 
The rate of change of the temperature of the rocks is given by 

Eq. (23), which allows updating the temperatures after each 

time-step taken. 

𝛿𝑇𝑟

𝛿𝑡
=

𝑄1 + ℎ𝑠𝑟(𝑇𝑔
(𝑖,𝑗)

− 𝑇𝑟
(𝑖,𝑗)

) 

𝑚𝑟𝐶𝑝𝑟

 (23) 

 
Where: 

𝑄1 = 𝑘𝑟𝐴𝑟 (
𝑇𝑟

(𝑖−1,𝑗)
− 2𝑇𝑟

(𝑖,𝑗)
+ 𝑇𝑟

(𝑖+1,𝑗)

𝛿𝑥
) (24) 

 

3.3 Mechanisms of exergy loss 

The exergy content of the air at the inlet of the packed bed 

during the charge as well as the exergy of the air at the outlet 

during the discharge can be calculated by means of Eq. (25):  

�̇�𝑔 = 𝑚𝑔̇ [∫ 𝐶𝑝𝑔𝑑𝑇
𝑇

𝑇0

− 𝑇0 (∫ 𝐶𝑃𝑔

𝑑𝑇

𝑇

𝑇

𝑇0

− 𝑅 ∫
𝑑𝑃

𝑃

𝑃

𝑃0

) ] (25) 

 
During a charging phase air enters the packed bed through the 

hot end at the nominal inlet temperature (823 K) and at a 

pressure marginally higher than ambient (to compensate for 

pressure drops). Conversely, during a discharge phase, air 

flows into the packed bed through the cold end at ambient 

temperature whereby it has a rather small exergy content due 

exclusively to the inlet pressure.  

It is noteworthy that the same discretised explicit calculation 

approach can be used for modelling the operation of cold 

stores, which are used among other applications in pumped 

thermal energy storage systems (PTES) [40]. In a cold packed 

bed the same heat transfer processes occur but the direction of 

the gas flow is reversed. During the charge, air at very low 

temperatures (~120K) enters the packed through the bottom 

side and removes energy from the rocks, which increases the 

exergy stored. During the discharge phase, air at ambient 

temperature enters the packed bed through the top side and is 

cooled by the rocks, which extracts the exergy stored [41]. 

The model considers four mechanisms of exergy loss: 1) 

exergy losses due to heat transfer, 2) exhaust losses, 3) exergy 

losses due to pressure drops and 4) exergy losses due to self-

discharge. It should be noted that exergy losses due to the 

dissipation of heat into the surroundings of the packed bed are 

not considered.  

The exergy losses owing to pressure drops (𝐵𝑙−𝑃𝐷 ) can be 

calculated from the pressure drops in each slice of the 

geometry through Eq. (26): 

𝐵𝑙−𝑃𝐷 = ∑ −�̇�𝑔 ∙ 𝑇0 ∙ 𝑅 ∙ 𝑙𝑛 (
𝑃(𝑖+1,𝑗)

𝑃(𝑖,𝑗)
)

𝑥

𝑖=1

 (26) 

 
As the packed bed approaches a full charge, increasingly 

hotter gas will start to emerge from the cold end of the 

container, which represents an exergy loss. This form of 

exergy loss is known as “exhaust losses” (𝐵𝑙−𝐸𝑥) and can 

equally be calculated via Eq. (25). These losses only occur 

during the charging phase.  

Exergy losses due to self-discharge (𝐵𝑙−𝑆𝐷) are caused by the 

heat that is conducted down the temperature gradient within 

the thermal front. These losses are always present, during both 

phases of operation and even when the packed bed is in a 

purely storage mode. Self-discharge losses dictate (together 

with losses to the surroundings) how long the exergy can be 

stored in a thermocline-based store. These losses can be 

calculated through Eq. (27)  

𝐵𝑙−𝑆𝐷 = ∑ 𝑄𝑘𝑔 (
𝑇0

𝑇𝑔
(𝑖+1,𝑗)

−
𝑇0

𝑇𝑔
(𝑖,𝑗)

)

𝑥−1

𝑖=1

+ 𝑄𝑘𝑟 (
𝑇0

𝑇𝑟
(𝑖+1,𝑗)

−
𝑇0

𝑇𝑟
(𝑖,𝑗)

) 

(27) 

 

The exergy losses due to heat transfer (𝐵𝑙−𝐻𝑇) refer to the 

losses caused by the convective heat transfer from the air to 

the rocks (or viceversa during discharge) and the losses due to 

the advective heat transfer inherent to the flow of the gas along 

the height of the packed bed. In most cases, these losses are 

the largest source of exergy loss and can be calculated through 

an exergy balance, as shown by Eq. (28): 

𝐵𝑖𝑛 = 𝐵𝑜𝑢𝑡 + ∆𝐵𝑟 + 𝐵𝑙−𝑃𝐷 + 𝐵𝑙−𝐸𝑥 + 𝐵𝑙−𝑆𝐷+ + 𝐵𝑙−𝐻𝑇 (28) 

 
During a charging phase there is no output of exergy (𝐵𝑜𝑢𝑡) 

while during a discharge phase there are no exhaust losses 

(𝐵𝑙−𝐸𝑥) and the input of exergy (𝐵𝑖𝑛) is minimal, only to 

compensate for the losses due to pressure drops (𝐵𝑙−𝑃𝐷). 

