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A B S T R A C T

Monoamine oxidases (MAOs) are located on the outer mitochondrial membrane and are drug targets for the
treatment of neurological disorders. MAOs control the levels of neurotransmitters in the brain via oxidative
deamination and contribute to reactive oxygen species (ROS) generation through their catalytic by-product
H2O2. Increased ROS levels may modulate mitochondrial function and mitochondrial dysfunction is implicated
in a vast array of disorders. However, the downstream effects of MAO-A mediated ROS production in a neuronal
model has not been previously investigated.

In this study, using MAO-A overexpressing neuroblastoma cells, we demonstrate that higher levels of MAO-A
protein/activity results in increased basal ROS levels with associated increase in protein oxidation. Increased
MAO-A levels result in increased Lysine-63 linked ubiquitination of mitochondrial proteins and promotes au-
tophagy through Bcl-2 phosphorylation. Furthermore, ROS generated locally on the mitochondrial outer
membrane by MAO-A promotes phosphorylation of dynamin-1-like protein, leading to mitochondrial frag-
mentation and clearance without complete loss of mitochondrial membrane potential. Cellular ATP levels are
maintained following MAO-A overexpression and complex IV activity/protein levels increased, revealing a close
relationship between MAO-A levels and mitochondrial function. Finally, the downstream effects of increased
MAO-A levels are dependent on the availability of amine substrates and in the presence of exogenous substrate,
cell viability is dramatically reduced.

This study shows for the first time that MAO-A generated ROS is involved in quality control signalling, and
increase in MAO-A protein levels leads to a protective cellular response in order to mediate removal of damaged
macromolecules/organelles, but substrate availability may ultimately determine cell fate. The latter is parti-
cularly important in conditions such as Parkinson's disease, where a dopamine precursor is used to treat disease
symptoms and highlights that the fate of MAO-A containing dopaminergic neurons may depend on both MAO-A
levels and catecholamine substrate availability.
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1. Introduction

Mitochondria play a critical role in cellular metabolism and are
essential to the life of a cell. Mitochondria are the site for many im-
portant biochemical processes such as oxidative phosphorylation, β-
oxidation of fatty acids, tricarboxylic acid cycle and calcium home-
ostasis. The process of oxidative phosphorylation relies on the co-
ordinated transfer of electrons via the electron transport chain (ETC)
components to molecular oxygen; however, during this process reactive
oxygen species (ROS) are also produced as metabolic by-products [1].
Mitochondrial ROS are involved in cellular signalling but, depending on
their levels, also have the potential to damage a wide variety of mac-
romolecules including proteins, lipids and nucleic acids [2–4]. Fur-
thermore, continuous ROS exposure can affect ETC activity and energy
production, and hence mitochondrial dysfunction is implicated in a
wide range of disorders including neurodegenerative diseases, cancers
as well as the aging process [5].

The main source of ROS in the mitochondria is electron leak from
the ETC, but ROS production also takes place outside the ETC on the
mitochondrial outer membrane by monoamine oxidases (MAOs) [6].
MAOs exist as two isoforms, MAO-A and MAO-B, coded for by two
separate genes and defined by their substrate and inhibitor specificities
[7,8]. MAO-A is a key enzyme for the degradation of brain serotonin
and norepinephrine; on the other hand, MAO-B shows greater affinity
for benzylamine and phenylethylamine. Dopamine and tyramine show
similar affinities for both isoforms. The oxidative deamination of
monoamines produce corresponding aldehydes and hydrogen peroxide
(H2O2) as by-products [9].

MAO inhibitors are in clinical use for the treatment of psychiatric
and neurological disorders including Parkinson's disease (PD) [10].
MAOs are mainly responsible for maintaining neurotransmitter home-
ostasis but due to ROS production have also been implicated in cell
death mechanisms and mitochondrial function [11–16]. We have pre-
viously demonstrated that MAO-A knock down in human neuro-
blastoma cells halves the levels of basal ROS, increases complex I ac-
tivity and increases levels of ATP [11]. In addition, ETC Complex I, III
and IV inhibition (known to increase ROS levels) results in increased
MAO-A protein levels and MAO-A knock down protects cells against
inhibitors of the ETC [11].

Mitochondria are equipped with various quality control mechan-
isms (antioxidant enzymes, mitochondrial proteases, fission and fusion)
to prevent accumulation of damage. Furthermore, when the damage
becomes too extensive, mitochondria can be degraded through selective
autophagy. Acting as second messengers, ROS may play key roles in
controlling cell death and survival via regulating apoptosis and au-
tophagy [17]. Interestingly, recent research suggests a potential role for
MAO-A in autophagy in prostate cancer cells and cardiomyocytes
[18,19]. Increased MAO-A levels activated autophagy in prostate
cancer cells, whilst in cardiomyocytes they caused the opposite effect,
namely disruption of the autophagic flux. These contrary effects are not
surprising since, depending on the levels, ROS can activate or interfere
with quality control mechanisms and physiological ROS levels and
types vary in different cells and organs [20].

In neuronal cells, ETC complex inhibition and other stressors induce
transient MAO-A levels/activity [13–15] but the effects of a sustained
increase in MAO-A levels and MAO-A generated ROS have not been
investigated. Here, using human SH-SY5Y neuroblastoma cells over-
expressing MAO-A as a cellular model, we assess the effects of sustained
ROS production by MAO-A on the outer mitochondrial membrane on
mitochondrial function and autophagy.

For the first time we report that, despite increased mitochondrial
fragmentation in response to increased MAO-A levels, cells maintain
mitochondrial membrane potential and ATP levels, possibly via ETC
compensation and that mitochondrial quality control is maintained by
activation of autophagy mediated through Bcl-2 phosphorylation and
associated increase in Beclin 1 levels. Moreover, we show that increased

MAO-A levels cause mitochondrial fragmentation in the absence of
mitochondrial uncouplers.

