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Abstract

We propose a new distribution for analysing paleomagnetic directional data

that is a novel transformation of the von Mises-Fisher distribution. The new

distribution has ellipse-like symmetry, as does the Kent distribution; however,

unlike the Kent distribution the normalising constant in the new density is

easy to compute and estimation of the shape parameters is straightforward.

To accommodate outliers, the model also incorporates an additional shape

parameter which controls the tail-weight of the distribution. We also develop

a general regression model framework that allows both the mean direction

and the shape parameters of the error distribution to depend on covariates.

The proposed regression procedure is shown to be equivariant with respect to

the choice of coordinate system for the directional response. To illustrate, we

analyse paleomagnetic directional data from the GEOMAGIA50.v3 database

(Brown et al. 2015). We predict the mean direction at various geological
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time points and show that there is significant heteroscedasticity present. It is

envisaged that the regression structures and error distribution proposed here

will also prove useful when covariate information is available with (i) other types

of directional response data; and (ii) square-root transformed compositional

data of general dimension.

Keywords: heteroscedasticity; regression; spherical data; t-distribution.

1 Introduction

1.1 Background: paleomagnetic directional data

Spherical data are frequently encountered in the earth and environmental sciences

(e.g. Schuenemeyer and Drew, 2011; Borradaile, 2003). A common example is pa-

leomagnetic data consisting of observations on the direction of magnetism in either

rocks, sediment or in archeological specimens, measured at various geological time

points and spatial locations. The directions are usually measured as declination and

inclination angles based on strike and dip coordinates (see Schuenemeyer and Drew

(2011, p. 379) for a full definition). Often it is of interest to calculate a sample mean

and standard error estimate of the direction at a particular spatial location and in

small geological time ranges (e.g. Acton et al., 2000, p. 166). In other cases, depend-

ing on the data available, it is of interest to explore the relationships between the

directions versus geological time and/or space to understand how the Earth’s mag-

netic field has evolved. In this case, to account for the highly non-linear relationships

between the geomagnetic field directions and the covariates, in the geophysics litera-

ture, the geomagnetic field is usually expressed in terms of spherical harmonics, and

the temporal evolution of the process is modelled using cubic B-splines. The residuals

in these models are then assumed to have either an approximate Gaussian or Laplace
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distribution (e.g. Walker and Jackson, 2000; Panovska et al., 2015). Paleomagnetic

data is typically heavy-tailed and contains outliers (e.g. Acton et al., 2000; Panovska

et al., 2015).

In this paper we focus on analysing archeomagnetic data in the GEOMAGIA50.v3

database (GMAG; Brown et al., 2015), extracted in February 2017. GMAG is a very

detailed online database providing access to a large amount of published paleomag-

netic, rock magnetic, and chronological data from a variety of materials that record

Earth’s magnetic field over the past 50,000 years. For simplicity we restrict our anal-

ysis to a single spatial location which is the Eifel maars (EIF) lakes in Germany.

Similarly to Panovska et al. (2015), we relocate nearby archeomagnetic data (lati-

tudes in the range [40◦, 60◦] and longitudes in the range [−3◦, 17◦]) to the EIF location

using an axial dipole correction as defined at equation (1) in Noel and Batt (1990).

Our archeomagnetic data is therefore equivalent or close to equivalent to Panovska et

al. (2015), Figure 10, top two plots (we exclude the sediment data). These plots are

given here in Figure 1 and they show that the angles may be heavy-tailed and there

is some evidence of non constant variability (heteroscedasticity) across time. Before

we analyse the data, we convert these angles to Cartesian coordinates defined on S2,

where Sp−1 denotes the unit sphere {y ∈ Rp : ||y|| = 1}. In the conversion we use

the following reference frame: y1 = sin I, y2 = cos I cosD and y3 = cos I sinD, where

I represents inclination defined on [−90◦, 90◦] and D represents declination defined

on [0◦, 360◦].

Historically both the Kent distribution and von Mises-Fisher have been used to

a limited extent to summarise paleomagnetic data samples (e.g. Fisher et al., 1987;

Tauxe, 2010). One major issue with the Kent distribution is that the normalising

constant does not exist in closed form and involves multidimensional integrals that

are difficult to compute. This has led to the use of either a high concentration or
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Figure 1: EIF GMAG data. Top: Declination versus Age (in years) scatterplot;
Bottom: Inclination versus Age (in years) scatterplot.
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saddlepoint density approximation (Kent, 1982; Kume and Wood, 2005) to estimate

the shape parameters. However, often the residual variability in applications is not

small and these methods can lead to biased estimates especially when the shape

parameters are spread and the ellipticity is high (Scealy and Welsh, 2014). More

recently Scealy and Welsh (2017) avoided the issue of estimating the shape parameters

by instead modelling and then estimating the first- and second-order moments of

the Kent distribution. They based inference for the moments on a nonparametric

bootstrap method, but this has the disadvantage of being computationally intensive

and is cumbersome to apply.

1.2 Main contributions of the paper

We propose a new family of flexible yet tractable error distributions for directional

response data, which we call the Scaled von Mises-Fisher (SvMF) family. The SvMF

family is generated by applying a bijective transformation of the sphere to itself which

is defined in Section 2. The SvMF family has the same symmetry properties as the

Kent (1982) distribution and the new density has virtually identical contours to the

Kent density for certain ranges of the shape parameters. However, unlike the Kent

distribution, the normalising constant in a SvMF distribution is essentially that of the

underlying von Mises-Fisher distribution and is therefore highly tractable. A further

interesting property of the SvMF family is an extra parameter, which should be

thought of as a tuning parameter, which allows some control of the tail-weight of the

distribution for a given level of concentration of the distribution. We demonstrate

that the shape parameters can be estimated in a computationally convenient way

using standard maximum likelihood estimation methods. Moreover, we show how the

new model can be used in the regression setting, allowing both the mean direction

and the shape parameters to be modelled directly as functions of a general covariate
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vector. Simulation from the new model is also straightforward, as it just involves

a simple transformation of a von Mises-Fisher random variable. We use this new

modelling approach to analyse GMAG paleomagnetic data (see Brown et al., 2015).

1.3 Relevant literature

We briefly mention some other families of distributions on Sp of interest but do not

consider them further in this paper. Jones and Pewsey (2005) point out that the

family they consider on the circle S1 has an extension to Sp where p > 1. However,

this family necessarily exhibits rotational symmetry, unlike the families considered

here and mentioned below. Second, Paine et al. (2018) consider a subfamily of

the angular Gaussian family (see Mardia and Jupp, 2000 for the definition) whose

distributions are Kent-like, i.e. they have contours of constant density which exhibit

ellipse-like symmetry. This angular Gaussian subfamily has some similar features to

the family proposed here, though the mathematical form of the density is somewhat

different. Downs and Mardia (2002) and Kato and Jones (2010) have considered

families of distributions on the unit circle S1 generated by the Möbius transformation,

while Kato and McCullagh (2015) propose a Cauchy family of distributions on the

unit sphere Sp, p ≥ 1, which is based on a Möbius transformation on Sp; see Section

3 of their paper. However, although these constructions are similar in spirit to the

construction proposed here, the resulting families of distributions are quite different.