3.4 Thermo-physical properties  

The mathematical model developed considers temperature 

dependent properties for both materials. Air is used as the 

HTF, since the packed beds modelled are envisioned to work 

within a high temperature A-CAES system. The temperature 

dependent functions for dynamic viscosity, thermal 



conductivity and specific heat capacity of air proposed by 

Lemmon and Jacobsen [42] and Lemmon et al. [43] have been 

adopted. It should be mentioned that these functions are valid 

over a wide range of pressures (0.1 – 100+ MPa). In the case 

studied, the air stream is considered to be “non-pressurized” 

having only a marginally-higher-than-ambient pressure to 

sustain flow. The rocks used in the model are basalt, an 

igneous rock commonly considered as a sensible heat storage 

medium. A constant density of 2650 kg/m3 is assumed [44, 45] 

while the temperature dependent functions for thermal 

conductivity and specific heat capacity are based on 

experimental data reported by Hartlieb et al [46]. 

Polynomial expressions, in the form of Eq. (29), were fitted to 

the data found in the literature. Tables 1 and 2 provide the 

coefficients for the temperature dependent properties of air 

and rocks, respectively. It should be mentioned that these 

equations are valid for a temperature range between 290 and 

850 K.  

𝑓(𝑇) =  𝐴𝑇4 + 𝐵𝑇3 + 𝐶𝑇2 + 𝐷𝑇 + 𝐸 (29) 

 
Table 1. Coefficients for the temperature dependent functions of 

different physical properties of air.  

 μ 

(Pa·s) 
kg 

(W/m·K) 
Cpg 

(J/kg·K) 
A 0 0 0 

B 0 0 -4.16x10-7 

C -5.038x10-13 1.172x10-9 8.611x10-4 

D 1.736x10-9 1.277x10-5 -0.3679 

E 1.133x10-7 -1.05x10-3 1049 

 

Table 2. Coefficients for the temperature dependent properties of 

basalt rock.  

 kr 

(W/m·K) 

Cpr 

(J/kg·K) 

A 1.86x10-14 -2.038x10-10 

B 7.41x10-10 1.479x10-6 

C -2.10x10-6 3.076x10-3 

D 1.524x10-3 2.709 

E 1.274 191.3 

 

4 Results obtained and discussion 

4.1 Effects of storage mass, aspect ratio and particle 

size on the total exergy losses 

The work cycle (W) considered in the modelling is a sine wave 

with a peak amplitude of 10 MW and period of 1 day             

(0𝑠 < 𝑡 <  86400𝑠), described by Eq. (30): 

𝑊 = −10 ∙ sin (
2 ∙ 𝑡 ∙ 𝜋

86400
)  (30) 

 
In the work cycle considered, there is only 1 charge period 

(0𝑠 <  𝑡 <  43200𝑠) and 1 discharge period (43200𝑠 <

 𝑡 <  86400𝑠). The cycle demands an energy storage capacity 

(E) of 76.4 MWhth, which are supplied to the store by a stream 

of air at 823 K. With basis on this value a mass of 566.5 x103 

kg of rock was calculated as the minimum mass required for 

servicing the load (β=1).  

 

The outcomes of this study are transferrable to other 

applications with different work cycles that consider non-

sinusoidal profiles. The optimum combination of parameters 

(β, α and Dp) will change but the results found here will still 

be a good reference and serve as an adequate initial guess for 

the optimization process. One of the cases where the design of 

the packed bed will change dramatically is when the packed 

bed is intended for long term storage; or in other words if there 

is a prolonged period of inactivity between the charging and 

discharging phases. In such case the self-discharge exergy 

losses will become the main form of exergy loss and the design 

of the packed bed will be tuned accordingly to try to minimize 

them.  

 

In a practical application it is rarely desirable to allow the 

thermal front to move all the way down to the cold end of the 

store because increasingly hotter air will emerge from the 

container, which translates directly into exergy losses. A mass 

overrating factor (β) higher than 1 can be used to mitigate this 

problem. 

 

The optimization carried out comprises three parameters: mass 

overrating factor, aspect ratio and the particle size. Different 

combinations of β and α are evaluated. For every design 

explored (β+ α) an optimum size of rocks is determined. The 

parameters used for the modelling of the packed bed subjected 

to the work cycle described above are summarized in Table 3. 