2. Materials and methods

2.1. Reagents

14C-labelled tyramine hydrochloride, oligomycin, 2-deoxy-D-glucose
(2-DG), pyruvate, carbonyl cyanide 3-chlorophenylhydrazone (CCCP)
and clorgyline were purchased from Sigma Aldrich (Poole, UK).
Dihydroethidium (Het) and MitoTracker red were purchased from
Thermo Fisher Scientific (Paisley, UK). 2′,7′-
Dichlorodihydroflourescein diacetate (DCDHF) was purchased from
Alexis Biochemicals (Nottingham, UK). Bafilomycin A1 was purchased
from Enzo Life Sciences (UK) Ltd. (Exeter, UK). Oligonucleotides were
obtained from Biotez (Berlin, Germany).

2.2. Antibodies

LC3B (L7543) antibody was purchased from Sigma Aldrich (Poole,
UK). Anti-SQSTM1/p62 (ab56416), MitoProfile® total OXPHOS human
antibody cocktail (ab110411), MitoProfile® total OXPHOS rodent anti-
body cocktail (ab110413) and MT-ND1 (ab181848) antibodies were
purchased from Abcam (Cambridge, UK). β-actin (sc-47778), Tubulin
(sc-23948), Cytochrome c oxidase 1 (sc-8385), Citrate Synthase (sc-
390693), MAO-A (sc-20156), Drp1 (sc-271583), Bcl-2 (sc-509) anti-
bodies were purchased from Santa Cruz Biotechnology (Dallas, USA).
Caspase 3 (GTX110543) antibody was purchased from GeneTex, Inc.
(Irvine, USA). Phospho-Drp1 (Ser616, #3455), phospho-Bcl-2 (Ser70,
#2827), VDAC (#4661), GAPDH (#2118), COX IV (#4844), K63-
linkage specific polyubiquitin (D7A11, #5621) antibodies were pur-
chased from Cell Signaling Technology, Inc. (Danvers, USA). OPA1
(612606) antibody was purchased from BD Biosciences (Oxford, UK),
Beclin 1/ATG6 (NB500-249) antibody was purchased from Novus
Biologicals (Abingdon, UK). Ubiquitin (P4D1) antibody was purchased
from Enzo Life Sciences (UK) Ltd. (Exeter, UK). Anti-MAO-A (6G11-E1)
monoclonal antibody was made in our laboratory. Anti-mouse IgG
(#7076) and anti-rabbit IgG (#7074), HRP-linked secondary antibodies
were purchased from Cell Signaling Technology Inc. (Danvers, USA).
Alexa Fluor® FITC/TRITC-conjugated anti-mouse, rabbit and goat im-
munoglobulin G were purchased from Fisher Scientific UK Ltd.
(Loughborough, UK).

2.3. Cell culture

Human SH-SY5Y neuroblastoma cells were obtained from the
European Collection of Animal Cell Cultures (Salisbury, UK). SH-SY5Y
cells were seeded at a density of approximately 4× 104 cells/cm2 on
plastic culture plates or flasks (Sarstedt, Nümbrecht, Germany). Cells
were grown to 75–80% confluence in Dulbecco's Modified Eagles
Medium/ Ham's F-12 nutrient mixture (DMEM/F12) containing 10%
foetal bovine serum, 2mM L-glutamine, 1% non-essential amino acid
solution, 100 units /ml penicillin and 100 µg/ml streptomycin at 37 °C
in a 5% CO2 humidified atmosphere.

2.4. Overexpression of MAO-A in SH-SY5Y cells

Human MAO-A was stably over expressed in the human neuro-
blastoma SH-SY5Y cell line by cloning human MAO-A cDNA into the
expression vector (pcDNA3.1-, Invitrogen, Karlsruhe, Germany), which
was then transformed into competent bacteria. The expressed plasmid
DNA was purified using DNA mini and DNA midi kits (Qiagen,
Manchester, UK) and SH-SY5Y cells were transfected with 1 µg of
pcDNA3.1(-) containing the hMAO-A insert or 1 µg of the empty
pcDNA3.1(-) vector via electroporation using the Amaxa nucleofection
system (Amaxa, Cologne, Germany). Electroporated SH-SY5Y cells were
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seeded in 6-well tissue culture plates in normal growth medium, which
was replaced after 24 h. 48 h post-transfection, cells were passaged and
seeded at 25% confluence in growth medium containing G418 sulphate
(geneticin) at a concentration of 700 µg/ml. Stable SH-SY5Y clones
were selected by their resistance to geneticin, which is conferred by the
plasmid vector pcDNA3.1. The medium was replaced every 3–4 days
until resistant foci were visible. Resistant cells were diluted in 96 well
plates at a density of 0.5 cell/well and single clones were expanded and
assayed for MAO-A expression.

2.5. Quantitative reverse transcription PCR (qRT-PCR)

Total RNA was isolated using the RNeasy Mini Kit (Qiagen,
Manchester, UK) and was reversely transcribed into the corresponding
cDNA using oligo d(T)18 and Superscript II reverse transcriptase
(Invitrogen, Karlsruhe, Germany) according to the vendor's instruc-
tions. Quantitative PCR was carried out as detailed previously [11].