Jupp and Kent (1987) and Di Marzio et al. (2014) propose nonparametric regres-

sion approaches on the sphere, but restricted to the case of a scalar covariate or a unit

vector covariate (in the latter case only), and an isotropic error structure appears to

be assumed in both papers. In contrast, our goal here is to develop a general flexible

regression framework on the sphere which can handle general vector covariate struc-

tures and can accommodate heavy-tails and heteroscedasticity, without assuming a

6



priori that the error distribution is rotationally symmetric. Finally, we mention that

Rivest et al. (2016) suggest some interesting ideas for regression modelling on the

circle; some of these ideas may prove useful for regression modelling on the sphere.

1.4 Structure of the paper

The rest of this paper is organised as follows. In Section 2 we specify the family of

transformations of Sp−1 used to create the SvMF family, which is presented in Section

3. In Section 4 we propose iterative estimation schemes for the parameters, first

considering the independent and identically distributed (IID) case and then focusing

on the regression case. In Section 5 we describe our analysis of the GMAG data

discussed in Section 1.1. In Section 6 we present simulation results which provide

information about the properties of the parameter estimators for the SvMF model

in the IID case. Conclusions are briefly summarised in Section 7 and proofs are

given in appendices. Although the paleomagnetic directional data is defined on S2,

throughout most of the paper we keep the dimension p ≥ 3 quite general.

2 A group of transformations on Sp−1

The best-known transformation group on the unit sphere is of course the group of

isometries. In a given Cartesian coordinate system, such an isometry may be repre-

sented by y 7→ Γy where Γ is a p× p orthogonal matrix satisfying Γ>Γ = ΓΓ> = Ip,

where Ip is the p × p identity matrix. We now consider a second type of transfor-

mation. In words, we consider a bijection of Sp−1 onto itself obtained by rescaling

the coordinate axes in the ambient space Rp, and then projecting each point in the

image of Sp−1 (under the linear transformation of the ambient space) back onto the

unit sphere.
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To make this more mathematically explicit, define R+ to be the set of strictly

positive real numbers. For each a = (a1, . . . , ap)
> ∈ Rp

+, define the transformation

Ta : Sp−1 → Sp−1 by

z = Ta(y) =
1

{
∑p

i=1(yi/ai)
2}1/2

(
y1
a1
, . . . ,

yp
ap

)>
, y ∈ Sp−1. (1)

By construction, z ∈ Sp−1, and it is clear that Ta is a bijection from Sp−1 to itself.

Moreover, the set of transformations {Ta : a ∈ Rp
+} forms a group with group

operation Ta ◦ Tb = Ta◦b where, abusing notation slightly, we have used the same

symbol for the group operation and for the Hadamard product of two vectors; here a◦

b = (a1b1, . . . , apbp)
>, where b = (b1, . . . , bp)

>. Note that the inverse transformation

T −1a is given by Tb where b = (1/a1, . . . , 1/ap)
>.

Let dSp−1 denote the standard geometric measure on the unit sphere. Let Z

denote a random unit vector in Sp−1 with probability density function fZ(z) with

respect to the surface area measure dSp−1. Then, since for each a ∈ Rp
+, Ta defines a

smooth bijection, it follows that if Z = Ta(Y ) then the random unit vector Y ∈ Sp−1

has probability density function which satisfies

fY (y) = fZ{Ta(y)}Ja(y). (2)

The Jacobian function Ja(y) is determined in the following lemma whose proof is

given in Appendix A.1.

Lemma 2.1. For a ∈ Rp
+ and y ∈ Sp−1, the function Ja(y) is given by

Ja(y) =

(
p∏
i=1

ai

)−1{ p∑
i=1

(
yi
ai

)2
}−(p−1)/2

. (3)

It is interesting to note that, when we take fZ(z) to be the probability density
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function of the uniform distribution on Sp−1, the resulting distribution of y turns

out to be the angular central Gaussian distribution; see Watson (1983, p. 110) and

Mardia and Jupp (2000).

3 Construction of a Kent-like distribution

When we take fZ(z) to be the von Mises-Fisher distribution and apply the trans-

formation Ta, we obtain a useful and seemingly new family of distributions, re-

ferred to as the SvMF family in the Introduction. Suppose that the components

of a = (a1, . . . , ap)
> in Ta satisfy

p∏
j=2

aj = 1, (4)

and let fZ(z) denote the probability density function of the von Mises-Fisher distri-

bution with respect to geometric measure dSp−1(z) on Sp−1, and given by

fZ(z) = {cp(κ)}−1 exp(κe>1 z) = {cp(κ)}−1 exp(κz1), (5)

where z = (z1, . . . , zp)
>, ej is the p-vector with component j equal to 1 and all other

components zero, j = 1, . . . , p, cp(κ) = (2π)p/2I(p/2)−1(κ)/κ(p/2)−1 is the normalising

constant, and Iν denotes the modified Bessel function of the first kind of order ν.

When p = 3, the normalising constant takes the simple form cp(κ) = 2π(eκ− e−κ)/κ.

Substituting z = Ta(y), where a satisfies (4), and using (2) and (3), leads to the

probability density function

fY (y) = {cp(κ)a1}−1
{

p∑
j=1

(yj/aj)
2

}−(p−1)/2
exp

 κ (y1/a1){∑p
j=1 (yj/aj)

2
}1/2

 . (6)
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In (6), the coordinate axes play a special role. We may write yj = y>ej, where ej is

the jth coordinate axis defined above, and generalising from {e1, . . . , ep} to a general

orthonormal basis {µ,γ2, . . . ,γp}, we obtain the general density

fY (y) = {cp(κ)a1}−1
{

(y>µ/a1)
2 +

p∑
j=2

(
y>γj/aj

)2}−(p−1)/2

× exp

 κy>µ/a1{
(y>µ/a1)2 +

∑p
j=2

(
y>γj/aj

)2}1/2

 . (7)

Three theoretical results are now presented. The first result gives a sufficient

condition for the density to be unimodal. The proof is given in Appendix A.2.

Proposition 1. Consider the density (7) on Sp−1 where (4) is satisfied, and without

loss of generality assume that a2 = max(a2, . . . , ap) and a1 ≥ 1. Then (7) is unimodal

and has a unique mode y = µ if

κ ≥ a1(p− 1)
(
(a2/a1)

2 − 1
)

and a1 ≤ a2.

If κ > 0 and a1 > a2 then, on the other hand, the density has a global maximum at

y = µ (but is not necessarily unimodal).

Our second result shows that in the high-concentration limit, i.e. when κ → ∞,

the density is asymptotically Gaussian. The proof is given in Appendix A.3.

Proposition 2. Let y∗ = (y∗1, y
∗
2, . . . , y

∗
p)
> ∈ Sp−1 be a random variable with density

(6) and define y∗L = (y∗2, y
∗
3, . . . , y

∗
p)
>. Then with a1, a2, . . . , ap held fixed and κ→∞,

κ1/2y∗L →d Np−1
(
0p−1,Diag

(
(a2/a1)

2, (a3/a1)
2 . . . , (ap/a1)

2
))
.

Our third result shows that the mean direction is µ and the columns of Γ =

{µ,γ2,γ3, . . . ,γp} are the eigenvectors corresponding to the second-order moment

10



matrix. The proof is given in Appendix A.4.