 

Table 3. Parameters used in the modelling 

  

 Parameter Value Units 

Operational 

/ Design 

T0 290 K 

T inlet (charge) 823 K 

T inlet (discharge) 290 K 

P0 101325 Pa 

P inlet  

(charge/discharge) 
See Eq.(6) Pa 

Work cycle See Eq.(30) MW 

Min. mass of rock  566.5x103 kg 

Mass Overrating  1.0 to 3.0 -- 

Aspect ratio 0.2 to 1.5 -- 

Void fraction 0.3954 -- 

Particle Size 0.5 to 20 mm 

Physical 

Properties 

Air properties See Table 1 -- 

Rock properties See Table 2 -- 

Rock Density 2650 kg/m3 

Model 

Setup 

No. of Elements 

(Slices) 
200 -- 

Convergence 

Criterion 1 

>0.9999 

<1.0001 
-- 

Convergence 

Criterion 2 

>0.9999 

<1.0001 
-- 

Tolerance of ODE 

Solver 
1x10-7 -- 

 

The void fraction is a very important parameter that influences 

the performance of the packed bed [10,11]; however in 

practical applications is hard to control as it depends on the 

arrangement of the particles. In this paper the rocks are 



considered to be perfectly spherical, although Eq. (5) allows 

accounting for any non-sphericity. When spheres of the same 

size are used, void fractions between 0.66 and 0.2595 can be 

achieved.  Random packing of spheres attains on average a 

void fraction of 0.36. An hexagonal packing of the spheres, 

which achieves a void fraction of 0.3954 [47] is assumed for 

this study. The results obtained using this value are 

conservative given that when spheres are packed randomly (as 

it would be done in a real life application) a higher density is 

achieved. It should be noted that greater packing densities can 

be achieved when particles of different diameters are used. It 

is also important to remark that the void fraction remains 

constant even when the particle size changes.  

Figures 4 and 5 show the first stage of the optimization 

process. For every aspect ratio in the range 0.2≤ α ≤1.5 the 

diameter of the rocks is varied to find the particle size that 

yields the lowest total exergy losses. Figure 4 shows the results 

obtained for β=1.5 while Figure 5 presents the results for 

β=2.0. For clarity, only the curves for 4 values of α are shown 

in each plot. The total exergy losses shown in the figures are 

the sum of the four forms of exergy loss previously described. 

The total exergy losses can also be calculated as the difference 

between the exergy input during the charging period and the 

exergy output during the discharge phase.  

It can be seen in Figures 4 and 5 that at smaller aspect ratios 

the size of the particles has a much more marked effect on the 

exergy losses, whereas at large aspect ratios (α>1) curves 

flatten out and a wider range of particle sizes achieve a very 

similar performance.  

Regardless of the aspect ratio of the packed bed, the total 

exergy losses follow a similar trend.  As the diameter of the 

rocks increases the losses start to decrease until reaching a 

minimum at the optimum particle size. This is because very 

small particles produce significant pressure losses. As the size 

of the rocks increases past the optimum size, the total exergy 

losses start increasing as well due to the effect of heat transfer 

and exhaust losses. Large particles do not allow an effective 

heat transfer along the height of the packed bed, which is 

mainly owed to a reduced surface area to volume ratio.  

Figure 4. Determination of the optimum particle size for different 

values of α for a β=1.5 

 

 

Figure 5. Determination of the optimum particle size for different 

values of α for a β=2.0 

It can also be observed that smaller α’s require smaller particle 

sizes to achieve the best performance (minimum losses), 

despite having a container with a larger diameter. For example, 

the losses of a packed bed with a β=1.5 and an α=0.25 are at a 

minimum when the diameter of the rocks is 2.24 mm, while 

the losses of a design with the same β and an α=1.5 reach a 

minimum with a particle size of 8.91 mm. For comparison, a 

packed bed with a β=2.0 and an α= 0.25 exhibits the best 

performance when the diameter of the rocks is 2.38 mm while 

with an α=1.5 the optimum diameter of the rocks increases to 

9.52 mm.  

The behaviour of the total exergy losses of a packed bed as the 

values for the mass overrating factor (β) and the aspect ratio 

(α) change is shown in Figure 6. In the figure, the exergy losses 

for every combination of α and β are the minimum exergy 

losses for that particular design, achieved through the fine 

tuning of the particle size. It can be seen that the performance 

of a packed bed improves considerably as more storage mass 

is used (i.e. a larger β).  

 

Figure 6. Behaviour of the total exergy losses of a packed bed as the 

aspect ratio varies. 

The four different types of exergy loss (heat transfer, exhaust, 

pressure drops and self-discharge) reduce as the value of β 

increases. For example, exergy losses due to heat transfer 



decrease thanks to an increase in the available heat transfer 

area while exergy losses due to pressure drops reduce due to a 

greater cross-sectional area of the container. The reasons for 

the improvement of each of the four mechanisms of exergy 

loss are discussed in further detail in subsections 4.2-4.5 

It can also be seen in Figure 6 that for any given value of β, 

the exergy losses of the packed bed decrease as the α reduces 

until reaching a minimum between 0.5≤ α ≤0.8, below which 

they rise again. The increase of exergy losses for α’s smaller 

than the optimum is owed primarily to self-discharge losses 

which increase dramatically as the height of the container is 

reduced, bringing the hot and cold ends of the packed bed 

closer together. This phenomenon will be explained in depth 

in subsection 4.5.  

