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We investigate facilitation induced transparency (FIT) enabled by strong and long-range Rydberg atom inter-
actions between two spatially separated optical channels. In this setting, the resonant two-photon excitation of
Rydberg states in a target channel is conditioned by a single Rydberg excitation in a control channel. Through
the contactless coupling enabled by the Rydberg interaction, the optical transparency of the target channel can
be actively manipulated by steering the optical detuning in the control channel. By adopting a dressed-state
picture, we identify two different interference pathways, in which one corresponds to Rydberg blockade and
an emergent one results from facilitation. We show that the FIT is originated from the Rydberg interaction
and the quantum interference effect between the two pathways, which is different from conventional electro-
magnetically induced transparency realized by single-body laser-atom coupling. We find that the FIT in such a
dual-channel setting is rather robust, insensitive to changes of systemic parameters, and can be generalized to
multi-channel settings. Moreover, we demonstrate that such a FIT permits to realize controllable single-photon
switches, which also paves a route to detect Rydberg facilitation by using optical absorption spectra. Our study
contributes to current efforts in probing correlated many-body dynamics and developing single-photon quantum
devices based on Rydberg atom ensembles.

I. INTRODUCTION

Cold gases of Rydberg atoms have emerged as a versa-
tile platform for studying quantum nonlinear optics, non-
equilibrium statistical physics, and quantum simulation of
strongly interacting many-body systems [1–4], including an-
tiferromagnetic phase transition [5, 6], quantum many-body
scars [7–9], and Heisenberg XYZ spin model [10]. At the
same time, Rydberg atoms are of technological importance,
which allow to create collectively encoded qubit [11, 12], en-
tanglement [13, 14], photonic or neutral-atom gates for quan-
tum information processing [1, 15–17], precision measure-
ments [18, 19], and so on. The enabled fundamental research
and practical applications are rooted largely by the fact that
Rydberg atoms offer strong and long-ranged interactions. In
addition, their internal and external states can be actively ma-
nipulated under current experimental conditions [4, 20].

Rydberg many-body physics is largely based on two mech-
anisms: Rydberg blockade and facilitation (antiblockade),
which can be realized by tuning the excitation laser on res-
onance with atomic transitions, and for matching the Rydberg
interaction induced energy shifts [21], respectively. The for-
mer prevents multiple Rydberg excitations in the vicinity of
a Rydberg atom, which benefits to the creation of quantum
correlation and entanglement between atoms [13, 22]. The fa-
cilitation, opposite to the blockade, allows the formation of
Rydberg clusters [15, 23–27]; it has been a central building
block of non-equilibrium phase transitions, such as aggrega-
tion [25, 28], epidemic spreading [29, 30], and self-organized
criticality [31, 32], etc.. Experimentally, Rydberg facilitation
can be detected via absorption imaging [31] or direct ioniza-
tion [33–35]. However, although these methods have high
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efficiency, they typically damage many-body coherence after
experimental operations [36].

In this work, we theoretically investigate the optical prop-
erty of a dual-channel Rydberg ensemble [37–42], and illus-
trate that the facilitation mechanism can lead to an effective
interaction to probe photons, which can be directly measured
by using atomic absorption spectrum. The system we consider
consists of two optical channels that are remotely separated
in space, in which target channel A is resonantly excited to
a Rydberg state via electromagnetically induced transparency
(EIT) [43] and affected by control channel B via long-ranged
Rydberg interactions. Such a setting is available to realize
with present-day experimental techniques [39, 40, 42].

We show that a transparency window for probe photons
opens through adjusting the detuning of the channel B, and
this transparency window is sensitive to the Rydberg inter-
action. By using numerical and dressed-state calculations,
we reveal many-body quantum pathways and characterize an
interaction-dependent scaling function. A key finding is that
the two resonant transition pathways are respectively origi-
nated from the Rydberg blockade and facilitation; it is the
quantum interference effect between the two pathways that
leads to the facilitation induced transparency (FIT) of the
probe photons. The relevant model can moreover be general-
ized to Rydberg atomic gases with multiple optical channels.

The results on the FIT described above may have po-
tential applications in all-optical quantum information pro-
cessing. To realize optical quantum devices at single pho-
ton level, up to now various quantum systems have been
suggested to implement optical switches or transistors, such
as single molecules [44], quantum dots [45–48] and neutral
atoms [49, 50]. However, due to the saturable absorption of
single quantum emitters, it is difficult to realize a sizable op-
tical non-linearity at single-photon level. To enhance light-
matter interactions, one way is to use high-finesse optical res-
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onators to confine photons to small mode volumes [51, 52].
At variance with single-body quantum systems, strong and
long-range interactions between Rydberg atoms can be ef-
fectively mapped onto photon-photon interactions via two-
photon scheme. This provides an alternative avenue to design
single-photon switching in free space [53–55]. We demon-
strate that the system proposed here can be used to design con-
tactless single-photon switches, which is different from early
studies, where Rydberg single-photon switches were realized
in the blockade regime [42, 53–58]. By employing the pre-
sented dual-channel system, one can easily launch both facil-
itated and blockade single-photon switch by manipulating the
control channel.

Moreover, different from that of stationary Rydberg single-
photon switches reported before, the efficiency of the FIT-
based photon switch suggested here can be controlled dy-
namically. The use of the dual-channel setting brings more
potential benefits. Here Rydberg atoms in the control and
target channels are spatially separated. For example, com-
plicated atomic and molecular processes could be avoided,
which play roles in the Rydberg blockade in atomic ensem-
bles [59]. As we will show later, Rydberg populations in the
FIT is relatively weak. This could mitigate the formation of
ultralong-range Rydberg molecules [60, 61] and Rydberg po-
larons [62] due to collisions between ground state and Ryd-
berg atoms [63]. These features mean that coherence of the
atom could be increasingly protected in the FIT regime.

The remainder of the article is arranged as follows. In
Sec. II, we introduce the Rydberg dual-channel model based
on a master equation description. The level scheme and typ-
ically parameters are given. In Sec. III, we reveal the FIT
mechanism through analyzing a two-atom model both analyt-
ically and numerically. In Sec. III A, coherence of the probe
field is obtained numerically. By comparing with the approx-
imate result, we reveal the importance of two-channel corre-
lations in the emergence of FIT. In Sec. III B, we present an
analytical dressed-state approach on the model and show the
scaling of FIT as a function of the inter-channel interaction.
In Sec. IV, based on the FIT we discuss controllable single-
photon switch protocol. Finally, Sec. V gives a summary of
the main results obtained in this work.

II. DUAL-CHANNEL RYDBERG MODEL

The system we consider consists of two ensembles of cold
atoms driven by channel-dependent laser fields. The two en-
sembles are prepared in parallel, elongated traps along z di-
rection, and separated by distance d; see Fig. 1(a). They
form two optical channels, i.e. a target channel A (contain-
ing NA atoms) and a control channel B (NB atoms). The
atomic level structure and the optical excitation scheme are
illustrated schematically in Fig. 1(b). We assume that, in the
target channel A, a weak probe laser field Êp(z) [Rabi fre-
quency Ω̂p(z) = gÊp(z)] resonantly couples the ground state
|1〉 and the excited state |2〉, and a coupling laser field (Rabi
frequency Ω) resonantly couples the state |2〉 and the Ryd-
berg state |3〉, which forms a scheme of conventional Rydberg-

FIG. 1. Scheme of dual-channel Rydberg atomic gas for realizing FIT.
Two atomic ensembles, i.e. target channel A and control channel B, are pre-
pared in parallel and separated by distance d. (a) A weak probe field Êp
propagates in the channel A, whose dynamics is facilitated by the Rydberg
excitation in the channel B. Long-range inter-channel Rydberg interaction
permits a contactless control for the two channels and hence the propagation
of the probe photon. (b) Level diagram and excitation scheme. Atoms in the
channel A have three quantum states (i.e. |1〉, |2〉, |3〉; |3〉 is a Rydberg state)
forming a Rydberg-EIT, where resonant transitions |1〉 ↔ |2〉 and |2〉 ↔ |3〉
are respectively provided by weak probe field Êp and strong coupling field
(Rabi frequency Ω). In the channel B, a control field with Rabi frequency Ωc
drives the transition between the ground state |1〉 to the Rydberg state |3〉 with
detuning ∆c. VAB is the van der Waals interaction between the atoms in the
two channels.