2.6. Gel electrophoresis and western blotting

Cells were extracted in 150 µl extraction buffer (50mM Tris, pH 6.8,
150mM NaCl, 5 mM EDTA, 1mM Na orthovanadate, 0.5% Triton X-
100, 2mM PMSF and 0.2% protease inhibitor cocktail) and incubated
on ice for 20min. Samples were sonicated (3× 3 s pulses at 60 Hz) and
centrifuged for 10min at 300× g at 4 °C. Protein content was de-
termined by using the Bio-Rad protein assay (Bio-Rad Laboratories Ltd.,
Hertfordshire, UK) and equal protein aliquots per sample were sub-
jected to electrophoresis on a 10% or 12% sodium dodecyl sulphate-
polyacrylamide gel (SDS-PAGE). Separated proteins were transferred
onto a nitrocellulose or PVDF membrane using the Trans-Blot Turbo
Transfer System (Bio-Rad Laboratories Ltd., Hertfordshire, UK). Protein
loading assessed by staining with 0.05% copper phthalocyanine in
12mM HCl. Blotted membranes were blocked for 1 h in 3% dried
skimmed milk in TBS containing 0.1% Tween-20 and incubated over-
night at 4 ⁰C with primary antibodies. Membranes were washed and
incubated for 2 h at room temperature (RT) with horseradish peroxidise
conjugated anti-mouse or anti-rabbit immunoglobulin G. Antibody
binding was revealed with Clarity ECL Substrate (Bio-Rad Laboratories
Ltd., Hertfordshire, UK). Digital images were captured using Fuji Film
LAS-3000 or LAS-4000 Cooled CCD Camera Gel Documentation System
(Raytek Scientific Ltd., Sheffield, UK) and band intensity quantified
using Aida software (Version 4.03.031, Raytest GmbH, Straubenhardt,
Germany); signal intensity was normalised to total protein (quantified
using copper phthalocyanine) for each well.

2.7. Immunocytochemistry

Cells were fixed on glass coverslips using 90% methanol in phos-
phate buffered saline (PBS) for 30min at − 20 °C. Fixed cells were
permeabilised using 0.5% Triton X-100 in PBS for 5min at RT, then
washed in PBS before blocking with 20% (v/v) normal swine serum in
PBS for 30min at RT. Slides were incubated overnight in primary an-
tibody, washed in PBS and then incubated with secondary antibodies
(Alexa Fluor® FITC/TRITC-conjugated) in 5% (v/v) normal swine serum
in PBS for 30min at RT. The slides were washed again in PBS and
mounted on glass slides using Vectashield™ mounting medium (Vector
Laboratories Ltd., Peterborough, UK). Confocal images were obtained
using a Zeiss 510 uv–vis CLSM equipped with a META detection system
and a 403 oil immersion objective. Illumination intensity was kept to a
minimum (at 0.1–0.2% of laser output) to avoid phototoxicity, and the
pinhole was set to give an optical slice of 2 µm.

2.8. Detection of ROS

Cells were grown to ~ 70–80% confluence on Lab-Tek (NUNC,
Roskilde, Denmark) chamber slides and treated with clorgyline (MAO-A

inhibitor) for 2 h where applicable. Media were removed and replaced
with DMEM containing 100 µM DCDHF and incubated at 37 °C for
50min. Dye was removed and replaced with Hanks buffered salt solu-
tion (HBSS) alone or HBSS plus treatment. Changes in DCDHF fluor-
escence (Excitation 502 nm/Emission 523 nm) were immediately
monitored using a Leica CLSM inverted confocal laser scanning mi-
croscope. Images in each independent experiment were obtained using
the same laser power, gain and objective.

For measurement of cellular ROS production, Het fluorescence
measurements were obtained on an epifluorescence inverted micro-
scope equipped with a 20× fluorite objective. 2 μM Het was present in
the solution during the experiment, and to limit the intracellular ac-
cumulation of oxidized products no pre-incubation was used. Oxidation
of Het was monitored and rates of oxidation in control and MAO-A+
cells were compared. All imaging data were collected and analysed
using software from Andor (Belfast, UK).

2.9. Detection of protein oxidation

Changes in oxidatively modified protein levels were observed using
the Oxyblot protein oxidation detection kit (Millipore UK Limited,
Hertfordshire, UK) and western blotting. Cells were extracted as de-
scribed above except extraction buffer also contained 50mM dithio-
threitol (DTT) as a reducing agent to prevent the oxidation of proteins
that may occur after cell lysis. Oxyblot analysis detects protein carbonyl
formation, the carbonyl groups are derivatised with 2,4-
Dinitrophenylhydrazine (DNPH) and then detected by antibodies
(supplied with the kit) specific to the attached DNP moiety of the
proteins; buffer only (without DNPH) derivatisation was used as a ne-
gative control.

2.10. Monoamine oxidase (MAO) activity assay

MAO activity was monitored using a radiometric assay with 14C-
labelled tyramine hydrochloride as substrate as previously described
[11]. Data were normalised for protein content and rates expressed as
disintegrations of 14C/min/mg protein. For assessment of effects of
hydrogen peroxide on MAO activity, human recombinant MAO-A
(M7316, Sigma Aldrich, Dorset, UK) was re-suspended in 50mM HEPES
buffer pH 7.4. Hydrogen peroxide was added to samples to give a range
of final concentrations (0.1–10mM) while mixing on a shaker and in-
cubated at 37 °C for 30min. A control sample without hydrogen per-
oxide was also prepared in HEPES buffer.

2.11. Lactate dehydrogenase (LDH) activity

LDH activity was determined using a spectrophotometric method
that quantifies the conversion of pyruvate to lactate. Samples were
treated with hydrogen peroxide in the same manner as MAO-A enzyme
(detailed above). Following incubation with hydrogen peroxide or
buffer only (controls) LDH activity was measured. Briefly, 800 µl of
50mM HEPES buffer, pH 7.4 (pre-warmed to 37 °C), 50 µl of 27mM
pyruvate and 50 µl of 4mM reduced ß-Nicotinamide adenine dinu-
cleotide (NADH) and 100 µl of sample were successively added in to a
quartz cuvette. The decrease of absorbance due to the oxidation of
NADH was recorded every 5 s for 5min in a Beckman Coulter DU 530
Life Science UV/VIS Spectrophotometer at 340 nm. LDH activity was
calculated from the slope of the absorbance curve.