Another interesting detail worth noting is that the optimum 

aspect ratio does not remain constant from one value of β to 

another.  For example, a packed bed with a β=1 reaches an 

optimum at an α=0.6, while a packed bed with a β=3 exhibits 

the lowest losses with an α=0.8. The roundtrip exergy 

efficiency of the former configuration is 95.07 %, while the 

latter attains an efficiency of 99%. As mentioned in section 3, 

the model does not take into account losses to the environment. 

It should be highlighted that only discrete values for α were 

evaluated in the study despite that α is in reality a continuous 

variable. Therefore the best values shown are a close 

approximation to the optimum rather than a true optimum.  

The results presented in Figure 6 suggest that large values of 

β should be employed to improve the performance of the store. 

However, the improvement in performance becomes 

increasingly smaller as the mass overrating factor (β) becomes 

larger. Therefore at some point, the performance gains will not 

justify the additional capital expenditure. This study focuses 

primarily on values of β between 1.5 and 2, which are deemed 

(from an economic point of view) as reasonable levels of mass 

overrating for practical applications. Subsection 4.6 shows 

that the optimum value for β lies within this range.  

 

Figure 7. Effect of the mass overrating factor (β) and aspect ratio (α) 

on the exergy losses of a packed bed 

With aims at providing a better perspective of the 

improvement in performance as the mass of the thermal store 

increases, Figure 7 shows (in the form of a surface plot) the 

behaviour of the total exergy losses over a work cycle for 

designs considering a 1.5≤β≤2.0 and a wide range of α.  

Figures 8 and 9 show the contribution of the different 

mechanisms of exergy loss to the total exergy losses of 

different designs of packed beds for a β=1.5 and 2.0, 

respectively. The behaviour of each of the four types of exergy 

loss will be analysed in depth in sections 4.2 to 4.5. 

Nevertheless, it can be seen that regardless of the value of β, 

at small α’s self-discharge losses are the major contributor of 

loss while at large α’s losses due to pressure drops become 

critical.  

 

Figure 8. Distribution of the total exergy losses of packed beds with 

a β=1.5 into the different mechanisms of loss. 

 

Figure 9. Distribution of the total exergy losses of packed beds with 

a β=2.0 into the different mechanisms of loss. 

Figure 10 shows the evolution of the thermal front throughout 

a full work cycle for a packed bed with an α=0.6 and 4mm 

diameter rocks. This configuration attained the lowest losses 

among designs based on a β=1.5, having an exergy efficiency 

of 98.24%. It can be seen that at the end of the charging period 

(12th hour) the cold end (height=0) has a temperature well 

above ambient (346.94 K), which as aforementioned, 

contributes to the exergy losses of the store. Moreover, due to 

the irreversibilities present during the charge and discharge 

periods, the packed bed is not able to sustain its nominal output 



temperature of 823 K for the entire 12 hours of discharge. At 

the end of the discharge period, the hot end has a temperature 

of 753.49 K. 

 

Figure 10. Evolution of the thermal front (rocks) within a packed 

bed with a β=1.5, α=0.6 and a 4mm particle size. 

 
In the following subsections the behaviour of each of the four 

mechanisms of exergy loss as the particle size is optimized for 

a given set of α and β will be thoroughly discussed.  

4.2 Behaviour of the exergy losses due to heat transfer 

Figure 11 shows the exergy losses due to heat transfer for 

packed beds with a  β=1.5 (solid lines) and 2.0 (dashed lines). 

For any given values of α and β the exergy losses due to heat 

transfer behave almost linearly as the particle size varies, 

being smaller when small diameters of rock are used due to an 

increase in the total heat transfer surface of the packed bed.  

For reference, a packed bed based on a β=1.5 has 300 m2 of 

heat transfer area per m3 of rocks when a rock diameter of 

20mm is used, which increases to 1200 m2/m3 when a rock 

diameter of 5mm is used. The available heat transfer area is 

only a function of the total mass and size of the rocks and does 

not depend on the aspect ratio of the packed bed.  

 

Figure 11. Behaviour of exergy losses due to heat transfer as the 

particle size varies 

The range for the particle size was determined based on the 

Biot number (ratio of the heat transfer resistances inside of and 

at the surface of the rocks), which is proportional to the 

diameter of the rocks. The largest particle size considered in 

the study does not exceed a Biot of 0.1, which is the limit for 

considering a constant temperature inside each particle. If 

larger rocks were to be used, an additional form of exergy loss 

would need to be introduced to account for the heat transfer 

from the surface of the rocks to their core and vice versa. For 

Biot numbers <0.1 this exergy loss is negligible.  