EIT [36]. Here g = µ21
√
ωp/(2~ε0Vp) is the atom-field cou-

pling constant, with ωp the central angular frequency of the
probe field, Vp the quantization volume of the probe field, and
µ21 the electric-dipole matrix element associated with the tran-
sition between |1〉 and |2〉. In the control channel B, atomic
levels |1〉 and |3〉 are coupled off-resonantly by another con-
trol laser field (Rabi frequency Ωc) with detuning ∆c, which
plays a critical role for realizing the FIT. We assume that both
Ω and Ωc are strong enough, thus they can be taken as classi-
cal fields and their depletion are negligible.

Under the rotating wave approximation, by setting ~ = 1 the
Hamiltonian for the channels A and B are respectively given
by

ĤA = −
1
2

∑
j∈A

[
Ω̂pσ̂21(z j) + Ωσ̂32(z j) + H.c.

]
, (1a)

ĤB = −
∑
j∈B

[
Ωc

2
σ̂31(z j) − ∆cσ̂33(z j) + H.c.

]
, (1b)

with σ̂ab(z j) ≡ |a j〉〈b j| (z j is the position of jth atom in the re-
spective ensemble) and H.c. representing Hermitian conjugate
of the preceding terms. We assume that the spatial extension
of each atomic ensemble is small, so that multiple Rydberg ex-
citations within each ensemble is prohibited by the strong and
long-ranged interaction between Rydberg states. However,
there exists an inter-channel Rydberg interaction between the
target channel A and the control channel B (with the distance d
typically Rydberg blockade radius ∼ 5 − 10 µm), which leads
to the following inter-channel interaction Hamiltonian

Hint =
∑

j∈A,l∈B

V(z jl)σ̂33(z j)σ̂33(zl), (2)

Here we have assumed that the target and control channels
are both excited to |nS 〉 states (or |nD〉 states). Two Ry-
dberg channels interact via the van der Waals (vdW) inter-
action V(z jl) = −C6/[(z j − zl)2 + d2]3, with C6 the disper-
sion coefficient. Note that, except for the vdW interaction, a



3

resonant dipole-dipole interaction can also be engineered by
coupling the ensembles to Rydberg states |S 〉 and |P〉, which
may lead to spin-exchange between remote Rydberg chan-
nels [22, 38, 40, 41]. This is a topic deserving to be explored,
but here we focus our consideration only on the case of the
vdW interaction.

The dynamics of the system including the two channels is
governed by the master equation,

dρ
dt

= −i
[
H, ρ

]
+ D(ρ) + Dd(ρ), (3)

where ρ(t) is density matrix, and Ĥ = ĤA + ĤB + Hint is the
total Hamiltonian of the system. In Eq. (3)

D(ρ) =
∑
µ=A,B

∑
j∈µ

Γ
µ
ba

{
σ̂ba(z j)ρσ̂ab(z j)

−
1
2

[
ρσ̂ab(z j)σ̂ba(z j) + σ̂ab(z j)σ̂ba(z j)ρ

]}
, (4)

describes the respective dissipation processes from |a〉 → |b〉
with the rates Γ

µ
ba = ΓA

12, ΓA
23, and ΓB

13;

Dd(ρ) =
∑
µ=A,B

∑
j∈µ

γ
µ
a

{
2σ̂aa(z j)ρσ̂aa(z j) −

[
ρσ̂aa(z j) + σ̂aa(z j)ρ

]}
,

(5)
gives the dephasing of the atomic coherence (originated from
atomic collisions, residue Doppler effect, dipole-dipole in-
teraction between the Rydberg atoms, finite laser linewidth,
etc.), with rates γµa (µ = A, B; a = 2, 3). In the following,
for the convenience of numerical calculations, we measure
all atomic parameters (e.g. Ωc, Ωp, ∆c) in unit of ΓA

12 (typ-
ically, ΓA

12 ' 2π × 6.06 MHz for |5P3/2〉 state in Rb atom;
ΓA

12 ' 2π × 5.22 MHz for |6P3/2〉 state in Cs atom [64]).
In this setting, the inter-channel interaction is the central el-

ement in the Hamiltonian, with which the dynamics of the tar-
get channel A can be actively manipulated by varying the rele-
vant atomic parameters in the control channel B (i.e., Ωc, ∆c).
Note that the control channel B is adopted with a two-photon
Raman scheme. Due to the large single-photon detuning, the
channel B can be described by an effective two-level system.
Though this is a simplified approach, it can demonstrate the
essential physics inherent in the model. Dynamics of the two-
photon scheme in channel B is presented in Appendix A and
will be briefly discussed below in Fig. 3(c).

III. FACILITATION INDUCED TRANSPARENCY

In order to demonstrate the FIT and to reveal its basic phys-
ical mechanism, we first consider a simple two-atom scenario
[i.e. one atom (atom A) is in the channel A and another one
(the atom B) is in the channel B] that represents the minimal
model of the dual-channel setting [22, 38].

With such a consideration, the effective Hamiltonian is re-
duced into the form of Ĥ = ĤA + ĤB + Ĥint, where ĤA =

−(Ω̂pσ̂
A
21/2+Ωσ̂A

32/2)+H.c., ĤB = −Ωcσ̂
B
31/2+∆cσ̂

B
33 +H.c.,

and Hint = VABσ̂
A
33σ̂

B
33. Here σ̂A

ab = σ̂ab(zA), σ̂B
ab = σ̂ab(zB),

the two-body interaction is given by VAB = −C6/d6. Note that
under the EIT condition the probe field has negligible attenu-
ation and can be approximately treated as a classical one [65],
hence for simplicity we replace Ω̂p by Ωp in the approach of
this section. The spatial-temporal dynamics of the quantized
probe field at a level of single photon [56, 66, 67] in high den-
sity atom gases will be analyzed in section IV.

A. Optical coherence and inter-channel correlation

The response character of the system to the probe field is
characterized by the atomic coherence between the states |1〉
and |2〉 in the channel A, i.e. ρA

21, where ρ
µ
ab ≡ Tr(ρσµba)

(µ = A, B) are one-body reduced density matrix (DM) ele-
ments. The absorption (refraction) of the probe field is deter-
mined by the imaginary (real) part Im(ρA

21) [Re(ρA
21) ] of ρA

21.
The corresponding optical susceptibility will be given in sec-
tion IV; see Eq. (14) below. In the following calculations, we
shall examine in particular the behavior of ρA

21 when adjusting
the detuning ∆c in the channel B, which is one of the system
parameters easy to control experimentally.

FIG. 2. Optical coherence and inter-channel correlation in the two-atom
system. (a) Level diagram and excitation scheme between the Rydberg block-
ade state |1A3B〉 (occurring at ∆c = 0) to the facilitated state |3A3B〉 (occurring
at ∆c = −VAB) of the two-atom model. For more details, see the text. (b) FIT
transparency window induced by the inter-channel interaction VAB, as seen in
the absorption spectrum Im(ρA

21) as a function of ∆c. ∆E is the energy sepa-
ration between centers of the two peaks of the FIT spectrum. (c1) Im(ρA

21) as
a function of ∆c and VAB. Im(ρA

21) exhibits a single peak for smaller VAB; it
however splits into two peaks for larger VAB. The dip between the two peaks
becomes wider and deeper as VAB increases, similar to the behavior of EIT
in three-level systems. Corresponding Rydberg excitations are shown in (b)
(dashed red line for ρA

33; dot-dashed blue line for ρB
33), and also in (c2) which

shows that the channel A is fully blockaded independent of VAB (solid blue
line) for ∆c = 0 but ρA

33 is facilitated around ∆c = −VAB (dashed red line). (d)
Analytical result (dotted red line) given by Eq. (6), which captures well with
the one by solving the master equation (ME) numerically ( solid black line).
The quantum correlation OAB (dot-dashed blue line) is significant for the FIT
effect. The parameters used are Ω = Ωc = 5ΓA

12, Ωp = 0.5ΓA
12, ΓA

23 = 10−3ΓA
12,

and ΓB
13 = ΓA

12; in panels (b) and (d), VAB = 15ΓA
12.