2.12. Caspase-3 activity assay

Caspase-3 activity was monitored using Acetyl-Asp-Glu-Val-Asp-7-
amido-methyl coumarin (Ac-DEVD-AMC, Sigma Aldrich, Dorset, UK) as
a substrate. Cells were harvested by centrifugation at 300× g for 5min.
The pellet was washed twice with DMEM, resuspended in 200–300 µl
lysis buffer (50mM HEPES, 5mM CHAPS, 5mM DTT, pH 7.4) and
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incubated on ice for 20min. The lysates were centrifuged at 200× g at
4 °C for 5min to remove cell debris. Cell lysates were transferred to
black 96-well plates and made up to 80 µl with assay buffer (20mM
HEPES pH 7.4, 0.1% CHAPS, 5mM DTT, 2mM EDTA). Reactions were
initiated by the addition of AC-DEVD-AMC to a final concentration of
200 µM in a total reaction volume of 100 µl. Fluorescence was read in
the BMG CLARIOstar UV/vis spectrometer (BMG Labtech, UK) with
excitation at 360 nm and emission at 460 nm every 5min for 4 h at
37 °C. Data were normalised for protein content and expressed as Δ
fluorescence units/min/µg protein.

2.13. Mitochondrial network analysis

1×105 cells were seeded on glass bottom dishes and incubated in
MitoTracker red (75 nM) at 37 °C for 30min. Cells were washed with
PBS and imaged in MEM without phenol red (Thermo Fisher Scientific,
Paisley, UK) supplemented with 25mM HEPES. Live cells were imaged
at RT using an A1R point-scanning inverted confocal microscope
(Nikon, UK) taking a total of 69 z-stacks with step intervals of 0.11 µm
using a high speed piezo Z stage. Individual images were deconvolved
and analysed using the DeConvolution and Object Analyzer algorithms
from the Huygens Essential software (Scientific Volume Imaging, The
Netherlands). The mean number, volume and length of objects per cell
were measured and compared using Mann-Whitney-Wilcoxon U-test.

2.14. Mitochondrial DNA (mtDNA) quantification

Total DNA was extracted from cell pellets using the DNeasy Blood
and tissue purification kit (Qiagen, Manchester, UK). Quantification of
mtDNA was carried out as previously described [21] using a probe-
based multiplex Taqman real-time PCR assay [22]. Briefly, triplex re-
actions amplified MTND1, MTND4 and B2M using iTaq Supermix fol-
lowing the manufacturer's instructions (Bio-Rad Laboratories Ltd.,
Hertfordshire, UK). The mean mtDNA copy number and mtDNA dele-
tion levels were calculated using the 2-ΔCt method obtained from
MTND1-B2M and MTND1-MTND4 ΔCt value, respectively.

2.15. Mitochondria preparation

Mitochondrial fractions from human SH-SY5Y neuroblastoma cells
were prepared as previously described [23].

2.16. ETC complex activities

The activities of the mitochondrial ETC complexes and the matrix
marker enzyme, citrate synthase, were determined following the pro-
tocols described for cultured cells by Spinazzi et al., with minor mod-
ifications [24]. Mitochondrial fractions were prepared and stored at
− 80 °C. Initial experiments were carried out to optimise sample

Fig. 1. Characterisation of SH-SY5Y clones overexpressing MAO-A (A) MAO-A mRNA expression was measured by qRT-PCR in stable SH-SY5Y cell control (Ctrl)
and MAO-A overexpressing (MAO-A+) clones. (B) MAO catalytic activities were measured in Ctrl and MAO-A+ cells via a radiometric method using 14C-Tyramine
as a substrate and are expressed as disintegrations (dpm) of 14C/min/mg total protein± SEM. MAO-A activity is increased 2.5–5.1 fold in MAO-A+ clones. (C)
Western blot analyses of MAO-A protein levels in Ctrl and MAO-A+ clones confirming increased MAO-A protein levels in MAO-A+ clones. MAO-A protein levels
increased 3.8–4.4 fold in the MAO-A+ clones, band intensities are indicated under each lane. Tubulin used to confirm equal loading. (D) Representative confocal
images showing MAO-A protein (green) using immunocytochemistry in Ctrl (panel i) and MAO-A+ cells (panel ii). Nuclei are counterstained with propidium iodide
(red). Photomicrographs are representative of> 6 independent experiments. Panel iii shows an enlarged view of an MAO-A overexpressing cell. Panel iv shows
mitochondrial localisation of MAO-A protein in MOA-A+ cells by double immunofluorescent labelling of MAO-A (green) and cytochrome c oxidase (red). Panels
show ×63 magnification with zoom. (E) Western blot analyses of MAO-A protein in MAO-A+ cells in total cell homogenate (T), mitochondria enriched (M) and
cytosolic (C) fractions demonstrating MAO-A protein continues to localise to the mitochondria; mitochondrial outer membrane protein VDAC is used to demonstrate
fractionation efficiency, equal protein loading is demonstrated by total protein staining by copper phthalocyanine. Error bars represent SEM of n= 3.
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protein content in the absence and presence of inhibitors to each
complex. Assay volumes were adjusted to 200 µl final volume and
contained 30 µg (for complex I assay) or 4 µg (for citrate synthase,
complex II, III and IV assays) of mitochondrial fractions. Enzyme ac-
tivity assays were performed using 96 well microplates simultaneously
for control and MAO-A overexpressing cells using BMG CLARIOstar
UV/vis spectrometer (BMG Labtech, UK).