Proposition 3. Let y ∈ Sp−1 be a random variable with density (7), let y∗ =

(y∗1, y
∗
2, . . . , y

∗
p)
> ∈ Sp−1 be a random variable with density (6). Then with κ > 0 and

a1 > 0,

E (y) = E (y∗1)µ and E
(
yy>

)
= ΓDΓ>,

where D is a diagonal p× p matrix and is a non-linear function of the shape param-

eters κ, a1, a2, . . . , ap.

Later, for estimation it will also prove useful to consider the following alternative

parameterisation of γ2,γ3, . . . ,γp and a2, a3, . . . , ap. Following Scealy and Welsh

(2014), define the p× p orthogonal matrix

H(µ) =

µ1 µ>L

µL
1

1+µ1
µLµ

>
L − Ip−1

 = {µ,H∗(µ)} ,

where µL = (µ2, µ3, ..., µp)
> and H∗(µ) is a p × (p − 1) matrix whose columns are

orthogonal to µ. Let K∗ be a general (p − 1) × (p − 1) orthogonal matrix defined

such that

Γ = {µ,H∗(µ)K∗} (8)

holds. Then let

V = K∗Diag(a22, a
2
3, . . . , a

2
p)K

∗>, (9)

where V is a (p−1)×(p−1) dimensional symmetric positive definite matrix with the

constraint det (V ) = 1, which corresponds to condition (4); and assume a2 > a3 >

. . . > ap. In general the lower p − 1 elements on the diagonal of D in Proposition

3 do not correspond to the eigenvalues of V except under high concentration (see

Proposition 2).
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To obtain a Kent-like distribution it is convenient, for many practical purposes, to

set a1 = 1. However, numerical investigations indicate that as a1 increases the density

becomes heavier tailed with a higher probability of outliers and the shapes of the

densities in the tangent space are more similar to those of a multivariate t-distribution

of dimension p− 1. The model is a Q-symmetric model as defined by Rivest (1984)

and Rivest showed that the information matrix in such models is block diagonal (with

the first block associated with location parameters and the second block associated

with the shape parameters). In this context the shape parameters are κ, a1, a2, . . . , ap

and the location parameters are {µ,γ2, . . . ,γp}. It is also straightforward to prove

that, under condition (4), both a1 and κ are information orthogonal to all the shape

parameters {a2, a3, . . . , ap}, but a1 and κ are not information orthogonal to each

other. In fact, as discussed later, a1 and κ are not jointly estimable by maximum

likelihood.

4 Models and estimators

In this section we assume that a1 is fixed and not estimated. By default we suggest

setting a1 = 1 unless a heavier-tailed density is required.

4.1 Independent and identically distributed data case

Let Y 1, . . . ,Y n be an independent and identically distributed sample from the dis-

tribution with density (7) and let yi = (y1,i, y2,i, . . . , yp,i)
> for i = 1, 2, . . . , n denote

the observed values of these random variables.
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4.1.1 Moment and M-estimators of location parameters

The location parameters in Γ can be estimated straightforwardly by using the Kent

(1982) moment estimators. The moment estimator of µ is the sample mean direction

µ̃ =

∑n
i=1 yi

‖
∑n

i=1 yi ‖
, (10)

and the moment estimators of γ2,γ3, . . . ,γp denoted by γ̃2, γ̃3, . . . , γ̃p respectively,

are the unit eigenvectors corresponding, in decreasing order, to the p − 1 strictly

positive eigenvalues of

(
Ip − µ̃µ̃>

)( n∑
i=1

yiy
>
i

)(
Ip − µ̃µ̃>

)
.

Note that there is some non-uniqueness in the definition of the Γ̃, in that any choice

of the form {µ̃,±γ̃2,±γ̃3, . . . ,±γ̃p} will suffice. If we wish to specify the signs of the

γ̃j uniquely, we can do this with probability one by choosing, for example, the first

component of each γ̃j to be positive.

The sample mean direction may not be efficient for heavy-tailed distributions

(as seen in the simulation experiment in Section 6). In this case, the normalised

spatial median estimator or the spherical median estimator of location available for

the von Mises-Fisher distribution can be used (e.g. Ko and Chang, 1993). These

M-estimators are consistent under the model due to symmetry.

4.1.2 Maximum likelihood estimation of all parameters

If µ and κ are known, then the log-likelihood for V is

−(p− 1)

2

n∑
i=1

log
(
y∗∗21,i a

−2
1 + y∗∗>L,i V

−1y∗∗L,i
)

+
n∑
i=1

κa−11 y∗∗1,i(
y∗∗21,i a

−2
1 + y∗∗>L,i V

−1y∗∗L,i
)1/2 , (11)
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where y∗∗1,i = µ>yi and y∗∗L,i = H∗(µ)>yi. To estimate V we maximise (11) with

respect to V subject to det (V ) = 1 or equivalently subject to log{det (V )} = 0.

This constrained optimisation problem can be solved by using the method of La-

grange multipliers and the resulting Lagrangian function has a similar form to the

log-likelihood for a general scatter matrix for an elliptically symmetric distribution

defined on Rp−1. Similar to Maronna (1976, pp. 51-52), maximising the Lagrangian

function leads to the following estimating equation:

V ∝
n∑
i=1

(
(p− 1)

(
š2i
)−1

+ κa−11 y∗∗1,i
(
š2i
)−3/2)

y∗∗L,iy
∗∗>
L,i ,

where š2i = y∗∗21,i a
−2
1 + y∗∗>L,i V

−1y∗∗L,i. This estimating equation can be solved by ap-

plying the following iterative reweighting algorithm

V̂ m+1 =

∑n
i=1

(
(p− 1)

(
ŝ2i(m)

)−1
+ κa−11 y∗∗1,i

(
ŝ2i(m)

)−3/2)
y∗∗L,iy

∗∗>
L,i(

det

(∑n
i=1

(
(p− 1)

(
ŝ2i(m)

)−1
+ κa−11 y∗∗1,i

(
ŝ2i(m)

)−3/2)
y∗∗L,iy

∗∗>
L,i

))1/(p−1) ,

for some suitable starting value such as V̂ 0 = Ip−1, where ŝ2i(m) = y∗∗21,i a
−2
1 +y∗∗>L,i V̂

−1
m y

∗∗
L,i.

If µ and V are known, then the log-likelihood for κ is

−n log (cp(κ)) + κa−11

n∑
i=1

y>i µ
((
y>i µ

)2
a−21 + y>i H

∗(µ)V −1H∗(µ)>yi

)−1/2
. (12)

The modified Bessel function of the first kind is available in many software packages

including in R and therefore the above log-likelihood is straightforward to maximise

by applying one dimensional derivative free interval search methods. Given µ, to

compute joint estimates of κ and V we suggest iterating between maximising (11)

and (12), where the most recent update of V is used in (12) and the most recent

update of κ is used in (11), until convergence of both sets of parameters.
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In practice µ, κ and V are all unknown so we suggest first calculating a prelim-

inary estimate of µ using the sample mean direction (10) or the normalised spatial

median estimator and then maximising the log-likelihood conditional on the prelim-

inary estimate of µ to update κ and V . Then, given the κ and V estimates, we

suggest maximising the log-likelihood for µ to obtain a second, but more efficient

estimate of µ. This second estimator of µ can be calculated using the Nelder-Mead

simplex algorithm (Nelder and Mead, 1965) when the dimension p is low.