Fig. 2(b) shows the result on the absorption spectrum
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Im(ρA
21) as a function of ∆c through solving the master equa-

tion (3) numerically. We see that Im(ρA
21) has an EIT-like pat-

tern, where a transparent window (called FIT transparent win-
dow hereafter) in the absorption spectrum opens. For weak
inter-channel interaction (i.e. small VAB), Im(ρA

21) displays
only a single absorption peak, while for stronger interaction
(i.e. larger VAB) two absorption peaks occur [see Fig. 2(c1)].
Concretely, in the region of large VAB, one peak (the lower
one) locates at ∆c = 0 and the other (the higher one) locates at
∆c = −VAB. The width of the two peaks is ∆E [see Fig. 2(b)].
Our calculating result also shows that ρA

21 strongly correlates
to Rydberg populations ρA

33 and ρB
33.

In Fig. 2(c1), one can observe clearly that there is a
crossover from one peak to two ones for Im(ρA

21) through
the adjustment of VAB, and the transparent window becomes
wider and deeper as inter-channel interaction VAB increases.
This fact tells us that the splitting of the probe-field absorp-
tion spectrum (i.e. FIT) is facilitated by the contribution of the
inter-channel interaction VAB. For illustrating this point fur-
ther, the left part of Fig. 2(a) [which corresponds to the point
indicated by the small green circle in Fig. 2(b)] gives the level
diagram and excitation scheme between the Ryder blockade
state |1A3B〉 (occurring for ∆c = 0) to the facilitated state
|3A3B〉 (occurring for ∆c = −VAB) of the two-atom model;
the solid gray circles (solid blue circles) denote ground-state
(Rydberg state) atoms. The right part of the figure is a sim-
plified representation of the excitation scheme showing in the
left part. Although the transition of the target atom A to the
Rydberg state acquires an energy shift because of the inter-
channel interaction VAB, by sweeping the detuning ∆c in the
channel B the system can be driven from the Rydberg block-
ade state |1A3B〉 to the facilitated state |3A3B〉, where the chan-
nels A and B are simultaneously excited to the Rydberg state
near at ∆c = −VAB [see Fig. 2(b) and (c2)]. Since the posi-
tions of the excitation blockade and the facilitation overlaps
well with the peaks of Im(ρA

21), the FIT transparency window
between the two strong absorption peaks is thus induced by
the both effects of the excitation blockade and the facilitation.

To verify the behavior of the atomic coherence and the FIT
phenomenon in a direct way, we have solved the Heisenberg
equations of motion of the system. The calculation shows that
ρA

21 is given by the following form

ρA
21 ' −

2VAB ρ
AB
31,33

Ω
, (6)

where ρAB
31,33 ≡ 〈σ̂

A
13σ̂

B
33〉 is two-body DM element (two-body

correlator) [see Appendix B for details].
The result predicted by using this approach is plotted in

Fig. 2(d) by a dotted red line. One sees that the analytical
(6) captures well with the one by solving the master equa-
tion (ME) numerically (given by the solid black line). One
notes that the variance OAB = 〈σ̂A

13σ̂
B
33〉 − 〈σ̂

A
13〉〈σ̂

B
33〉 =

ρAB
31,33 − ρ

A
31ρ

B
33 exhibits the similar double peak structure of

the FIT. In the above calculations, system parameters used are
Ω = Ωc = 5ΓA

12, Ωp = 0.5ΓA
12, ΓA

23 = 10−3ΓA
12, ΓB

13 = ΓA
12, and

VAB = 15ΓA
12 in panels (b) and (d). Based on the results de-

scribed in Fig. 2, we conclude that FIT is mainly contributed
by the inter-channel quantum correlation, contributed by the

Rydberg interaction between the atom A and the atom B. It
should be stressed that such results cannot be predicted by us-
ing the approach of mean field theory [43, 68]. This indicates
that the two-body correlation could be effectively mapped to
the atomic coherence ρA

21, providing a method to detect Ryd-
berg facilitation directly from the optical absorption spectrum,
which is the key finding of this work.

B. Excitation pathways identified through dressed-state
approach and generation to multiple target channels

Even when the system involves only two atoms, it is diffi-
cult to solve the master equation analytically (e.g. 36 coupled
differential equations are involved). Motivated by the dressed-
state theory of conventional EIT [69], here we develop an
analytical approach of dressed state to identify the excitation
pathways of the FIT through the facilitated many-body states.

We consider the interaction-dressed subspace spanned by
the tensor product of two single-atom basis, i.e. {|2A〉, |3A〉} ⊗

{|1B〉, |3B〉}, indicated by the dashed gray box in Fig. 3(a). The
subspace is coupled by the ground state |1A〉 of the channel A
through the probe field Ωp. For simplicity and for obtaining
explicit analytical results, we neglect the small damping (i.e.
the spontaneous emission and dephasing). The eigenspectra ε j
of the subspace can be obtained via the diagonalization of the
system Hamiltonian (see Appendix C) expanded in this sub-
space, with corresponding set of eigen basis given by { |ψ j〉;
j = 1, 2, 3, 4}.

To highlight the roles played by the control channel B, we
make a calculation especially on the eigenspectra and eigen-
functions. Shown in Fig. 3(b) is the result for the eigenval-
ues ε j as functions of ∆c for VAB = 15ΓA

12. Corresponding
eigenstates {|ψ j〉; j = 1, 4} and {|ψ j〉; j = 2, 3} are given by the
dashed gray and solid blue lines, respectively. We see that the
prove field Ωp can resonantly drive the transition |1A〉 → |ΨF〉

(|1A〉 → |ΨE〉) at ∆c = ∆−c (∆c = ∆+
c ), where |ΨE〉 (|ΨF〉) is the

blockade (facilitation) state. For more details, see the discus-
sion given in the Appendix C.

From the figure, we see that, when ε j = 0, the probe
field Ωp can resonantly drive the transition from |1A〉 to the
dressed subspace at the particular detuning ∆±c = −VAB/2 ±√

V2
AB +

(
Ω −Ω2

c/Ω
)2/2, which locates the double peaks of

the absorption spectrum Im(ρA
21) [predicted also in Fig. 2(b)],

with energy separation ∆E = ∆+
c − ∆−c . In the strong interac-

tion dominant regime (i.e. |VAB| > |Ω|, |Ωc| � |Ω − Ω2
c/Ω|),

one can obtain ∆E ' VAB. This linear dependence on VAB
for the distance between the two absorption peaks can also
be seen in the numerical data given by Fig. 3(c). Deviations
for smaller VAB attribute to spontaneous emission, dephasing
of the atomic coherence and light induced shifts, which are
included in the numerical simulation. In Fig. 3(c), the result
for the case when the control channel described by three-level
(3L) model (e.g. two-photon Raman scheme) is also shown.
One sees that the energy separation ∆E as a function VAB also
have a linear dependence for large VAB.