2.17. Proteomics analysis of ETC subunits

Cells were cultured as described above and cell pellets were ex-
tracted in 9.5 M urea, 2% DTT and 1% N-Octyl-Beta-Glucopyranoside
by 3 rounds of freeze-thaw cycles. Cell extracts were sonicated (3×5 s
pulses at 60 Hz) and centrifuged at 10,000× g at 4 °C for 5min. 50 μg
of the supernatants were adjusted to 20 µl and processed for trypsin
digestion and SWATH-MS analysis as described previously [25]. A
spectral library for SWATH extraction was constructed using the output
from ProteinPilot 5.01 (SCIEX, Framingham, USA) combining 5

Fig. 2. MAO-A overexpression re-
sults in increased basal reactive
oxygen species (ROS) levels. (A)
DCDHF fluorescent probe was em-
ployed to monitor ROS levels in live
cultures of Ctrl (panel i) and MAO-A+
(panels ii and iii) cells. Cells were in-
cubated with 100 µM DCDHF at 37 °C
for 50min, dye was then removed and
changes in DCDHF fluorescence
(Excitation 502 nm/Emission 523 nm)
were immediately monitored using a
Leica CLSM inverted confocal laser
scanning microscope. For inhibiting
MAO-A activity, cells were pre-treated
with 1 µM clorgyline (MAO-A in-
hibitor) for 2 h (panel iii).
Representative images are shown;
images in each independent experi-
ment were taken using the same laser
power, gain and objective. (B) For Het
fluorescence measurements 2 μM Het
was present in the solution during the
experiment but no pre-incubation was
used. Epifluorescence inverted micro-
scope equipped with a 20× fluorite
objective was used to obtain measure-
ments. Oxidation of Het was monitored
and rates of oxidation in control and
MAO-A+ cells were compared. (C)
Oxyblot protein oxidation detection kit
and Western blotting analyses were
used to observe oxidatively modified
protein levels in Ctrl and MAO-A+
cells. The carbonyl groups are deriva-
tized with 2,4-Dinitrophenylhydrazine
(DNPH) and then detected by anti-
bodies (supplied with the kit) specific
to the attached DNP moiety of the
proteins. Increased protein carbonyla-
tion detected in MAO-A+ cells
(p=0.0032). Buffer only derivatiza-
tion of MAO-A+ cell extract serves as a
negative control (-’ve). (D)
Recombinant MAO-A and LDH activity
was measured in the presence of H2O2.
Enzyme was re-suspended in assay
buffer and incubated with a range of
H2O2 (0.1–10mM) or in assay buffer
(as control) at 37 °C for 30min prior to
activity assay. Results are shown as
mean % untreated control± SEM for
three independent experiments
(n=3). One-way ANOVA with

Dunnett's multiple comparison test were performed to assess the effects of H2O2 on MAO-A and LDH enzyme activity. (E) Apoptotic cell death in Ctrl and MAO-A+
cells was assessed by caspase-3 activity using Acetyl-Asp-Glu-Val-Asp-7-amido-methyl coumarin (Ac-DEVD-AMC) as a substrate. Fluorescence was read with ex-
citation at 360 nm and emission at 460 nm every 5min for 4 h at 37 °C. Data were normalised for protein content and expressed as Δ fluorescence units/min/µg
protein, where n=5. (F)Western blot analyses of pro- and cleaved caspase 3 protein levels in Ctrl and MAO-A+ cells. Band intensities are quantified and normalised
to total protein levels and are shown as a fold change compared to Ctrl cells. For cleaved caspase 3 total of doublet band intensity (detected at 17/19 kDa) was used.
Student's T-tests were performed to compare caspase 3 levels. Tubulin is used to confirm equal loading. Error bars represent SEM of n=3. *P < 0.05, **P < 0.01.
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information dependent acquisition runs per experimental group, fil-
tered for shared peptides, and aligned to the SWATH data file using
spiked in iRT peptides (Biognosys, Switzerland) using PeakView 2.1
SWATH microapp (SCIEX, Framingham, USA). SWATH data extraction,
quantitation and fold change analysis were carried out using the SCIEX
OneOmics cloud processing software with parameters; 6 peptides per
protein, 6 transitions per peptide, 75 ppm extracted ion chromatogram
and 5min extraction width [26]. 70% confidence limit and minimum of
2 peptides per protein were used as criteria for assessing fold change.

2.18. Mitochondrial potential measurements

Mitochondrial membrane potential was assessed with the Molecular
Probes™ JC-1 Dye (Fisher Scientific UK Ltd, Loughborough, UK).
1× 105 cells were seeded on 96 well clear bottom black microplates
(Corning®, Scientific Laboratory Supplies Limited, Nottingham, UK).
The following day growth media was removed and cells were incubated
in growth media containing JC-1 dye (4 µg/ml) at 37 °C in a 5% CO2

humidified atmosphere for 15min. For the positive controls 50 µM
CCCP, a mitochondrial membrane disrupter was added simultaneously
with JC-1. To ensure a rapid reduction in mitochondrial membrane
potential a relatively high concentration of CCCP was used. Following
incubation, wells were washed once and 100 µl of Hanks’ Balanced Salt
solution were added to each well and fluorescence was measured at
excitation/emission wavelength of 490 nm/520 nm and 490 nm/
590 nm. Growth media only treatment was used for background
reading.