The parameter a1 is set to a fixed value because it was not possible to jointly

estimate both κ and a1 at the same time using the method of maximum likelihood

estimation. Specifically, κ and a1 are not jointly identifiable. We simulated lots of

datasets, both heavy-tailed and not heavy-tailed and we observed that in all of these

cases the log-likelihood function increased as a1 → 0 and κ→∞. This phenomenon

of parameters approaching boundary points is not unusual when modelling error

distributions with an extra shape parameter; for example, see the comment in Taylor

(1992, p. 41). Even for the t-distribution, often the degrees of freedom parameter

is treated as a tuning constant rather than estimated because maximum likelihood

estimation can sometimes give unsatisfactory results (e.g. Lange et al., 1989).

4.1.3 Preliminary transformation

For computational convenience, prior to estimation we suggest applying the following

orthogonal transformation to the response data

yi = (y1,i, y2,i, . . . , yp,i)
> = Γ̃

>
ỹi, i = 1, 2, . . . , n, (13)

where the ỹi ∈ Sp−1 are the original data in Cartesian coordinates and Γ̃ is the

moment estimator of Γ based on the original data. This preliminary transformation

is needed to ensure the final estimates of µ and K∗ are not too far from the north
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pole (1, 0, . . . , 0)> and the identity matrix, respectively. This initial transformation

will lead to approximate information orthogonality of µ and K∗ and will be exact

in the large sample limit case. Note that Kent et al. (2006, pp. 758-759) applied a

similar idea in estimation for the complex Bingham quartic distribution which is the

analog of the Kent distribution in landmark-based shape analysis for 2D objects.

4.2 Regression case

Assume we have vector responses {Y i ∈ Sp−1 : i = 1, 2, . . . , n} associated with a

set of covariates {X i ∈ Rq : i = 1, 2, . . . , n} and the responses are assumed to be

conditionally independent given the covariates. Scealy and Welsh (2011) modelled

the conditional distribution of Y i givenX i = xi as having a Kent distribution (Kent,

1982). In this model the location parameters were modelled as a function of xi and

the shape parameters were assumed to be constant. We now describe a tractable

way to also model shape parameters as functions of xi. We assume that the density

of each Y i conditional on X i = xi is given by (7), where all the parameters in the

model are now functions of xi except a1 which is assumed fixed at some value e.g.

a1 = 1.

4.2.1 Preliminary transformation

Prior to estimation we suggest first replacing the observations yi by T̃ yi for i =

1, . . . , n, where T̃ = H(p−1/21p)Γ̃
>

, and Γ̃ is defined in Section 4.1.1. Note that,

under mild conditions, T̃ is a consistent estimator of its population analogue T =

H(p−1/21p)Γ
> and consequently, in large samples, the columns of T play an impor-

tant role in the specification of the regression model if consistency holds. There is also

the option of estimating T and Γ using maximum likelihood estimation, a possibility

that deserves further investigation, but in this paper we have opted to use a simpler
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approach, specifically the moment estimator for T indicated in Section 4.1.3. This

transformation using T̃ results in estimators and fitted values which are equivariant

and is also convenient from a computational point of view, as typically K∗ is not

too far from the identity and the response data is centred as near as possible to the

middle of the positive orthant. Centring the responses in this way helps to avoid any

of the regression coefficients getting too close to infinity points on the link function

scale (see below for further details).

4.2.2 Link functions

There are many different choices of link functions available to model the parameters

in density (7). For convenience and comparative purposes we choose the same link

functions as Scealy and Welsh (2017). However, an interesting topic for further

research is the construction and exploration of other link functions. Let µ = µ(xi)

where

µk(xi) =


(
1 +

∑p−1
m=1 exp

(
β>mxi

))− 1
2 k = 1

exp
(
β>k−1xi

2

)(
1 +

∑p−1
m=1 exp

(
β>mxi

))− 1
2 k = 2, 3, ..., p,

where µk(xi) is the kth component of µ(xi) and β =
(
β>1 ,β

>
2 , . . . ,β

>
p−1
)> ∈ Rq(p−1)

is a vector of regression coefficients. This model assumes that the mean direction is in

the positive orthant. In many applications, including the paleomagnetic data example

discussed in Section 5, it is reasonable to assume that the conditional mean direction

µ(xi) is not highly variable across the range of xi and is contained well within

the positive orthant after re-centring the data using the preliminary transformation

discussed in Section 4.2.1.
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For p = 3 let

V (xi) =

σ3(1− c21)−0.5v2δ4i c1(1− c21)−0.5

c1(1− c21)−0.5 σ−13 (1− c21)−0.5v
−2δ4
i

 and κ(xi) = σ−14 v−2δ3i ,

(14)

where vi = g(xi) ∈ R is a known function and σ3 > 0, σ4 > 0, δ3 ∈ R, δ4 ∈ R and

c1 ∈ (−1, 1) are five variance component parameters. The above parameterisation

(14) implies that

V (xi)

κ(xi)
= σ2

1

vδ1i 0

0 σ2v
δ2
i


 1 c∗1

c∗1 1


vδ1i 0

0 σ2v
δ2
i

 , (15)

where σ1 > 0, σ2 > 0, δ1 ∈ R, δ2 ∈ R and c∗1 ∈ (−1, 1) are five variance compo-

nent parameters which satisfy δ1 = δ3 + δ4, δ2 = δ3 − δ4, σ2 = σ−13 , c∗1 = c1 and

σ2
1 = σ4σ3(1 − c21)

−0.5. The right hand side of (15) is the same covariance matrix

structure used by Scealy and Welsh (2017) to model their Kent distribution second-

order moment matrix. This is a standard general flexible heteroscedastic variance-

covariance structure (e.g. Pinheiro and Bates, 2000, p. 205) and it can easily be

extended into higher dimensions.

4.2.3 Estimation

The regression model parameters can be estimated directly by maximising the log-

likelihood. The log-likelihood is given by

−n log (a1)−
n∑
i=1

log cp(κ(xi))−
(p− 1)

2

n∑
i=1

log
(
s2i
)

+
n∑
i=1

κ(xi)

a1
y>i µ(xi)

(
s2i
)−1/2

,

(16)

where s2i =
(
yTi µ(xi)

)2
a−21 + yTi H

∗(µ(xi))V (xi)
−1H∗(µ(xi))

>yi. We suggest a

two step iterative algorithm to maximise the above log-likelihood. First, calculate
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a preliminary estimate of the regression coefficients β by solving for example the

estimating equation (17) in Scealy and Welsh (2011). Then repeat the following two

step algorithm until convergence of the parameters.

Step 1: Given β, update the variance component parameters in κ(xi) and V (xi) by

maximising (16) with respect to these variance components.

Step 2: Given the variance components update from step 1, update β by maximising

(16) with respect to β.

A standard second derivative Newton-Raphson algorithm can be applied in each step

to do the optimisations. Note that the derivatives of the modified Bessel function

of the first kind can be calculated straightforwardly from known recurrence rela-

tions. Approximate standard errors for β can also be estimated directly by using

the observed information matrix obtained from the second derivative matrix for β

conditional on the other parameters (treating the variance components as fixed). Or

alternatively, a bootstrap can be employed to calculate estimated standard errors by

resampling the (yi, xi) pairs.