Now lets turn to investigating the eigenstates of the system,
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FIG. 3. Dressed-state picture and the scaling of the FIT peak. (a)
Interaction-dressed subspace spanned by the basis {|2A〉, |3A〉} ⊗ {|1B〉, |3B〉},
indicated by the dashed gray box. (b) Dressed eigen values ε j as functions
of ∆c for VAB = 15ΓA

12; corresponding eigenstates {|ψ j〉; j = 1, 4} (dashed
gray lines) and {|ψ j〉; j = 2, 3} (solid blue lines) are also shown. Ωp can
resonantly drive the transition |1A〉 → |ΨF〉 (|1A〉 → |ΨE〉) at ∆c = ∆−c
(∆c = ∆+

c ), where |ΨE〉 (|ΨF〉) is the blockade (facilitation) state (see the
Appendix C). (c) Energy separation ∆E [described also in Fig. 2(a)] as a func-
tion VAB for Ωc = 3ΓA

12 (yellow circles) and Ωc = 5ΓA
12 (green crosses) with

fixed Ω = 3ΓA
12 and ΓB

13 = 0.1ΓA
12, obtained by numerically solving the mas-

ter equation (3). Triangles: the result for the channel B is driven by a three
level scheme (3LS). Inset: details of ∆E in the different parameter regimes
for small VAB. Dashed red line: the line ∆E = VAB, which matches well
with the numerical data for larger VAB. (d) Fidelities FB (dashed red line)
and FF (dash-dotted blue line) as functions of ∆c. Maximal fidelities overlap
with the doublet peaks of the absorption spectrum Im(ρA

21) (solid black line).
(e) Mandel Q factor as a function of ∆c for different VAB, which is enhanced
drastically at ∆c = ∆±c for large VAB. (f) Suggested model with multiple
target channels, in which the control channel (solid red circle) locates at the
center of a ring (with radius Rfac) where the target channels (solid blue cir-
cles) locate. Such a setting can facilitates the excitation of N-target channels
(solid blue circles) within a shell (gray region). Shown in the box are lines of
Im(ρ21) for N = 2, 3, 4, indicating that FIT is supported for such a system.

which, in the interaction dominant region, are given by

|ΨE〉 =
1
√

2
(|3A1B〉 − |2A3B〉), for ∆c = ∆+

c , (7)

|ΨF〉 =
1
√

2
(|3A3B〉 − |2A1B〉), for ∆c = ∆−c , (8)

where |ΨE(F)〉 are Rydberg entangled and facilitated Bell
states. The excitation of these states provides two pathways.
When the inter-channel interaction is strong, they interfere

destructively and lead to the FIT. However, due to the weak
probe field and the large spontaneous emission at the interme-
diate level |2A〉, the entangled state |ΨE〉 decays to the block-
ade state |ΨB〉 = |1A3B〉, which partially destroys the trans-
parency between the two absorption peaks, consisted with the
result given in Fig. 2.

To verify the validity of the dressed-state approach in
the presence of dissipation, we quantify the difference be-
tween states ρ̂B(F) = |ΨB(F)〉〈ΨB(F)| and the steady state
ρ̂s from master equation simulations with fidelity FB(F) =

(Tr|
√
ρ̂B(F)

√
ρ̂s|)2. When sweeping ∆c, FB(F) indeed displays

maxima at ∆±c [see Fig. 3(d)]. This indicates that the dressed-
states can be used to characterize the Rydberg blockade and
facilitation in the mixed-state system.

We emphasize that two-body quantum correlations are im-
portant to the FIT. We further quantify the inter-channel corre-
lation by the Mandel Q factor defined as Q = 〈(∆n̂33)2〉/〈n̂33〉−

1 with n̂33 = σ̂A
33 + σ̂B

33. As illustrated in Fig. 3(e), Mandel Q
factor is enhanced drastically at ∆c = ∆±c , and exhibits sub-
Poissonian counting statistics with Q < 0 around ∆c = ∆+

c ,
and the super-Poissonian processes characterized by Q > 0
around ∆c = ∆−c . This is an unique property for such a sys-
tem, where exotic statistics characteristics can be probed via
tuning laser parameters [25, 70].

The dual channel model discussed above can be extended
to the situations with multiple target channels. One possible
generation is sketched in Fig. 3(f), in which the control chan-
nel (denoted by the solid red circle) locates at the center of
a ring (with radius Rfac) where the target channels (denoted
by solid blue circles) locate. Such a setting can facilitates the
excitation of N-target channels (represented by solid blue cir-
cles) within a shell (represented by the gray region) [28]. The
lower part of the figure (i.e. the box) shows the lines of the
probe-field absorption spectrum Im(ρ21) for the target-channel
number N = 2, 3, 4, which indicates that FIT character still
persists with multiple target channels.

In our simulation, interactions between different target
channels have been taken into account. Due to the strong
interaction contributed from the control channel, the target
channels are fully blockade or facilitated, and thus the target-
target (TT) interaction plays a minor role on the FIT [26, 31].
To demonstrate this point further, we have constructed a three-
atom FIT model (in which one control atom and two target
atoms are considered) and investigated its FIT behavior. The
results shows that the TT interaction have a small effect on the
FIT in the system; for more detail, see Appendix D.

IV. FACILITATED SINGLE-PHOTON SWITCH
PROTOCOL

The above analysis shows that the target channel A can be
changed from opaque to transparent by tuning ∆c. Such tun-
ability allows us to design optical switch via FIT by using
contactless atom-atom interactions. In the rest of the work, we
consider the propagation dynamics of quantized probe fields
in high density atom gases. We will show that a facilitated
single-photon switch can be realized in the dual-channel sys-
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tem suggested above.

A. Optical susceptibility of the probe field

Before examining quantum dynamics of the single-photon
switch, we first analyze the polarization of the probe field Ep,
defined by Pp ≡ ε0χpEp. The susceptibility χp is, in general,
of a nonlinear function of Ep if the probe-field intensity is
high. The relation between the optical susceptibility of the
probe field and the one-body DM elements can be built with
the formula

χp =
~ε0

NAµ
2
21Ωp

ρA
21, (9)

whereNA is the atomic density of the ensemble A (assumed to
be homogeneous). In our setting, χp depends not only on the
parameters of the ensemble A (e.g, Ωp, Ω), but also on those
of the ensemble B (e.g., Ωc, ∆c).

FIG. 4. Optical susceptibility. (a) Im(χp) as a function of ∆c (for
VAB = 15ΓA

12) when the Rabi frequency of the probe field takes values of
0.01ΓA

12, 0.1ΓA
12, 0.5ΓA

12, and ΓA
12, respectively. (b1) Im(χp) as a function of

Ωp and VAB for ∆c = −VAB [corresponding to the left peak of panel (a)]. (b2)
The same as (b1) but for small values of Ωp. (c1) and (c2): The same as
(b1) and (b2) but with ∆c = 0 [corresponding to the right peak of panel (a)].
The result shows that when decreasing Ωp, Im(χp) saturates for Ωp < 0.1ΓA

12,
such that χp behaves as a linear susceptibility, independent of Ωp.

Figure 4(a) shows the imaginary part of the susceptibil-
ity Im(χp) as a function of Rabi frequency of the probe
field, Ωp, with fixed VAB = 15ΓA

12. The dashed blue, dot-
ted yellow, dot-dashed red, and solid green lines are for
Ωp = 0.01ΓA

12, 0.1ΓA
12, 0.5ΓA

12, and ΓA
12, respectively. Illus-

trated in panels (b1) is Im(χp) as a function of Ωp and VAB
for ∆c = −VAB, which corresponds to the left peak of panel
(a); panel (b2) is same as panel (b1) but for small values
of Ωp. Panels (c1) and (c2) are the same as (b1) and (b2)
but with ∆c = 0 [corresponding to the right peak of panel

(a)]. The results are obtained by solving the Heisenberg equa-
tions of the system. From the figure we see that, as the probe
Rabi frequency is decreased, there is a dramatic enhancement
of Im(χp) around ∆c = 0 and −VAB, manifested by the two
FIT peaks in the figure. Moreover, there is no broadening
or detuning of the FIT, and the susceptibility saturates when
Ωp < 0.1ΓA

12, for which Im(χp) does not change as Ωp is de-
creased. The absence of the broadening or shift is vital for the
detection of Rydberg facilitation from the optical absorption
spectrum. When the probe field is weak (e.g. at the level of
single photons), χp becomes linear, i.e. its value is largely in-
dependent of Ep in both the facilitation and blockade region
[see Fig. 4(b2) and (c2)]. Outside the linear regime, one can
achieve a strong Rydberg nonlinearity in such a system, which
is a topic deserving explorations but beyond the scope of the
present work.