When a larger β is used, the total surface area of the packed 

bed increases (even if the particle size stays the same) because 

a larger amount of rocks are in the container. This increase in 

the ratio of total surface area per unit of exergy transfer 

produces a considerable reduction of the heat transfer losses.  

Furthermore, Figure 11 shows that heat transfer losses 

decrease for increasing α’s, which can be explained by means 

of Figure 12. The height of the packed bed (namely the 

separation between the hot and cold ends) plays an important 

role in defining the shape of the thermal front. Greater heights 

lead to sharper fronts, although several other factors have an 

influence on this. The packed bed with an α=1.0 has a sharper 

front (with a steeper slope) in comparison to a design with an 

α=0.25, so at the end of the charging period (12th hour) the 

temperature of its cold end is lower than in the design with a 

smaller aspect ratio.  

 

Figure 12. Thermal front at different times of the work cycle of 

different design of packed beds with a β=1.5 

This rise of the temperature of the cold end has a strong impact 

on the performance of the thermal store. Besides causing 

exhaust losses due to the air leaving the packed bed with some 

heat content left, a high temperature in the cold end at the end 

of the charging period generates substantial heat transfer 

losses during the subsequent discharge period because air at 

ambient temperature (290 K) is pumped through the cold end 

of the packed bed, where it will come in contact with rocks at 

a much higher temperature (~379 K for an α=0.25), hence heat 

is transferred across a big temperature difference and exergy 

is destroyed.  

At the end of the discharge, due to irreversibilities in the 

process, the packed bed with an α=0.25 has a lower 

temperature at its hot end in comparison with design based on 



an α=1.0. This will cause further heat transfer losses during the 

following charging cycle when air at the nominal inlet 

temperature of 823 K is pumped through the hot end of the 

store and encounters rocks ~100 K colder.  

4.3 Behaviour of the exhaust exergy losses 

Figure 13 shows the behaviour of the exhaust losses for 

designs based on different values of β and α as the particle size 

changes. Two sets of curves can be identified, solid and dotted 

lines. The solid lines represent a β=1.5 while the dotted lines 

represent a β=2.0; each colour represents a different α. 

Exhaust losses are directly proportional—similarly to heat 

transfer losses—to the diameter of the rocks. The total heat 

transfer area increases for smaller particle sizes, therefore the 

air stream has less exergy remaining in it upon exiting the 

packed bed at the cold end.  

 

Figure 13. Behaviour of exhaust exergy losses for designs based on 

different α and β as the particle size varies 

It can be seen that for any given size of rocks, exhaust losses 

reduce as α increases. As aforementioned, a greater separation 

between the hot and cold ends of the packed bed (consequence 

of a larger α) helps to achieve a steeper thermal front (as shown 

in Figure 12) which in turn causes the air to leave the store at 

a lower temperature. For instance, a packed bed with a β=1.5 

and α=0.25 has 0.1415 MWh of exhaust losses when rocks of 

8 mm of diameter are used, while these losses reduce to 0.037 

MWh if α increases to 1.0, keeping β and the rock size 

constant. In Figure 13 it can also be seen that exhaust losses 

decrease as the mass overrating factor increases.  

Figure 14 provides further insight on the behaviour of the 

exhaust losses. In the figure, the temperature profiles of the 

cold end of different designs of packed beds (β=1 with 

different α and sizes of rocks) throughout the work cycle are 

shown.  

It can be seen that at the end of the charging period (12th hour), 

designs with a low aspect ratio (solid lines) have a much higher 

temperature at their cold end in comparison to designs with a 

large aspect ratio (dashed lines), which explains the increased 

exhaust exergy losses. For example, the cold end of a packed 

bed considering a β=1, α=0.25 and 6mm rocks reaches a 

temperature of 379.07 K in contrast with a packed bed based 

on an α=1.0, whose cold end’s temperature rises only up to 

341.32 K. 

 

Figure 14. Temperature profile of the cold end of different designs 

of packed beds throughout a full work cycle 

For the same aspect ratio, smaller rocks yield lower 

temperatures at the end of the charging period due to an 

increased heat transfer area, which is in agreement with the 

behaviour depicted in Figure 13. Additionally, it may be 

observed that the cold end temperatures of designs with a 

small α start to increase earlier, i.e. large aspect ratios are 

capable of maintaining the temperature of the cold end at near 

ambient (which is desirable) for a longer period.  

4.4 Behaviour of the exergy losses due to pressure 

drops 

Pressure drops, as shown in Figures 8 and 9, become a major 

contributor to the total exergy losses of the packed bed as the 

aspect ratio increases. Figure 15 shows the behaviour of the 

exergy losses caused by the pressure drops in the storage unit. 