4.2.4 Equivariance

An important property of our new regression model is that the estimators are equiv-

ariant to orthogonal transformations. This is proved in Proposition 4 below.

Firstly, denote the original sample data by y1,y2, . . . ,yn and let Γ̃y be the moment

estimator of Γ for this data defined in Section 4.1.1. Also define

Q̃y = H(p−1/21p)Γ̃
>
y , (17)

which is the orthogonal matrix given in Section 4.2.1. Now define ỹi = Q̃yyi,

i = 1, . . . , n. We apply the regression modelling to the ỹi, not the yi. Suppose
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that, after doing the regression modelling we end up with fitted mean directions

µ̂(x1), . . . , µ̂(xn) for ỹ1, . . . , ỹn, respectively. If we wish to find the corresponding

fitted mean directions in the original coordinate system for the yi, we calculate

ŷ1 = Q̃
>
y µ̂(x1), ŷ2 = Q̃

>
y µ̂(x2), . . . , ŷn = Q̃

>
y µ̂(xn).

We now state the equivariance result. The proof is given in Appendix A.5. In

what follows the subscript y indicates quantities based on the yi, and a subscript w

indicates quantities based on the wi, defined in the proposition below.

Proposition 4. Suppose that y1, . . . ,yn are unit p-vectors which span Rp and have

a non-zero vector sum. Let A denote an arbitrary orthogonal p×p matrix and define

wi = Ayi, i = 1, . . . , n. Then there exists a choice Γ̃w such that

µ̃w =

∑n
i=1wi

‖
∑n

i=1wi ‖
;

the jth column of Γ̃w, j = 2, . . . , p, are eigenvectors of

(
Ip − µ̃wµ̃>w

)( n∑
i=1

wiw
>
i

)(
Ip − µ̃wµ̃>w

)
,

corresponding to positive descending eigenvalues; and also

Γ̃w = AΓ̃y.

Moreover, Q̃w = Q̃yA
>; the µ̂(xi) based on the w̃i = Q̃wwi, i = 1, . . . , n, are

invariant; and we have

ŵi ≡ Q̃
>
wµ̂(xi) = Aŷi, i = 1, . . . , n,
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and consequently the fitted mean directions are equivariant with respect to orthogonal

transformation A.

There is a finite number of possible choices of Γ̃w, as of Γ̃y. In both cases,

this number is 2p−1, corresponding to sign changes of the γ̃j,w and γ̃j,y, respectively

and assuming distinct eigenvalues which occurs with probability one when n ≥ p.

However, if we require that Γ̃w is continuous inA asA ranges over the p×p orthogonal

matrices, then uniqueness in the choice of Γ̃w is recovered, and this leads to the

equivariance claimed in the proposition.

5 Analysis of paleomagnetic directional data

We now describe our analysis of the GMAG data discussed in the Introduction. For

illustrative purposes we considered three further subsets of the data. Case 1 refers to

a single time point, where the geological time variable Age (in years) is set equal to

1250; this is the time point with the most data, leading to a sample size of n = 50.

Case 2 covers the Age range 0 to 1500, giving a sample of size n = 788; and Case 3

covers the Age range 1500 to 1900, giving a sample of size n = 150. We fitted the

independent and indentically distributed model to Case 1 and the regression models

to Case 2 and Case 3, with Age as the covariate. As a first step we calculated moment

estimates for each of the three cases separately and then transformed the samples so

that they were centred at the north pole using (13).

We now discuss our analysis of the Case 1 data. The top two plots and bottom

left plot in Figure 2 contain kernel density estimates of the components y2,i, y3,i

and y1,i, respectively. The top left plot shows that a model with heavy-tails may

be needed. We interpret the bottom right scatterplot of y3,i versus y2,i as providing

evidence that the contours of the underlying density are elliptical in shape. As a first
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Figure 2: Case 1 data. Top left: y2,i; top right: y3,i; bottom left: y1,i. Small vertical
lines = data values, dashed line = kernel density estimate, solid line = fitted Kent
density, dotted line = fitted a1 = 6 model density and dot-dash line = fitted a1 = 1
model density (close to the solid line). Bottom right: y3,i versus y2,i scatterplot.
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step we fitted the Kent distribution to the data using maximum likelihood estimation

coupled with a saddlepoint approximation for the shape parameters as in Scealy and

Welsh (2014). We then simulated a sample of size n = 100, 000 from the fitted Kent

model and plotted the resulting nonparametric kernel density estimate (solid black

line in Figure 2). We then fitted the distribution defined in Section 3 with a1 = 1 and

then a1 = 6 using the estimators defined in Section 4.1. The parameter estimates for

these models are the true values in Tables 3 and 4 used in the simulation experiment

described in Section 6 and the standard errors in these tables can be considered as

parametric bootstrap estimates. We simulated large samples from these two fitted

models and in Figure 2 we plotted the resulting kernel density estimates. The value

a1 = 6 was chosen to give densities as close as possible to the observed sample

marginal distributions of y2,i and y3,i based on making the Kolmogorov-Smirnov (KS)

two sample test statistics small. The p−values for the KS test statistics for y2,i when

a1 = 1 and a1 = 6 were 0.07 and 0.79 respectively. This gives evidence that the

sample could have been generated from the Kent or a1 = 1 distribution since the test

statistic was borderline significant at the 5% level, but the heavy-tailed distribution

with a1 = 6 provided a better fit. For the component y3,i, all of the KS test statistics

were similar and non-significant, and there was little difference between the fitted

distributions.

We now describe the analysis of the Case 2 and Case 3 data. Let x̃i represent the

ith value of Age. For convenience we rescaled the covariate for each of the two cases

separately as

xi =
x̃i −min x̃i

max x̃i −min x̃i
+ 1.

In both Figure 3 and Figure 4, the top left, top right and middle left panels are plots

of y1,i vs xi, y2,i vs xi and y3,i vs xi, respectively. It is seen that there are non-linear

relationships between yi and xi and the variability appears roughly to increase with
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Figure 3: Case 2 data. Top left: y1,i versus xi scatterplot; top right: y2,i versus xi
scatterplot; middle left: y3,i vs xi scatterplot. Solid line is a1 = 1 fitted values and
dashed line is the cubic smoothing spline. Middle right: r2,i vs xi scatterplot; bottom
left: r3,i vs xi scatterplot. Solid line is through the origin and dashed line is the cubic
smoothing spline. Bottom right: r3,i vs r2,i scatterplot.
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Figure 4: Case 3 data. This figure has the same structure as Figure 3 except that it
is based on Case 3 rather than Case 2 data.
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xi for Case 2 and decrease with xi for Case 3. Before fitting the new regression

models, we further transformed the two samples so that they were centred in the

middle of the positive orthant as follows

yi = (y1,i, y2,i, y3,i)
> = H(3−1/213)y̌i, i = 1, 2, . . . , n,

where y̌i are the samples centred at the north pole based on the preliminary transfor-

mation given at (13). We modelled the mean direction using a 6th degree polynomial

and so the covariate vector is xi = (1, xi, x
2
i , x

3
i , x

4
i , x

5
i , x

6
i )
> in µ(xi). Some of the

regression coefficients were not significant based on the size of the estimated standard

errors and these were removed from the models (i.e. these regression coefficients were

set to zero and are omitted in Tables 1 and 2).