B. Facilitated single-photon switch

In the following, we will focus on the linear regime and
demonstrate how to realize a single-photon switch with the
FIT predicted above. To this end, we consider an elongated
atomic gas and study propagation of the probe field along
the z direction, while neglecting diffraction effect, which
is valid for the case of short propagation distance or the
atomic gas is prepared in a trap with a small transverse
cross section [39, 42, 54]. Treating the probe field quan-
tum mechanically, the dynamics of its propagation is gov-
erned by the Hamiltonian Ĥp = −(c/L)

∫
dzÊ†p(z, t)i∂zÊp(z, t).

Here, Êp(z, t) is the slowly varying annihilation operator of
probe photons, satisfying the equal-time commutation rela-
tion [Êp(z, t), Ê†p(z′, t)] = Lδ(z − z′), with L the quantization
length along the z axis. By applying the continuous density
approximation [66] the Hamiltonian of the system reads

ĤA = −
NA

L

∫
dz

gÊp(z, t)
2

σ̂A
21(z, t) +

Ω

2
σ̂A

32(z, t) + H.c.
 ,

(10a)

ĤB = −
NB

L

∫
dz

[
Ωc

2
σ̂B

31(z, t) − ∆cσ̂
B
33(z, t) + H.c.

]
, (10b)

here NA and NA are respectively atomic numbers in the chan-
nels A and B, σ̂µab(z) satisfies the canonical commutation rela-
tion [σ̂µab(z), σ̂µcd(z′)] = δ(z − z′)[δbcσ̂

µ
ad(z) − δdaσ̂

µ
cb(z)]L/Nµ.

The Hamiltonian describing the inter-channel interaction is
given by

Hint =
NA

L

∑
j

∫
dzV(z − z j)σ̂A

33(z, t)σ̂B
33(z j, t), (11)

where the index j labels the respective Rydberg excitation in
the channel B [56]. We assume that the atoms within each
channel are trapped within a small spatial interval δr � d; the
atom-atom interaction is described by the potential V(z−z j) '
−C6/[(z − z j)2 + d2]3 with VAB = −C6/d6 [39].

Suppose that the quantum state of the single-photon input
probe field has the form |ΨP〉 = (1/L)

∫
dzEp(z, t)Ê†p(z, t)|0〉,
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where Ep(z, t) is the single-photon probability amplitude.
Based on the Maxwell equation for Êp(z, t), one can derive
the evolution equation for Ep(z, t) [65, 71], which reads(

∂

∂t
+ c

∂

∂z

)
Ep(z, t) = ig NAρ

A
21(z, t)/2. (12)

It can be solved numerically in conjunction with the Bloch
equations for the atomic DM elements ρA

ab and ρB
ab. The trans-

mission T of the single-photon probe field, used to quantify
efficiency of the photon switch, can be obtained at z = L, i.e.
T = Is(L), where Is(z) = |Ep(z)|2/|Ep(0)|2 is the relative in-
tensity of the photon field at position z.

To understand the propagation dynamics of the probe pho-
ton, lets first consider a simple scenario in which the Rydberg
excitation in the control channel B is localized at z = 0. Far-
away from z = 0, the photon field can propagate under per-
fectly EIT condition in the channel A [where the excitation
scheme is the one of an exact ladder-type EIT; see Fig. 1(a)],
as illustrated in Fig. 5(a1). However, in close proximity to

FIG. 5. Facilitation enabled single-photon switch. (a) The control channel
B is driven with the excitation localized at z = 0 (a1). In the vicinity of z = 0,
ρA

33 is blockaded for ∆c = 0 or facilitated for ∆c = −VAB (∆c = −VAB/2 is
an intermediate case). They both result in a strong photon scattering, as can
be seen from the decreasing relative intensity Is (a2). Shown in (a3) and
(a4) are ρA

33 and ρB
33 as functions of z for ∆c = 0 (red dashed line), −VAB/2

(green dash-dotted line), and −VAB (blue solid line), respectively. (b) When
the channel B is dynamically driven (b1), one can change the control detuning
∆c from a far-detuned value to −VAB (or 0) to launch facilitated (blockade)
single-photon switch, where the relative intensity of the probe field quickly
decreases to zero (b2). Shown in (b3) and (b4) are ρA

33 and ρB
33 as functions

of z for ∆cF = 0 (red dashed line), and −VAB (blue solid line), respectively.
In the simulation, system parameters Ω = Ωc = 3ΓA

12, VAB = 15ΓA
12, and

NA = 3 × 1012cm−3 are used. See text for more details.

z = 0 (noticing that VAB varies with z and reaches its maxi-
mal value VAB at z = 0), the channel B inhibits (∆c = 0) or

facilitates (∆c = −VAB) the Rydberg excitation in the chan-
nel A, and causes strong photon loss from the medium; see
Fig. 5(a2), where Is as a function of z is plotted for ∆c = 0,
∆c = −VAB/2, and ∆c = −VAB, respectively. The former (i.e.
the result for ∆c = 0) is the phenomenon of Rydberg block-
ade, which has been studied in Ref. [53, 54, 56]; the latter
(i.e. the result for ∆c = −VAB) behaves as a facilitated photon
switch where the probability of the Rydberg excitation in the
both channels is relatively large. This can be seen clearly in
Fig. 5(a3) and (a4), where ρA

33 and ρB
33 as functions of z. When

passing from the interaction region, the photon field propa-
gates freely again under the EIT condition where the photon
scattering is negligible. Therefore, the reduced transmission
is caused by the facilitation induced photon scattering in the
vicinity of z = 0.

For an ideal photon switch, the photon field should be com-
pletely blocked from transmission (i.e. T = 0). To achieve
this, we consider the light field in the control channel co-
propagate with the probe field in the target channel, depicted
in Fig. 5(b1). To demonstrate the controllability of the pho-
ton switch, the detuning ∆c is chosen to be time-dependent
but varies slowly, which has the from of ∆c = ∆c0 + (∆c0 −

∆cF)[tanh(1 − (z − zq)/zs) − 1]/2 [see the inset of Fig. 5(b2)].
Initially, Ωc is far detuned before the photon field travels to
z = zq. Then it is rapidly changed to ∆cF ' −VAB (or 0).
In response to such changes, the system immediately evolves
from a non-interacting dark states into an absorbing facilitated
state (or blockade state) [see the behavior of ρA(B)

33 shown in
Fig. 5(b3)-(b4)]. The transmission of the photon field quickly
decreases from almost 100% to zero within a short propaga-
tion distance. Consequently, for a medium of less than 100
µm, the photon field transmission can be made completely
vanish, which is promising for designing highly efficient and
controllable single-photon switches.

C. Discussion on delocalized control-atom excitation

In the above consideration, we have assumed the spatial dis-
tribution of each atom ensemble is small, the excitation of the
control atom is treated to be localized at a fixed position in the
channel B, such that the interaction is described by the sim-
ple form of VAB = −C6/d6. In reality, atoms in the ensemble
spread in space [39]. For practical realization of the FIT and
photon switch predicted here, the spatial dependence of the
atom-atom interaction needs to be taken into account.