2.19. ATP measurement

ATP levels were measured using the luminescence based ViaLight®

Plus assay kit (Lonza Inc., Rockland, USA). Cells were cultured in 24
well plates and once confluent, cell monolayer was washed with
Dulbecco's Phosphate Buffered Saline (DPBS) and were incubated for
1 h in DMEM containing either 10mM glucose, 10mM glucose plus
3 µg/ml oligomycin (glycolytic ATP generation), 10mM 2-DG plus
1mM (or 10mM) pyruvate (oxidative ATP production) or 10mM 2-DG
plus 1mM (or 10mM) pyruvate plus 3 µg/ml oligomycin. Following
treatment cell monolayer was washed with DPBS, extracted in lysis
buffer (provided with the kit) and assayed for ATP levels according to
the manufacturer's instructions using a microplate reader (CLARIOstar,
BMG Labtech, UK). ATP standards were prepared in the range of
0.5–5000 pmol/assay and results were expressed as mean ATP pmol/µg
total protein. Each sample and standard was prepared in triplicate in
the assay, which was performed for each independent experiment.

2.20. Immunoprecipitation

For immunoprecipitation the Invitrogen Dynabeads® co-ip kit
(14321D, Thermo Fisher Scientific, Paisley, UK) was used following the
manufacturer's instructions. Briefly, 5 μg of antibody was added to 1mg
of Dynabeads in coupling buffer and incubated at 37 °C overnight with
rotation. Cell pellets were homogenised in extraction buffer (supplied
with the kit) using a Dounce, All-Glass Tissue Grinder (Apollo Scientific,
UK). Dynabeads/antibody complex was equilibrated in extraction
buffer and then incubated with 3.5 mg of protein homogenate for 1 h at
4 °C with rotation. Beads were washed, co-immunoprecipitated proteins

Fig. 3. MAO-A overexpression acti-
vates autophagy through phosphor-
ylation of Bcl-2. (A) LC3B-I and LC3B-
II protein levels in Ctrl and MAO-A+
cells in presence and absence of
Bafilomycin A1 (BafA, 100 nM) treat-
ment monitored using Western blot-
ting. Long exposure for LC3B-II is
shown in the box (i). Basal P62 protein
levels in Ctrl and MAO-A+ cells mon-
itored using Western blotting (ii). Band
intensities are quantified and normal-
ised to total protein levels and are
shown as a fold change compared with
Ctrl cells (iii). Tubulin used to confirm
equal loading. MAO-A+ cells had sig-
nificantly more LC3B-II following
Bafilomycin A1treatment (p= 0.002)
and lower basal p62 levels (p=0.01).
Immunoprecipitation of Ctrl and MAO-
A+ cell homogenates with p62 anti-
body followed by Western blotting with
p62 and LC3B antibodies (iv). Band
intensities are indicated under each
lane. More LC3B immunoprecipitated
with p62 in MAO-A+ cells (LC3B/p62
ratio is increased from 0.5 in control
cells to 0.7 in the MAO-A+ cells)
showing increased p62-LC3B interac-
tion. (B) Representative immunoblots
and quantification of Beclin 1, phos-
phorylated Bcl-2 (p-Bcl-2) and Bcl-2
levels in Ctrl and MAO-A+ cells. Beclin
1 band intensities are quantified and
normalised to total protein levels and
are shown as a fold change compared
to Ctrl cells. Phosphorylated Bcl-2 and

Bcl-2 band intensities are quantified and expressed as p-Bcl-2/Bcl-2 ratios in Ctrl and MAO-A+ cells. GAPDH was used to confirm equal loading. Error bars represent
SEM of n= 3. Student's t-test was performed to compare Ctrl and MAO-A+. *P < 0.05.
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were eluted in the elution buffer (supplied with the kit) and analysed by
Western blotting.

2.21. MTT cell viability assays

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide) assay was used to assess the cytotoxic effects of tyramine. Cells
were seeded in 96-well plates and left to recover for 24 h. Cells were
treated with tyramine (0.1–1mM) and at the end of the indicated time
points cells were incubated for 1 h with MTT, the supernatant was
carefully removed, and 100 µl of dimethyl sulfoxide was added to each
well to dissolve the formazan product. Absorbance was recoded at
570 nm. Results were expressed as a percentage of untreated control for
both control and MAO-A+ cells.

2.22. Statistical analysis

All measurements were performed in triplicate, repeated a
minimum of three times and data are expressed as mean ± standard
error of the mean (SEM). Statistical significance for multiple compar-
isons was performed using 2 way ANOVA followed by Bonferroni's
multiple comparisons test. The Student's T-test was used to perform
comparisons on other data. In all cases, p < 0.05 was considered sig-
nificant and p values of< 0.05 and< 0.01 are marked by * and **
respectively.

3. Results

3.1. Characterisation of SH-SY5Y cells overexpressing MAO-A

SH-SY5Y cells were stably transfected with either the pcDNA3.1(-)
vector lacking the MAO-A sequence, referred to as control (Ctrl) clones
or with pcDNA3.1(-) containing the MAO-A cDNA sequence, referred to
as MAO-A+. RNA was extracted for characterisation of MAO-A mRNA
expression levels. Fig. 1A shows that MAO-A+ clones exhibited in-
creased MAO-A mRNA expression (1900–5100 fold) compared to con-
trol SH-SY5Y clones. Individual SH-SY5Y cell clones were then ex-
panded further and extracts taken for evaluation of MAO-A catalytic
activity. MAO-A+ clones had increased MAO-A catalytic activity of at
least 2.5 fold compared to the control clones (Fig. 1B). Western blot
analysis confirmed the increased expression of MAO-A protein in the
MAO-A+ clones (Fig. 1C). Control clone 2D8 and MAO-A+ clone 1A9
were used for further work. Immunocytochemistry verified the in-
creased expression of MAO-A protein in the MAO-A+ cells (Fig. 1D
panels i–iii) and Fig. 1D (panel iv) shows co-localisation of MAO-A
protein in MAO-A+ cells with the mitochondrial enzyme cytochrome c
oxidase, further signifying that overexpressed MAO-A in SH-SY5Y cells
continues to localise to the mitochondria. This is also confirmed by
monitoring MAO-A in mitochondrial and cytosolic fractions using
Western blotting and outer mitochondrial membrane protein Voltage-
dependent anion-selective channel (VDAC) protein as a control
(Fig. 1E).