In the figure, four different groups (colours) of curves can be 

identified, each one of these groups represents a different 

aspect ratio. For each aspect ratio, 3 different values of β 

(solid, dashed and dotted lines) are plotted.  

 

Figure 15. Exergy losses due to pressure drops in the packed bed for 

designs with different α, β and sizes of rock. 



For any given combination of α and β, exergy losses due to 

pressure drops increase exponentially as the size of the rocks 

decreases because the stream of air faces a higher resistance 

against flow. Regardless of the particle size, packed beds with 

larger values of α have much higher exergy losses due to 

pressure drops. For example, considering a rock diameter of 

8mm, a design based on a β=1.5 and α=0.25 has 0.0144 MWh 

of exergy losses due to pressure drops during a full work cycle, 

while these losses increase to 0.0523, 0.1917 and 0.4084 MWh 

for values of α of 0.5, 1.0 and 1.5, respectively. The foregoing 

is due to two factors: the height of the bed increases and the 

cross-sectional area of the container reduces, which entails an 

increase in the velocity of the air and consequently in the 

pressure drops, as Eq. (3) and (6) indicate.  

Pressure drops reduce for increasing values of β—as 

expected—because as the container of the packed bed grows 

the mass flow to cross-sectional area ratio (mass-flux) reduces. 

The effect in the pressure drops of increasing β is more 

notorious at large aspect ratios, where the cross-section 

available is rather small for the air flow.  

4.5 Behaviour of the self-discharge exergy losses 

Figure 16 shows the behaviour of the exergy losses due to the 

self-discharge of the packed bed as different mass overrating 

factors, aspect ratios and rock sizes are used. In the figure, four 

groups of curves (different colours) can be identified. Each 

group represents a different α and comprises 3 curves 

(different line styles), each of which represents a different β. 

 

Figure 16. Exergy losses due to self-discharge of the packed bed or 

designs with different α, β and sizes of rock. 

It can be seen that self–discharge losses increase significantly 

as the aspect ratio decreases. As α shifts towards smaller 

values, the length between the hot and cold ends reduces and 

the cross–section increases, which facilitates the conduction of 

heat down the thermal front. For a β= 1.5 and a rock diameter 

of 5 mm, a packed bed with an α=1.5 has 0.065 MWh of 

exergy losses due to self-discharge in the course of a work 

cycle, while a design based on an α=0.25 loses 0.524 MWh.  

Similar to the other forms of exergy loss discussed in the 

previous subsections, for any given value of α self-discharge 

losses reduce as β increases because the separation between 

the hot and cold ends of the packed bed lengthens.  In designs 

based on a small aspect ratio self-discharge losses become a 

major source of exergy loss, overshadowing in some cases the 

improvement observed in the other forms of loss. It is precisely 

due to the effect of self-discharge losses that below a certain 

aspect ratio (~0.6, depending on β) the total losses of the 

packed bed start to increase again instead of continuing to 

diminish, as Figure 6 shows. 

Many studies neglect this form of exergy loss, which may be 

acceptable for aspect ratios greater than 1. However, an 

optimization study cannot be properly carried out without 

taking these losses into consideration because the resultant 

function describing the efficiency of the packed bed would be 

a monotonic curve indicating the optimum is found at a very 

small aspect ratio (α<<0.5) when this is not necessarily the 

case.  

4.6 Cost-benefit analysis 

Subsections 4.1-4.5 have amply demonstrated that for the duty 

and scale of packed beds this study is concerned with, a very 

sizeable reduction in the total exergy losses can be attained 

through the optimization of the aspect ratio and the size of the 

rocks used. It has been found that designs based on an aspect 

ratio between 0.5≤ α ≤ 0.8 (depending on β) exhibit the lowest 

losses. 

Besides a lower operational cost owed to the reduced exergy 

losses, a further benefit of adopting a configuration for a 

packed-bed based on a small aspect ratio is the reduction of 

some cost-driving parameters such as the container’s surface 

area and wall thickness. 

The minimum wall thickness (τ) of the cylindrical container to 

hold any one packed bed is determined, as shown in Eq. (31), 

by the radius of the container (which is a function of α), the 

lithostatic pressure exerted by the bulk of rocks (L) and the 

maximum hoop stress (S) the material of the construction can 

tolerate. Smaller aspect ratios entail smaller bed heights, 

which results in thinner container walls due to the reduced 

lithostatic pressure of the column of rocks.   

If the packed bed was pressurized, the pressure of the air 

stream would also play an important role in determining the 

thickness of the container’s wall. This paper considers a non-

pressurized packed bed, which is charged/discharged by a 

stream of air with a pressure very slightly higher than ambient. 