When there is a delocalization of the control-atom excita-
tion over the channel B, the inter-channel interaction takes the
form VAB = −C6/|d + rB|

6. Here d = |d| is the center-of-
mass (COM) separation between the channels A and B, and
rB = |rB| is the distance of the control excitation relative to the
COM of the channel B; see Fig. 6(a). Under such a consider-
ation, we can obtain rB-dependent ρA

21, which reads

ρA
21(rB) ' −

2VAB(rB) ρAB
31,33(rB)

Ω
. (13)
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FIG. 6. FIT with delocalized control-atom excitation. (a) Schematic
of the delocalized control-atom excitation in the channel B. The delocal-
ization modifies the atom-atom interaction form from VAB = −C6/d6 to
VAB = −C6/|d + rB|

6, here d = |d| is the center-of-mass separation between
the A and B channels and rB = |rB| is the relative variation of the control
excitation. (b) Photon transmission T as a function of ∆c for different d, but
with fixed VAB(rB = 0) = 15ΓA

12, when the photon propagates to distance
L = 20 µm. Solid black line: the result of the ideal FIT (i.e. the case for
localized control-atom excitation). (c) is similar to Fig. 5(b). To launch fa-
cilitated (blockade) switch, here ∆c is changed from the far-detuned value to
−VAB (or 0). (c1)-(c3) show the relative intensity of the probe field Is and
the Rydberg population ρA(B)

33 in the facilitated regime; (d1)-(d3) are similar
to (c1)-(c3) but for the blockade regime. Blue curves in these figures are re-
sults of single trajectory simulation in the delocalized regime. Their mean
values are calculated by casting 300 trajectories for different initial delocal-
ized distribution (see green-dotted line). The coherence of the control atom
is modified during the operation of the photon switch, manifested by the real
Re(ρB

31) of the atomic coherence [see panel (c4) and (d4)]. System parameters
used in the simulation are Ω = Ωc = 3ΓA

12 and NA = 3 × 1012cm−3.

Then optical susceptibility of the probe field is given by

χp =

∫
drB f (rB)

~ε0

NAµ
2
21Ωp

ρA
21(rB), (14)

where f (rB) is a normalized distribution function describ-
ing the spatial delocalization of the control-atom excita-
tion in the channel B. For simplicity, we assume f (rB)
takes the form of the Gaussian distribution, i.e. f (rB) =

1/(
√
πσ)exp[−(rB/σ)2]), with σ being the distribution width.

The delocalization degree can be characterized by using pa-
rameter max(rB)/d.

Fig. 6(a) shows the schematic of the delocalized control-
atom excitation in the channel B with a three-dimensional
Gaussian-shaped distribution. To get a quantitative result of
the behavior of single-photon switch in the presence of the
delocalized control-atom excitation, a numerical simulation is
carried out by using a combination of the four-order Runge-
Kutta and finite difference methods to solve the corresponding
coupled Maxwell-Bloch equations. In the simulation, we av-
erage the transmission T over different sites until the result
converges.

Shown in Fig. 6(b) is the transmission T as a function
of ∆c for different separation d, but with VAB(rB = 0) =

15ΓA
12. To obtain such an interaction strength, it requires

C6 = 2.68×104GHz · µm6 (with state |93S 〉) for d = 6µm and
C6 = 5.77 × 105GHz · µm6 (with state |122S 〉) for d = 10µm
in Rb atom. We can see that, in the presence of the delocalized
control-atom excitation, the FIT can still be observed. How-
ever, in comparison with the case of the localization regime
(i.e., the regime with no position fluctuation of the control-
atom excitation), there has a slight shift on the absorption peak
located at ∆c = −VAB (shown by the black solid line). In addi-
tion, in the delocalization regime, an inhomogeneous broad-
ening for the FIT peak occurs; as d decreases, the delocaliza-
tion degree of the control-atom excitation increases, and the
FIT peak becomes smaller. Consequently, to realize a robust
FIT, the system must have strong Rydberg interactions, larger
separation between the two channels, and tightly-focused con-
trol field.

To test the protocol of single-photon switch, we have con-
ducted a simulation similar to that shown in Fig. 5(b), but with
delocalized control-atom excitation here. Fig. 6(c1) shows
the results of the relative probe-field intensity Is as a func-
tion of z, for regimes of the delocalization (blue solid line)
and localization (red dashed line) are given. We see that
Is decreases slower in the delocalization regime but still ap-
proaches to zero within a short propagation distance. Drawn
in Fig. 6(c2) [Fig. 6(c3)] is the behavior of the Rydberg pop-
ulation ρA

33 (ρB
33). One sees that, due to the delocalized excita-

tion, both ρA
33 and ρB

33 exhibit large fluctuations; however, their
envelopes are still facilitated, and captured well with the cor-
responding localized curves, respectively. To see the average
behaviors of Is and ρA(B)

33 in the presence of the fluctuations, in
the simulation 300 trajectories for different initial delocaliza-
tion distributions are considered, and these quantities are eval-
uated by calculating their mean values. The results of such an
average are given by the green-dotted lines in the figure.

Shown in Fig. 6(d1)-(d3) are also for the quantities Is and
ρA(B)

33 , but for the case of the blockade regime. Blue curves in
these figures are results of single trajectory simulation in the
delocalization regime. Their mean values are also calculated
by casting 300 trajectories for different initial delocalized dis-
tributions (give by green-dotted lines). We see that the quality
of the blockade switch is not to be significantly affected by the
delocalized distribution of the control-atom excitation.

In order to know the coherence behavior of the Rydberg
spin wave in the control channel B during the operation of the
photon switch, we have calculated Re(ρB

31) as a function of
the propagation distance z, with the results being presented in
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Fig. 6(c4) and Fig. 6(d4). We see that in the case of the fa-
cilitation regime Re(ρB

31) becomes increasingly protected dur-
ing the operation of the switch [Fig. 6(c4)]; however, in the
case of the blockade regime Re(ρB

31) first increases due to res-
onance driving, and then rapidly decays to zero [Fig. 6(d4)]
as z increases. The reason for the protected coherence dur-
ing the switch operation in the facilitation regime is due to the
fact that the control atom is driven away from the resonance
with the choice of ∆c = −VAB. Thereby, the coherence of the
control atom is not diminished even in the case of the photon
scattering.

V. SUMMARY AND DISCUSSION

We have investigated the FIT effect in a dual-channel Ry-
dberg atom setting. It is found that optical properties of the
probe photon in the target channel can be actively controlled
by varying laser detuning in the control channel. The FIT
window emerges, and becomes wider and deeper as the inter-
channel Rydberg interaction increases. Using a dressed state
approach, we have shown that the quantum interference path-
ways of the FIT are induced from the blockade and facilitated
states. The FIT and its scaling on the interaction are examined
both numerically and analytically. We have demonstrated that
a contactless single-photon switch can be realized with FIT
in the dual-channel system. Due to weak excitation under fa-
cilitated condition, coherence of the control channel is well
protected during the operation of the switch. This work more-
over opens new opportunities to directly detect Rydberg facil-
itation using the optical transmission of a neighboring atom
ensemble.

Beyond the single-photon situation considered here, mul-
tiple Rydberg excitations can form strongly correlated states
in spatially large atomic gases (e.g. Rydberg excitation
crystals [72] and quantum scarring states [8]). An inter-
esting question is whether one could use this contactless
multi-channel setting to probe Rydberg excitations and phases
through Rydberg interaction induced optical responses [73,
74]. This might provide new contactless detection methods
without demolishing many-body coherence.
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Appendix A: Multi-photon excitations in the control channel B

One can also adopt an two- and multi-photon excitation
scheme in the control channel B. Here we gives a sim-
ple description on a two-photon excitation scheme, shown in
Fig. A1. In this scheme, the channel A is the same as that in

FIG. A1. Two-photon excitation scheme for the control channel B. (a)
The channel A is the same as that of Fig. 1. The control channel B is however
driven by a two-photon process, where the transition |1〉 ↔ |2〉 (|2〉 ↔ |3〉)
is coupled by the control field of Rabi frequency Ωc1 (Ωc2), with detuning ∆

(∆c). (b) Level diagram of the system.