Next, we fitted three different models to both the Case 2 and Case 3 data

separately. First we fitted the Kent model defined in Scealy and Welsh (2017),

but with the random effects omitted (this is equivalent to a fixed-effects only re-

gression model). In this model there are two regression coefficient vectors β1 =

(β11, β12, β13, β14, β15, β16, β17)
> and β2 = (β21, β22, β23, β24, β25, β26, β27)

> and five

variance component parameters. Similarly to Section 5 of Scealy and Welsh (2011),

we obtained approximate maximum likelihood estimates of these parameters. In

summary, to update the regression coefficients we maximised the Kent log-likelihood

and to update the shape parameters we maximised the approximate Gaussian log-

likelihood. We repeated these two steps until convergence. In this Kent model we

parameterised E
(
H∗(µ(xi))

TY iY
>
i H

∗(µ(xi))
)

using the right hand side of equa-

tion (15) with vi = xi, and from the large concentration asymptotics for the Kent

distribution this expectation is approximately equal to

K∗(xi)Diag
((
κ̌(xi)− 2β̌(xi)

)−1
,
(
κ̌(xi) + 2β̌(xi)

)−1)
K∗(xi)

>, (18)
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where κ̌(xi) and β̌(xi) are the Kent shape parameters for the ith unit. The parameter

estimates we obtained for this model are given in Tables 1 and 2. We also include

approximate standard errors for the regression coefficients based on the observed

Kent information matrix conditional on the asymptotic approximations for the shape

parameters as well as standard error estimates from the nonparametric bootstrap

with 1000 resamples. With the bootstrap standard errors account is taken of the

preliminary transformation but this is not the case with the standard errors based

on observed information; nevertheless, these two types of standard errors are often

in reasonable agreement.

We also fitted the new regression model defined in Section 4.2 with a1 = 1 and

a1 = 6 to both the Case 2 and Case 3 data with the same covariate vector as the

Kent model and with V (xi) and κ(xi) parameterised by (14) with vi = xi. In

Tables 1 and 2, covering Case 2 and Case 3 respectively, we present the following:

parameter estimates; approximate standard errors for the regression coefficients based

on the observed information matrix conditional on the variance component estimates;

and standard error estimates obtained from the nonparametric bootstrap with 1000

resamples.

Table 1 shows that the Case 2 parameter estimates for a1 = 1 and the Kent model

are virtually identical. In all 3 models the bootstrap standard errors are similar in

size to the observed Fisher information standard errors. The asymptotic Gaussian

approximation appears to be working reasonably well here for the Kent distribution.

All of the retained regression coefficients are significantly different from zero based on

the size of the estimated standard errors. The estimates of the regression coefficients

for a1 = 6 are not the same as the a1 = 1 case, although they are not significantly

different based on the size of the estimated standard errors. The standard error

estimates are smaller for the a1 = 6 model and this is not surprising because it has

27



Table 1: Parameter and standard error estimates for Case 2
estimates standard errors

bootstrap observed information
a1 = 1 Kent a1 = 6 a1 = 1 Kent a1 = 6 a1 = 1 Kent a1 = 6

β11 197 197 196 13.6 13.6 11.2 12.9 13.1 11.8
β12 -554 -553 -550 38.6 38.5 31.7 36.7 37.1 33.4
β13 572 572 568 40.3 40.2 33.0 38.4 38.8 34.9
β14 -257 -257 -255 18.4 18.3 15.0 17.6 17.8 15.9
β15 42.4 42.4 42.0 3.10 3.08 2.52 2.96 3.00 2.68
β21 -776 -776 -803 246 246 215 260 264 236
β22 3650 3650 3760 1040 1040 909 1110 1120 998
β23 -6980 -6980 -7180 1800 1800 1590 1940 1970 1740
β24 6950 6960 7140 1650 1650 1460 1790 1820 1610
β25 -3820 -3820 -3920 843 844 748 922 938 823
β26 1100 1100 1120 227 227 202 251 255 223
β27 -128 -128 -132 25.2 25.2 22.5 28.1 28.6 24.9
σ3 1.47 1.46 1.41 0.184 0.180 0.140
c1 0.117 0.113 0.136 0.0556 0.0559 0.0431
δ4 -0.0659 -0.0660 -0.0116 0.125 0.123 0.0999
σ4 0.00197 0.00197 0.0569 0.000240 0.000234 0.00489
δ3 0.959 0.943 0.626 0.151 0.147 0.0934

heavier tails and accounts better for outliers. Note that the t-distribution with small

degrees of freedom often gives smaller standard errors in models when compared with

the Gaussian distribution (Lange et al., 1989). Based on the size of the bootstrap

standard errors, there is evidence that σ3 in (14) satisfies σ3 > 1, implying that an

elliptically symmetric model is needed. There is also evidence that δ3 in (14) satisfies

δ3 > 0, implying a heteroscedastic model is needed.

Table 2 shows that the Case 3 parameter estimates for a1 = 1 and the Kent

model are a lot more different than in Case 2. The bootstrap standard errors and

the observed Fisher information standard errors for the a1 = 1 model are similar

in size, but for the Kent model the observed Fisher information standard errors

are sometimes much larger than the bootstrap ones. We suspect that the observed

information method is grossly overestimating the standard errors for the Kent model

28



Table 2: Parameter and standard error estimates for Case 3
estimates standard errors

bootstrap observed information
a1 = 1 Kent a1 = 6 a1 = 1 Kent a1 = 6 a1 = 1 Kent a1 = 6

β11 -13.6 -8.54 -11.7 3.78 4.29 3.33 4.01 7.55 3.50
β12 32.1 21.4 28.6 7.78 9.09 6.90 8.21 16.2 7.24
β13 -23.8 -16.4 -21.7 5.23 6.27 4.67 5.50 11.3 4.90
β14 5.54 3.91 5.14 1.15 1.41 1.03 1.21 2.59 1.08
β22 -15.6 -10.4 -16.1 2.84 2.88 2.31 2.83 5.45 2.47
β23 31.8 20.8 33.1 5.73 6.08 4.74 5.73 11.6 5.03
β24 -20.6 -13.2 -21.7 3.78 4.18 3.17 3.79 8.04 3.35
β25 4.32 2.67 4.55 0.816 0.937 0.694 0.823 1.83 0.731
σ3 1.30 1.35 1.21 0.345 0.355 0.250
c1 -0.164 -0.144 -0.206 0.101 0.102 0.0977
δ4 -0.297 -0.367 -0.200 0.305 0.317 0.262
σ4 0.00781 0.00726 0.139 0.00213 0.00183 0.0280
δ3 -1.08 -0.959 -0.675 0.336 0.306 0.254

because the shape parameter estimates are biased due to the asymptotic Gaussian

approximation breaking down. Being able to approximate the standard errors well

in both the a1 = 1 and a1 = 6 models using the observed information matrix is

very useful because the bootstrap method is much more computationally intensive.

Model selection for the terms in β can also be based on the approximate observed

Fisher information standard errors, simplifying the analysis. Based on the size of the

bootstrap standard errors, there is evidence that σ3 in (14) satisfies σ3 = 1, implying

that a rotationally symmetric model is reasonable in this case. Similarly to Case 2,

there is evidence that δ3 6= 0, implying that a heteroscedastic model is needed. In

both Cases 2 and 3 there is evidence that δ4 = 0 which implies that V may not

depend on Age.