Fig. 4. MAO-A overexpression causes increased K63 ubiquitination. (A–D) K63 polyubiquitin (K63 polyUb) and polyubiquitin (polyUb) Western blots of total
homogenates and K63 polyUb Western blots of mitochondrial and cytosolic fractions from Ctrl and MAO-A+ cells. K63-linkage specific polyubiquitin antibodies
were used to detect K63 ubiquitination of proteins in samples. An anti-Ubiquitin antibody was used to detect all polyubiqutin chains. Tubulin, MT-ND1 and LDH used
to confirm equal loading for total, mitochondrial and cytosolic fractions respectively. (E) Band intensities are quantified and normalised to total protein levels and are
shown as a fold change compared with Ctrl cells. MAO-A+ cells have significantly higher K63 polyUb (p=0.037) in total homogenates and mitochondrial fractions
(p=0.045). Student's T-tests were performed to compare Ctrl and MAO-A+. Error bars represent SEM of n= 3. *P < 0.05, **P < 0.01.
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3.2. MAO-A overexpression results in increased basal reactive oxygen
species (ROS) levels

The fluorescent probe DCDHF was initially employed to monitor
ROS levels in live cultures of control and MAO-A+ cells (Fig. 2A). Basal
levels of ROS in MAO-A+ cells were higher than in controls (Fig. 2A
panels i–ii) and were reduced by clorgyline, an irreversible MAO-A
inhibitor (Fig. 2A, panel iii), confirming the increased ROS in MAO-A+
cells were due to increased MAO-A activity. This finding was confirmed
using the fluorescent probe Het which allows the measurement of ROS
using real-time fluorescence microscopy. The rate of oxidation was
found to be higher in MAO-A+ cells (Fig. 2B). Finally, Fig. 2C

demonstrates that increased ROS levels in MAO-A+ cells result in in-
creased protein carbonylation, suggesting increased protein oxidation.
Next, we investigated the potential effects of this increased ROS on
MAO-A enzyme catalytic activity. For this we used recombinant human
MAO-A (EC 1.4.3.4) and, as a control, L-Lactic dehydrogenase (LDH, EC
1.1.1.27); each enzyme was treated with increasing concentrations
(0.1–10mM) of hydrogen peroxide (H2O2). LDH activity was reduced in
a dose dependent manner by H2O2, significantly at 1mM and higher
concentrations (Fig. 2D). In comparison, MAO-A activity was only af-
fected at 10mM H2O2, indicating that MAO-A is highly resistant to this
oxidant (Fig. 2D).

In this study we aimed to investigate the effects of stable

Fig. 5. MAO-A overexpression results in mitochondrial fragmentation. (A) Mitochondrial network images obtained by Mitotracker red staining. Live cells were
imaged using an A1R point-scanning inverted confocal microscope. Representative images are shown. (B–D) 45–50 Ctrl and MAO-A+ cells were imaged and length,
volume and number of objects per cell were measured using Huygens Essential software algorithms. Mann-Whitney-Wilcoxon U-tests were performed to compare Ctrl
and MAO-A+. MAO-A+ cells had significantly reduced mitochondrial length (p=0.008) and increased number of mitochondrial fragments (p= 0.003) but MAO-A
overexpression had no effect on total mitochondrial network length (p= 0.214) and volume (p= 0.477) per cell. Error bars represent SEM. n= 6. *P < 0.05,
**P < 0.01.
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overexpression of MAO-A, with associated increases in ROS levels, on
cellular responses. First, we compared basal caspase 3 activity and
protein levels in control and MAO-A+ cells and found that they were
similar (Fig. 2E and F). This suggests that sustained ROS exposure may
have induced an adaptive response, which allowed the cells to tolerate
higher basal ROS levels.

3.3. Increased MAO-A expression activates autophagy

Next, we explored how MAO-A+ cells maintain cellular viability
under increased oxidative stress. Since autophagy functions as a stress
response and can be regulated by several intracellular stressors in-
cluding oxidative stress, we investigated the effects of MAO-A over-
expression on autophagy [27,28]. During autophagy, LC3-I is converted
to LC3-II by lipidation and this causes LC3-II to migrate differently on
SDS-PAGE. LC3-II is required for the formation of the autophagosome
and accumulation of LC3-II following induction of autophagy, or in-
terruption of autophagosome-lysosome fusion, is often used as a
quantitative marker of autophagy [29]. Bafilomycin A1 is a specific
inhibitor of the vacuolar type H+-ATPase (V-ATPase) and inhibits the
acidification of lysosomes, thus preventing the maturation of autop-
hagic vacuoles [30,31]. LC3B-II levels were increased in the MAO-A+
cells compared to controls following bafilomycin A1 treatment (Fig. 3Ai
and iii), suggesting increased autophagy. Steady state levels of autop-
hagy substrate p62 (Sequestosome-1) are suggested to reflect the au-
tophagic state of the cells, with decreased p62 levels being associated
with autophagy activation [32]. Basal levels of p62 were reduced in the
MAO-A+ cells (Fig. 3Aii and iii) further supporting autophagy activa-
tion. Finally, co-immunoprecipitation experiments using antibodies
against p62 indicate that, despite reduced p62 levels, increased inter-
action of LC3B with p62 in MAO-A+ cells (Fig. 3A iv). Overall, these
results support activation of autophagy in MAO-A+ cells.