Fig. 1 in the main text, but the control channel B is a three-
level system, where the first (second) control field with Rabi
frequency Ωc1 (Ωc2) drives the transition |1〉 ↔ |2〉 (|2〉 ↔ |3〉)
with detuning ∆ (∆c). Under rotating wave approximation, the
two-atom Hamiltonian is given by Ĥ = ĤA + ĤB + Ĥint, with

ĤA = −
Ωp

2
σ̂A

21 −
Ω

2
σ̂A

32 + H.c.,

ĤB = −

(
Ωc1

2
σ̂B

21 +
Ωc2

2
σ̂B

32 − ∆σ̂B
22 − ∆cσ̂

B
33 + H.c.

)
,

Ĥint = VABσ̂
A
33σ̂

B
33.

The dynamical behavior of such a system can be obtained
by numerically solving the corresponding master equation.
Shown in Fig. A2(a) is the result of Im(ρA

21) (the imaginary

FIG. A2. Atomic coherence and Rydberg excitations in the dual-channel
model when the control channel B is driven by a two-photon process. (a)
FIT effect emerges in the absorption spectrum of the probe field, manifested
by the imaginary part Im(ρA

21) of the atomic coherence ρA
21 as a function of ∆c

(solid black line). Corresponding Rydberg excitations ρA
33 (dot-dashed blue

line) and ρB
33 (dashed red line) are also plotted, where the channel A is block-

aded at ∆c = 0, but facilitated around ∆c = −VAB. (b) As VAB increases, the
FIT transparency window becomes wider and deeper. Two peaks are visible
even for weak interaction strength (e.g, VAB = 5ΓA

12). System parameters
used are Ωc1 = Ωp = 0.8ΓA

12, Ωc2 = Ω = 4ΓA
12, and ∆ = 10ΓA

12.

part of the atomic coherence ρA
21) as a function of ∆c, plotted

by the solid black line. The corresponding Rydberg excita-
tions ρA

33 and ρB
33 are also illustrated by the dot-dashed blue
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line and dashed red line, respectively. We see that the chan-
nel A is blockaded at ∆c = 0, but facilitated near ∆c = −VAB.
Consequently, the FIT phenomenon can emerge in such a sys-
tem. i.e. two absorption peaks emerge in the profile of Im(ρA

21)
[Fig. A2(b)]. Moreover, the FIT transparency window be-
comes wider and deeper as VAB increases. Notice that, due
to the large single-photon detuning ∆ in the channel B (which
makes the effective Rabi frequency Ωeff = Ωc1Ωc2/(2∆)
small), the linewidth of the absorption peak (proportional to
Ωeff) is much narrower than that obtained by using the one-
photon excitation of the channel B given in the main text.
Thus by using such a scheme one can obtain a visible FIT
doublet even for weak atomic interaction (e.g., VAB = 5ΓA

12).
This result is also shown in Fig. 3(c) (the blue triangle line)
in the main text, and agrees well with the dress-state theory
described there.

Appendix B: Atomic coherences in stationary states

The Heisenberg equations for operators σ̂A
13 and σ̂A

12 read

i
(
∂

∂t
+ γA

12

)
σ̂A

12 −
Ω̂p

2
(σ̂A

22 − σ̂
A
11) +

Ω∗

2
σ̂A

13 = 0, (B1a)

i
(
∂

∂t
+ γA

13

)
σ̂A

13 −
Ω̂p

2
σ̂A

23 +
Ω

2
σ̂A

12 + VABσ̂
A
13σ̂

B
33 = 0.

(B1b)

Taking the average (trace) on the above equations (i.e. ρA(B)
ab ≡

〈σA(B)
ba 〉 = Tr[ρσA(B)

ba ]) and solving them for stationary states
(i.e., ∂/∂t = 0), we obtain the atomic coherence between the
states |1〉 and |2〉:

ρA
21 =

−2VAB ρ
AB
31,33Ω∗ + 2i(ρA

11 − ρ
A
22)γA

13Ωp + ρA
32Ω∗Ωp

Ω2 + 4γA
12γ

A
13

.

(B2)

where ρAB
31,33 ≡ 〈σ̂

A
13σ̂

B
33〉 is two-body DM element (or called

two-body correlator). The terms related to the damping rate
γA

13 are very small (e.g., 100µs) and hence can be neglected.
Moreover, since the probe field in the channel A is weak, ρA

32
is negligible. Under these considerations, ρA

21 can be reduced
to

ρA
21 ' −

2VAB ρ
AB
31,33

Ω
. (B3)

We see that ρA
21 depends mainly on the two-body density ma-

trix element ρAB
31,33. From the result illustrated in Fig. 2(d) of

the main text, one can see that Eq. (B3) can capture well with
that obtained by solving the master equation numerically.

To get ρA
21, one must solve the equations of motion for two-

body correlators ρAB
ab,cd (a, b, c, d = 1, 2, 3). For saving space,

we do not list these equation here. For more detail, see [75].

Appendix C: Dressed-state picture for the FIT

As shown in Fig. 3(a) in the main text, the
interaction-dressed subspace is considered with the ba-

sis {|2A〉, |3A〉, |1B〉, |3B〉}. The Hamiltonian of this subspace
reads

H0 =


0 −Ω∗c/2 −Ω∗/2 0

−Ωc/2 ∆c 0 −Ω∗/2
−Ω/2 0 0 −Ω∗c/2

0 −Ω/2 −Ωc/2 ∆c + VAB

 .

After neglecting the small damping (i.e. spontaneous emis-
sion and dephasing) in the system, the eigenvalue (eigenstate)
ε j (|ψ j〉) of the subspace can be obtained by diagonalizing the
above Hamiltonian, with the result sketched in Fig. 3(b) of the
main text.

In particular, for the zero eigenvalue (ε j = 0), the probe
field Ωp can resonantly drive the transition from |1A〉 to
dressed subspace at the detuning defined by

∆±c = −
VAB

2
±

√
V2

AB + [(Ω2 −Ω2
c)/Ω]2

2
. (C1)

In the strong interaction regime (i.e. VAB � Ω,Ωc), we have
∆+

c ' 0 and ∆−c ' −VAB. By adiabatically sweeping ∆c, the
system can respectively excited to the Rydberg blockade and
facilitation states, with the eigen state functions given by

| ΨE〉 =
1
√

2
(| 3A1B〉− | 2A3B〉), for ∆c = ∆+

c , (C2a)

| ΨF〉 =
1
√

2
(| 3A3B〉− | 2A1B〉), for ∆c = ∆−c . (C2b)

However, due to the large decay of the level |2A〉 (which is not
included in the calculation on the eigenstates), entangled state
|ΨE〉 rapidly evolves to trivial blockade state |ΨB〉 = |1A3B〉.
The energy gap between |ΨE〉 and |ΨB〉 is

∆E =

√
V2

AB + (Ω −Ω2
c/Ω)2 ' VAB, (C3)

which is plotted (with dashed red line) in Fig. 3(c) of the main
text. We find that the result of this dressed-state approach can
capture the numerical data very well in the interaction domi-
nant regime.

Appendix D: FIT in the three-atom model

To explore the influence of the target-target (TT) interaction
(described by VTT ) in systems with multi-channels, here we
consider a simple three-atom scenario with one control chan-
nel and two target channels; see the inset of Fig. A3(a1) and
the corresponding caption. For simplicity, we assume that the
control-target (CT) interaction VCT is fixed, but VTT can be
changed by varying position of target channels on the shell.