𝜏 = −
𝐿 ∙ 𝑟𝑐

𝐿 − 2 ∙ 𝑆
 (31) 

 
Where: 

𝐿 = 𝜌𝑟 ∙ 𝑔 ∙ 𝐻 (32) 

 

𝑟𝑐 = (
𝑉𝑐

2 ∙ 𝜋 ∙ 𝛼
)

1 3⁄

 (33) 

 
The surface area of the container (𝑠𝑐), unlike the wall 

thickness, is not monotonic for the range of α’s analysed, 

reaching a minimum at α=1 (see Eq. (34)). Nevertheless, the 

volume of steel required for the construction of the container 

(given by the product of surface area and wall thickness) 

decreases continuously until α~0.3 (depending on value of β). 

Consequently, designs for packed beds based on a small aspect 



ratio (α< 1) have a lower capital cost than those which consider 

an α>1, due to the reduced volume of steel required for their 

construction and a smaller area requiring insulation.   

𝑠𝑐 = 2𝜋 ∙ (
𝑉𝑐

2 ∙ 𝜋 ∙ 𝛼
)

2 3⁄

∙ (1 + 2𝛼)  (34) 

 
The overall results of the optimization process (presented in 

subsection 4.1) show that a reduction in the exergy losses can 

be achieved by increasing the mass of the packed bed by a 

certain factor (β) and suggest that a packed bed should be as 

big as possible to improve its efficiency. However; the factor 

by which the thermal mass of the store can be overrated is 

limited by economics. The improvement in performance 

becomes smaller for large values of β, which means that the 

cost of enlarging the store for a certain duty is not justified by 

the efficiency gained. 

To illustrate this fact, a simple cost model has been developed. 

The cost of the packed bed (CAPEX) is defined as the sum of 

three components: the cost of the steel of the container (𝜆steel), 

the cost of the insulation (𝜆insulation) and the cost of the rocks 

(𝜆rocks). It is worth highlighting that all three components of 

cost are influenced either directly or indirectly by the mass 

overrating factor. 

𝐶𝐴𝑃𝐸𝑋 = 𝜆𝑠𝑡𝑒𝑒𝑙 + 𝜆𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 𝜆𝑟𝑜𝑐𝑘𝑠 (35) 

  

Figure 17 shows the CAPEX calculated for different designs 

of packed beds. In designs with a β=1 the cost of the container 

represents 59.8-70.9% (depending on α) of the total cost, the 

cost of insulation accounts for 13.8-21.3% and the rocks 

contribute 15.2-19.6%. For comparison, in designs with a β=3, 

the total cost of the thermal store is distributed as follows: the 

container represents 71.8-80.2%, the insulation between 7.8-

12.5% and the rocks account for 11.9-15.98%. 

 

Figure 17. Variation in the CAPEX of the packed bed as different 

values for β and α are used. 

The levelized cost of storage (LCOS), defined by Eq. (36), is 

used to find the optimum β, that is to say, the value of β that 

yields the lowest cost per unit of exergy stored ($/MWh). In 

the equation 𝜓𝑖𝑛 represents the total value of the exergy that 

will be stored in the packed bed throughout its lifespan (ω) 

while 𝐵𝑜𝑢𝑡  is the total exergy output of the store throughout its 

lifespan. Typically the LCOS metric considers other costs such 

as maintenance and depreciation. In this study they are 

neglected (for simplicity) since they can be assumed to be 

constant for every design of packed bed [48, 49]. 

𝐿𝐶𝑂𝑆 =
𝐶𝐴𝑃𝐸𝑋 + 𝜓𝑖𝑛

𝐵𝑜𝑢𝑡

 (36) 

 

Where: 

𝜓𝑖𝑛 = 𝐵𝑖𝑛 ∗ 𝜔 ∗ 𝑧 (37) 

 

𝐵𝑜𝑢𝑡 = 𝐵𝑖𝑛 ∗ 𝜂 ∗ 𝜔 (38) 

 

It is clear that the LCOS is a trade-off between the total exergy 

losses and the CAPEX of the packed bed. Losses need to be 

minimized (i.e. efficiency improved) to increase the actual 

output of the store over time (Bout), but in doing so a penalty in 

CAPEX is paid. The parameters used for the cost-benefit 

analysis carried out are summarized in Table 4. It should be 

mentioned that the values are simply representative figures.  

Table 4. Parameters considered in the cost-benefit study 

 

 Parameter Value Units 

Material 

properties 

Insulation k 0.08 W/m-k 

Ambient h 10 W/m2K 

Allowable energy 

losses per cycle 
0.01*E MWh 

Steel Allow. Stress 150 MPa 

Density Steel 8000 kg/m3 

Costs 

Cost of steel 20 USD/kg 

Cost of insulation 264.5 USD/m3 

Cost of rocks 0.1 USD/kg 

Value of exergy (z) 65 USD/MWh 

Operational 

Parameters 

Theoretical Output 

(𝐵𝑖𝑛) 
33.392 MWh 

Lifespan of store 20 Years 

Number of cycles 

(ω) 
7300 Cycles 

 
Figures 18 and 19 show the LCOS achieved by a packed bed 

(under the specified work cycle in the specific economic 

scenario) as the design parameters α and β are varied. 