The solid lines in the top two plots and the middle left plot in Figures 3 and 4

were obtained by plottingH(p−1/21p)
>µ̂(xi) vs xi (we transformed from the centre of

the positive orthant back to the north pole), where µ̂(xi) is the predicted value from

the fitted a1 = 1 models (we also included a cubic smoothing spline for comparison
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in the y2 and y3 plots). The model for the mean direction appears to fit the data

reasonably well in both cases. To further check the fit of the a1 = 1 model we also

calculated the following standardised residuals:

ri = (r2,i, r3,i)
> = Diag(x

−(δ̂3+δ̂4)
i , x

−(δ̂3−δ̂4)
i )H∗(µ̂(xi))

>yi.

The middle right, bottom left and bottom right plots in Figures 3 and 4 contain plots

of r2,i vs xi, r3,i vs xi and r3,i vs r2,i, respectively (we also included a cubic smoothing

spline for comparison in the first two plots). These plots show no obvious patterns

and the residuals appear randomly dispersed about zero with constant variance.

6 Simulation

We simulated 1000 samples of size n = 50 from the following models fitted to the

data of Case 1 in Section 5: (i) Distribution defined in Section 3 with a1 = 1 (P1),

and (ii) distribution defined in Section 3 with a1 = 6 (P6). For each sample we fitted

both models and calculated five different estimates of µ using (a) moment estimator,

(b) normalised spatial median, (c) maximum likelihood estimator obtained using

the Nelder-Mead algorithm under the P6 model, (d) maximum likelihood estimator

obtained using the Nelder-Mead algorithm under the P1 model, and (e) maximum

likelihood estimator for the Kent model with shape parameters estimated via the

asymptotic Gaussian approximation. We also calculated the maximum likelihood

estimates of κ and V for each sample under the true model. Table 3 contains the

estimated standard errors and true values of µ conditioned on in the simulations (the

estimated standard errors are parametric bootstrap estimates for the Case 1 data in

Section 5). The estimated biases in the mean direction estimators were all negligible

and the standard errors and root mean squared errors were all very similar. Table
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4 contains the true values of κ and V conditioned on in the simulations as well as

standard error and bias estimates, where Vij denotes the (i, j)th element in V .

In Table 3 there are no results for µ1 because we have the identity µ2
1+µ2

2+µ2
3 = 1

and µ1 is determined up to sign from µ2 and µ3. It is best to give results for µ2 and

µ3 only because the marginal distributions of y2 and y3 are centred close to zero and

are approximately symmetric, whereas the marginal distributions of y1 are highly left

skewed due to being distributed close to the upper boundary 1. Biases and standard

errors are less informative in this asymmetric case. The standard errors suggest

that µ2 and µ3 could both be zero. This is due to the fact that we applied the

prior orthogonal transformation before the analysis to guarantee equivariance (this

transformation recentred the data so that the sample mean direction is at the north

pole).

Table 3: Estimated standard errors for the µ = (µ1, µ2, µ3)
> estimators

P1

parameter true value (a) (b) (c) (d) (e)
µ2 -0.0006 0.018 0.020 0.020 0.018 0.018
µ3 0.0002 0.013 0.015 0.015 0.013 0.013

P6

parameter true value (a) (b) (c) (d) (e)
µ2 -0.0039 0.018 0.012 0.011 0.021 0.023
µ3 0.0096 0.020 0.014 0.013 0.025 0.028

From Table 3 we see that the moment estimator has similar efficiency to the Kent

and P1 maximum likelihood estimator when simulating under P1. The normalised

spatial median and the P6 maximum likelihood estimator are slightly less efficient.

When simulating under P6, the normalised spatial median and P6 maximum like-

lihood estimator of the mean direction were more efficient than the P1 maximum

likelihood estimator, the moment estimator and the Kent maximum likelihood es-

timator. The normalised spatial median is only slightly less efficient than the P6
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Table 4: Bias and standard error estimates for the κ and V estimators
P1

parameter κ V11 V12 V22
true value 84.31 1.39 0.0029 0.7210

bias 4.64 0.02 0.0017 0.018
standard error 12.93 0.20 0.15 0.11

P6

parameter κ V11 V12 V22
true value 5.09 0.91 0.088 1.10

bias 0.11 0.029 0.000 0.029
standard error 0.79 0.16 0.17 0.19

maximum likelihood estimator when simulating under P6. Table 4 shows that V is

not significantly different from the identity matrix when simulating under P6 and

there is evidence that the true model could be rotationally symmetric. This is not

the case for P1 as both V11 and V22 appear marginally significantly different from 1

based on the size of the standard errors in Table 4.

7 Conclusion

We introduced a flexible heteroscedastic regression model for paleomagnetic direc-

tional data. The error distribution, which is obtained via a novel transformation of

the von Mises-Fisher distribution, has some desirable properties. Specifically, the

error density has elliptical symmetry; and its normalising constant is tractable, so

that the shape parameters can be estimated directly using maximum likelihood es-

timation. The new model was successfully applied to the analysis of paleomagnetic

data in the GEOMAGIA50.v3 database. It is evident from our analysis that there is

significant heteroscedasticity in the data and that the new regression model provides

a useful framework which captures non-linear features in the data. Moreover, the

model has a tuning parameter that enables the accommodation of both light-tailed

and heavy-tailed directional data.
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A Proofs

A.1 Proof of Lemma 2.1

Suppose initially that u,v ∈ Rp, where v = rt, u = ρτ , r = ||v||, t = v/r,

ρ = ||u|| and τ = u/ρ. Suppose also that vi = ui/ai for i = 1, . . . , p. Then

consider the sequence of transformations (r, t) → v → u → (ρ, τ ). Ignoring sets of

Lebesgue measure zero, these transformations are all bijections. Then, using dt and

dτ to denote unnormalised geometric measure on the unit sphere Sp−1, and using the

standard facts that drdt = 1
||v||p−1dv and du = ρp−1dρdτ , we obtain

drdt =
1

||v||p−1
dv

=

{
p∑
i=1

(
ui
ai

)2
}−(p−1)/2 (∏

a−1i

)
du

=

{
p∑
i=1

(
ρτi
ai

)2
}−(p−1)/2 (∏

ai

)−1
ρp−1dρdτ

= Ja(τ )dρdτ .
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Now restrict attention to ρ = 1. Under this restriction, u = τ and Lemma 2.1

follows.

A.2 Proof of Proposition 1

Write y>µ = cos(θ). Then

inf
y:y>µ=cos(θ)

p∑
j=1

(
yj
aj

)2

=
1

a21
cos2(θ) +

1

a22
sin2(θ).

Consequently, any local mode will occur at a θ which maximises fY (y) on the great

circle y = cos(θ)µ + sin(θ)γ2. On this great circle, log fY (y), written as a function

of θ and with the normalising constant excluded, is given by

log fY (y) = −(p− 1)

2
log

(
cos2(θ) +

a21 sin2(θ)

a22

)
+

κ cos(θ)(
cos2(θ) +

a21 sin
2(θ)

a22

)1/2 . (19)

Differentiating (19) with respect to θ and rearranging, we obtain

a21 sin(θ)

a22

(
cos2(θ) +

a21 sin
2(θ)

a22

)3/2
[
a1(p− 1)

(
a22
a21
− 1

)
cos(θ)

(
cos2(θ)

a21
+

sin2(θ)

a22

)1/2

− κ

]
.