The FIT behavior in such a system is investigated by solv-
ing the corresponding Maxwell-Bloch equations of the model,
with results given by in Fig. A3. Panel (a1) shows the FIT
spectrum Im(ρ21) for the target-channel as a function of ∆c and
VTT , with VCT = 15ΓA

12. We see that it exhibits two peaks even
VTT is strong. Illustrated in panel (a2) is the contour map of
VTT as a function of ∆c, sketched with Im[ρ21−ρ12(VTT = 0)].
One sees that it reaches a saturation as VTT increases. For
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FIG. A3. Three-atom model. (a1) FIT spectrum Im(ρ21) for the target
channel as functions of ∆c and VTT , which exhibits double peaks even for a
strong VTT , with VCT = 15ΓA

12. The inset shows the geometry of the system,
in which the control channel (red circle) locates at the center of a ring (with
radius Rfac), and the target channels (two blue circles) locate on the shell. (a2)
The corresponding contour map as functions of ∆c and VTT is sketched with
Im[ρ21 − ρ12(VTT = 0)]. It is clear to see that the results reach saturation
as VTT increases. (b1) and (b2) are similar to (a1) and (a2) but with VCT =

10ΓA
12.

comparison, similar result for case of VCT = 10ΓA
12 is also pro-

vided; one see that FIT can also saturate but need larger VTT
[see panels (b1) and (b2)]. From these results, we conclude
that the TT interaction has a minor influence on the occur-
rence of the FIT. In fact, under the condition of ∆ ' −VCT , the
control atom can facilitate the all atoms located on the shell of
the blockade sphere, and it can lead to a self-organized criti-
cality, which has been observed in a recent study [31]. This
example shows that the number of target channels is largely
not limited in the FIT model as long as the conditions are met.
In practice, of course, the number of target channels will be
limited by physical dimensions of the channel. Hence future
experiments can explore such practical limitations.
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T. Pohl, Phys. Rev. Lett. 104, 173602 (2010).

[69] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod.
Phys. 77, 633 (2005).

[70] M. M. Valado, C. Simonelli, M. D. Hoogerland, I. Lesanovsky,
J. P. Garrahan, E. Arimondo, D. Ciampini, and O. Morsch,
Phys. Rev. A 93, 040701(R) (2016).

[71] C. Shou, Q. Zhang, W. Luo, and G. Huang, Opt. Express 29,
9772 (2021).

[72] T. Pohl, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 104,
043002 (2010).

[73] B. Olmos, W. Li, S. Hofferberth, and I. Lesanovsky, Phys. Rev.
A 84, 041607(R) (2011).

[74] G. Günter, H. Schempp, M. Robert-de-Saint-Vincent,
V. Gavryusev, S. Helmrich, C. S. Hofmann, S. Whitlock,
and M. Weidemüller, Science 342, 954 (2013).

[75] Z. Bai, W. Li, and G. Huang, Optica 6, 309 (2019).

http://dx.doi.org/10.1038/s41467-020-20333-7
http://dx.doi.org/10.1038/s41467-020-20333-7
http://dx.doi.org/ doi.org/10.1088/2058-9565/aa9c59
http://dx.doi.org/ doi.org/10.1088/2058-9565/aa9c59
http://dx.doi.org/ 10.1103/PhysRevX.10.021023
http://dx.doi.org/10.1103/PhysRevLett.104.013001
http://dx.doi.org/ 10.1103/PhysRevA.96.041602
http://dx.doi.org/10.1088/1367-2630/ab6575
http://dx.doi.org/10.1088/1367-2630/ab6575
http://dx.doi.org/10.1103/PhysRevLett.98.113003
http://dx.doi.org/10.1103/PhysRevLett.98.113003
http://dx.doi.org/ 10.1103/PhysRevLett.112.133606
http://dx.doi.org/ 10.1103/PhysRevLett.112.133606
http://dx.doi.org/10.1088/1367-2630/17/3/033007
http://dx.doi.org/10.1088/1367-2630/17/3/033007
https://doi.org/10.1038/nphys4058
http://dx.doi.org/10.1038/nature20823
http://dx.doi.org/10.1103/PhysRevLett.123.113605
http://dx.doi.org/10.1103/PhysRevLett.123.113605
http://dx.doi.org/10.1103/PhysRevA.103.053303
http://dx.doi.org/ 10.1103/PhysRevLett.105.193603
http://dx.doi.org/ 10.1103/PhysRevLett.105.193603
http://dx.doi.org/10.1038/nature08134
http://dx.doi.org/ 10.1103/PhysRevLett.108.227402
http://dx.doi.org/ 10.1103/PhysRevLett.108.093604
http://dx.doi.org/10.1103/PhysRevLett.109.166806
http://dx.doi.org/10.1103/PhysRevLett.109.166806
http://dx.doi.org/ 10.1038/nphoton.2012.181
http://dx.doi.org/ 10.1103/PhysRevLett.102.203902
http://dx.doi.org/ 10.1103/PhysRevLett.102.203902
http://dx.doi.org/10.1103/PhysRevLett.111.193601
http://dx.doi.org/10.1103/PhysRevLett.111.193601
http://dx.doi.org/ 10.1126/science.1238169
http://dx.doi.org/10.1038/nphoton.2014.192
http://dx.doi.org/10.1038/nphoton.2014.192
http://dx.doi.org/ 10.1103/PhysRevLett.112.073901
http://dx.doi.org/ 10.1103/PhysRevLett.112.073901
http://dx.doi.org/ 10.1103/PhysRevLett.113.053601
http://dx.doi.org/ 10.1103/PhysRevLett.113.053602
http://dx.doi.org/ 10.1103/PhysRevLett.113.053602
http://dx.doi.org/10.1103/PhysRevA.92.043828
http://dx.doi.org/10.1088/1367-2630/18/9/092001
http://dx.doi.org/10.1088/1367-2630/18/9/092001
http://dx.doi.org/ 10.1007/s11433-020-1602-1
http://dx.doi.org/10.1103/PhysRevA.92.063419
http://dx.doi.org/ 10.1038/nature07945
http://dx.doi.org/10.1126/science.1211255
http://dx.doi.org/10.1103/PhysRevLett.120.083401
http://dx.doi.org/10.1103/PhysRevLett.120.083401
http://dx.doi.org/ 10.1103/PhysRevLett.125.263605
http://dx.doi.org/ 10.1103/PhysRevLett.125.263605
https://steck.us/alkalidata/
http://dx.doi.org/10.1103/PhysRevA.76.033805
http://dx.doi.org/10.1103/PhysRevA.65.022314
http://dx.doi.org/10.1103/PhysRevA.65.022314
http://dx.doi.org/10.1103/PhysRevA.104.033714
http://dx.doi.org/ 10.1103/PhysRevLett.104.173602
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/ 10.1103/PhysRevA.93.040701
http://dx.doi.org/ 10.1364/OE.416791
http://dx.doi.org/ 10.1364/OE.416791
http://dx.doi.org/10.1103/PhysRevLett.104.043002
http://dx.doi.org/10.1103/PhysRevLett.104.043002
http://dx.doi.org/ 10.1103/PhysRevA.84.041607
http://dx.doi.org/ 10.1103/PhysRevA.84.041607
http://dx.doi.org/10.1126/science.1244843
http://dx.doi.org/10.1364/OPTICA.6.000309

	Facilitation Induced Transparency and Single-Photon Switch with Dual-Channel Rydberg Interactions
	Abstract
	I Introduction
	II Dual-channel Rydberg model
	III Facilitation Induced Transparency
	A Optical coherence and inter-channel correlation
	B Excitation pathways identified through dressed-state approach and generation to multiple target channels

	IV Facilitated single-photon switch protocol
	A Optical susceptibility of the probe field
	B Facilitated single-photon switch
	C Discussion on delocalized control-atom excitation

	V Summary and discussion
	 Acknowledgments
	A Multi-photon excitations in the control channel B
	B Atomic coherences in stationary states
	C Dressed-state picture for the FIT
	D FIT in the three-atom model
	 References