 

Fig 18. Variation in the LCOS of the packed bed as different values 

for β and α are used. 



 

Figure 19. Determination of the optimum combination of β and α 

from an economic standpoint. 

It can be seen that designs based on a β=3, yield the highest 

LCOS due to their elevated CAPEX, despite having the lowest 

losses. Analogously designs based on a β=1 yield high values 

of LCOS due to their high exergy losses, despite having a low 

CAPEX. The minimum LCOS is observed with a packed bed 

based on a β=1.5 and an α=0.6. 

The geometrical, operational and performance parameters of 

the best performing configuration for a packed bed found after 

the techno-economic optimization process are summarized in 

Table 5. 

Table 5. Parameters of the optimum design found  

 Parameters Value Units 

Geometrical 

Overrating Factor (β) 1.5 -- 

Mass of rock  849734.2 kg 

Volume of rock 320.65 m3 

Void fraction 0.3954 -- 

Particle Size 4.0 mm  

Total heat transfer area  1500 m2/m3 

Aspect Ratio (α) 0.6 -- 

Container diameter 10.402 m 

Container height 6.241 m 

Container surface area 368.686 m2 

Min. Wall thickness 5.632 mm 

Operational 

Max. Flow rate 17.98 kg/s 

Max. Inlet pressure 1.024 Bar 

Max. Air velocity 0.493 m/s 

Max. Heat transfer 

coeff.  
77.923 W/m2K 

Max. Biot number 0.034 -- 

 

Total exergy input 33.558 MWh 

Temp. Hot end  

@24 hour 
753.49 K 

Temp. Cold end  

@ 12 hour  
346.94 K 

Ex. Losses due to heat 

transfer 
188.71 kWh 

Ex. Losses due to 

pressure drops  
166.8 kWh 

Exhaust exergy losses 33.102 kWh 

Ex. Losses due to self- 

discharge 
201.056 kWh 

Roundtrip exergy 

efficiency 
98.24 % 

 

5 Concluding remarks 

Packed beds have received a great deal of interest in recent 

years due to their high efficiencies, overall simplicity, relative 

low cost and potential to be used in very high temperature 

applications. 

A comprehensive study of the effect of aspect ratio and 

particle size on the different mechanisms of exergy loss was 

carried out with aims at providing a clear reference of what is 

a good aspect ratio (or range of) to consider when designing a 

packed bed for utility-scale applications. The study considers 

a 24 hour long work cycle (12 hr charge + 12 hr discharge) 

with a 10 MW peak power and a total energy storage 

requirement of 79.4 MWhth (or 33.4 MWh of exergy).  

It has been found that for the duty analysed a substantial 

reduction in the total exergy losses of the packed bed can be 

attained by adopting a configuration based on an aspect ratio 

between 0.5 and 0.8 (the exact value depends on the value of 

β used). The improvement in performance is owed primarily 

to an increase in the surface area of rocks which narrows the 

temperature difference between the air and rocks reducing 

exergy losses due to heat transfer. In addition to this, the 

pumping load is lessened due to a decrement of the mass flux 

(ratio between mass flow of air /cross-sectional area) as the 

aspect ratio reduces. 

It is important to note that, despite the overall reduction of 

exergy losses, exergy losses due to the self-discharge effect are 

far from negligible for designs based on a small aspect ratio (α 

≤ 0.5). Consequently, designs based on a small aspect ratio are 

not particularly well suited for storage of exergy over extended 

periods of time, namely monthly or seasonal storage. 

The optimization work undertaken has also explored the effect 

of the mass overrating factor (β), which is a factor that allows 

increasing the storage mass over the minimum amount 

required to improve the performance of the store. For instance, 

a packed bed with a β=1 has a roundtrip exergy efficiency of 

95.1% (with the correct α and particle size) while this 

increases to 98.7% for a β=2 and to 99% for designs based on 

a β=3. Results seem to suggest that a store should be as big as 

possible to improve its efficiency; nevertheless, the factor by 

which the thermal mass of the store can be overrated is limited 

by economics. The improvement in performance becomes 

smaller for large values of β, which means that the additional 

capital expenditure associated with enlarging the store for a 

certain duty is not justified by the gains in efficiency obtained.  

The cost-benefit analysis carried out shows that for the 

economic scenario considered (costs of materials, value per 

unit of exergy stored and lifespan of the plant) designs based 

on a β=3, yield the lowest profit due to their elevated CAPEX 

notwithstanding having the highest efficiencies. Analogously, 

designs based on a β=1, generate a very low profit due to their 



comparatively high exergy losses despite having the lowest 

CAPEX.  

For the work cycle considered, a packed bed with a β=1.5, an 

α=0.6 and with 4mm diameter rocks was found to be the 

optimum configuration, achieving a roundtrip efficiency of 

98.24% and a levelized cost of storage of 68.2 $/MWh.  
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