The expression inside the square bracket is negative for all θ ∈ [0, π] when κ >

a1(p − 1) ((a2/a1)
2 − 1) and a1 ≤ a2, in which case the unique mode of fY (y) is at

θ = 0, i.e. y = µ. In the case when a1 = 1 and κ = a1(p − 1) ((a2/a1)
2 − 1), the

expression inside the square bracket is zero at θ = 0 but negative for all θ ∈ (0, π],

and as a consequence there is still a unique mode at y = µ. In both of these cases

the density is unimodal.

When κ > 0 and a1 > a2 the expression inside the square bracket is negative for

all θ ∈ [0, π
2
], in which case there is a unique mode of fY (y) at θ = 0 on the interval
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θ ∈ [0, π
2
], i.e. y = µ. When κ > 0 and a1 > a2 the expression inside the square

bracket may be negative, zero or positive for θ ∈ [π
2
, π] and it is possible for there to

be a maximum on the interior of this interval close to θ = π (resulting in a bimodal

distribution over the entire interval [0, π]). Now consider point θ1 ∈ [0, π
2
] and its

matching point θ2 = π − θ1 ∈ [π
2
, π]. When κ > 0 the function (19) is always larger

for θ = θ1 than it is for θ = θ2 and hence the global maximum of fY (y) on the entire

interval θ ∈ [0, π] is at θ = 0. Therefore when κ > 0 and a1 > a2 there is still a global

maximum at y = µ, but the distribution is not unimodal in general.

A.3 Proof of Proposition 2

Since the transformation (1) is scale invariant an equivalent form for density (6) is

obtained by replacing a1 by 1 and each aj by aj/a1 for j = 2, 3, . . . , p (this replacement

also needs to occur in the Jacobian term). Then, similar to Scealy and Welsh (2011,

p357), let y∗1 = 1− ‖ z∗ ‖2 /2 and y∗j = (1− ‖ z∗ ‖2 /4)
1/2
z∗j for j = 2, 3, . . . , p,

where z∗ = (z∗2 , z
∗
3 , . . . , z

∗
p)
> and it follows that ‖ z∗ ‖≤ 2. For this transformation

dy∗ = (1− ‖ z∗ ‖2 /4)
(p−3)/2

dz∗. Hence the density of z∗ is

{cp(κ)}−1 ap−11

{(
1− ‖ z∗ ‖2 /2

)2
+

p∑
j=2

((
1− ‖ z∗ ‖2 /4

)1/2
z∗ja1/aj

)2}−(p−1)/2

× exp


κ (1− ‖ z∗ ‖2 /2){

(1− ‖ z∗ ‖2 /2)2 +
∑p

j=2

(
(1− ‖ z∗ ‖2 /4)1/2 z∗ja1/aj

)2}1/2


×
(
1− ‖ z∗ ‖2 /4

)(p−3)/2
.
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Now let v = (v2, v3, . . . , vp)
> , where vj = κ1/2z∗j , j = 2, 3, . . . , p. When κ is large, it

follows that the density of v is

{cp(κ)}−1 ap−11 κ−(p−1)/2
{(

1 +Op

(
κ−1
))}−(p−1)/2

× exp

 (κ− ‖ v∗ ‖2 /2){
1− κ−1 ‖ v∗ ‖2 +κ−1

∑p
j=2

(
v∗ja1/aj

)2
+Op(κ−2)

}1/2


×
(
1−Op

(
κ−1
))(p−3)/2

.

(20)

By a Taylor series expansion, the exponential term in (20) simplifies to

exp

{(
κ− ‖ v∗ ‖2 /2

)(
1 + (2κ)−1 ‖ v∗ ‖2 −(2κ)−1

p∑
j=2

(
v∗ja1/aj

)2
+Op(κ

−2)

)}
,

which is equivalent to

exp

{
κ− (2)−1

p∑
j=2

(
v∗ja1/aj

)2
+Op(κ

−1)

}
.

The term {cp(κ)}−1 κ−(p−1)/2 exp{κ} simplifies to

(2π)−p/2
(
I(p/2)−1(κ)

)−1
κ−1/2 exp{κ} = (2π)−(p−1)/2

(
1 +O(κ−1)

)
,

since Iν(κ) = (2π)−1/2κ−1/2 exp {κ} (1 +O(κ−1)) (e.g. Mardia and Jupp 2000, p.

349). The density then converges to

(2π)−(p−1)/2ap−11 exp

{
−(2)−1

p∑
j=2

(
v∗ja1/aj

)2}
,

the (p−1) dimensional Gaussian density with mean 0 and diagonal covariance matrix.

The variables vj for j = 2, 3, . . . , p are each Op(1) and therefore z∗j for j = 2, 3, . . . , p is
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Op(κ
−1/2). By definition, κ1/2y∗L = κ1/2 (1− ‖ z∗ ‖2 /4)

1/2
z∗ = κ1/2z∗+Op(κ

−1) and

therefore | κ1/2z∗ − κ1/2y∗L |→ 0 in probability and y∗L also has the same asymptotic

Gaussian distribution as z∗.

A.4 Proof of Proposition 3

By definition y = Γy∗, implying E (y) = Γ E (y∗) and E (yy>) = Γ E (y∗y∗>)Γ>.

Define y∗L = (y∗2, y
∗
3, . . . , y

∗
p)
>. From symmetry arguments we observe that E (y∗1) > 0,

E (y∗L) = 0p−1, E (y∗1y
∗
L) = 0p−1 and E (y∗my

∗
r) = 0 for m 6= r, m = 2, 3, . . . , p and

r = 2, 3, . . . , p and the result then follows.

A.5 Proof of Proposition 4

First note that

µ̃w =

∑n
i=1wi

‖
∑n

i=1wi ‖
= Aµ̃y.

Moreover, since A is an orthogonal matrix,

Ip − µ̃wµ̃>w = A
(
Ip − µ̃yµ̃>y

)
A>,

and therefore

(
Ip − µ̃wµ̃>w

)( n∑
i=1

wiw
>
i

)(
Ip − µ̃wµ̃>w

)
= A

(
Ip − µ̃yµ̃>y

)
A>A

(
n∑
i=1

yiy
>
i

)
A>A

(
Ip − µ̃yµ̃>y

)
A>

= A
(
Ip − µ̃yµ̃>y

)( n∑
i=1

yiy
>
i

)(
Ip − µ̃yµ̃>y

)
A>
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Consequently, the first part of the proposition holds and, in particular, we may choose

Γ̃w = AΓ̃y. It then follows directly from (17) that Q̃w = Q̃yA
>;

w̃i = Q̃wwi = Q̃yA
>Ayi = Q̃yyi = ỹi, i = 1, . . . , n,

so that, in particular, the µ̂(xi) are invariant (as opposed to equivariant); and, finally,

ŵi = Q̃
>
wµ̂(xi) = AQ̃

>
y µ̂(xi) = Aŷi, i = 1, . . . , n,

as required.
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