3.4. MAO-A overexpression activates autophagy through phosphorylation
of Bcl-2

Previous studies suggest that dissociation of Bcl-2 from Beclin 1 is

one important mechanism for activating autophagy. Beclin 1 interacts
with several cofactors to regulate the lipid kinase Vacuolar protein
sorting 34 (Vps34), a critical regulator of autophagy, and therefore has
a central role in autophagy induction. Binding to Bcl-2 inhibits Beclin 1
but phosphorylation of Bcl-2 disrupts Bcl-2/Beclin 1 interaction leading
to autophagy stimulation [33,34]. In order to study the potential me-
chanism of autophagy activation in MAO-A+ cells we investigated le-
vels of Beclin 1 and phosphorylation of Bcl-2. We found a small but
significant increase in Beclin 1 levels and increased phosphorylation of
Bcl-2 in MAO-A+ cells (measured by p-Bcl-2/Bcl-2 ratio). Overall,
these results suggest autophagy activation in MAO-A+ cells is through
disrupted Bcl-2/Beclin 1 interaction (Fig. 3B).

3.5. Mitochondria are targeted for clearance via autophagy

Since Lysine 63 (K63)-linked ubiquitination of substrates is a
common marker of autophagy and is suggested to be involved in
clearance of damaged mitochondria, we investigated total and K63-
linked ubiquitinated protein levels [35]. The levels of K63-linked ubi-
quitinated proteins in MAO-A+ cells were increased (Fig. 4A and E);
this increase was confined to the mitochondrial fraction (Fig. 4B, C and
E), suggesting that mitochondria are being targeted for autophagic
clearance. There were no significant differences in the basal levels of
total ubiquitinated protein pools in control and MAO-A+ cells (Fig. 4D
and E).

3.6. MAO-A overexpression results in mitochondrial fragmentation

Next we investigated how sustained overexpression of MAO-A in-
fluences the structure of the mitochondrial network and its function.
Fig. 5A demonstrates representative images showing mitochondrial
networks in control and MAO-A+ cells. MAO-A overexpression resulted
in a reduced mean mitochondrial length and volume (Fig. 5B) but had
no effect on total mitochondrial network length and volume per cell
(Fig. 5D). Accordingly, the number of mitochondrial fragments in MAO-
A+ cells was increased (Fig. 5C).

To further characterise mitochondrial network changes we

Fig. 6. MAO-A overexpression cause increased mi-
tochondrial fission proteins. (A) Representative Western
blots and quantification of phosphorylated drp1 (p-drp1),
drp1 and opa1 levels in Ctrl and MAO-A+ cells. Band
intensities are quantified and normalised to total protein
levels and are shown as a fold change compared to Ctrl
cells. Tubulin is used to confirm equal loading. (B) mtDNA
copy number in Ctrl and MAO-A+ cells. The analysis was
performed using a probe-based multiplex Taqman real-
time PCR assay. MtDNA copy number was calculated using
the 2-ΔCt method obtained from MTND1-B2M value for
each cell line. (C) Mitochondrial membrane potential was
assessed using JC-1 dye. Fluorescence was measured at
excitation/emission wavelength of 490 nm/520 nm and
490 nm/590 nm, and red/green fluorescence ratio was
compared in Ctrl and MAO-A+ cells. A mitochondrial
membrane disrupter CCCP (50 µM) was used as a positive
control. Error bars represent SEM of n= 3 independent
experiments. Student's t-test was performed to compare
Ctrl and MAO-A+. *P < 0.05.
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Fig. 7. Effects of MAO-A overexpression on mitochondrial electron transport chain and ATP. (A) Complex I–IV and citrate synthase activities were assessed in
mitochondria enriched fractions of Ctrl and MAO-A+ cells. MAO-A+ cells had significantly higher Complex IV activity (p= 0.004). (B) Differentially expressed
mitochondrial respiratory chain complex IV subunits detected using SWATH mass spectrometry analysis. Seven complex IV subunits were detected, six of the
complex IV subunits showed a 1.43–2.58 fold increase in MAO-A+ cells. (C) Complex I–V and citrate synthase (CS) protein levels in Ctrl and MAO-A+ cells
monitored using Western blotting. Blots were probed with an antibody cocktail directed to subunits of complex I (NDUFB8), complex II (SDHB), complex III
(UQCRC2), complex IV (cytochrome c oxidase subunit II, MT-CO2), and complex V (ATP5A). Same samples were also probed with antibodies directed to CI (MT-
ND1), CIV (cytochrome c oxidase subunit I, MT-CO1) and Citrate synthase (CS). Band intensities are quantified. Student's t-test was performed to compare Ctrl and
MAO-A. (D) ATP levels were measured using a luminescence based assay. Cells were incubated for 1 h in DMEM containing either 10mM glucose (Glu), 10mM
glucose plus 3 µg/ml oligomycin (oli) (glycolytic ATP generation), 10mM 2-deoxyglucose (2-DG) plus 1mM (or 10mM) pyruvate (Pyr) (oxidative ATP production)
or 10mM 2-DG plus 1mM (or 10mM) pyruvate plus 3 µg/ml oligomycin. Student's t-test was performed to compare Ctrl and MAO-A+. Error bars represent SEM of
n= 3 independent experiments. *P < 0.05, **P < 0.01.
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investigated the levels of dynamin-1-like protein (drp1) and optic
atrophy 1 (opa1), both known to regulate mitochondrial fission/fusion
[36–38]. It is suggested that phosphorylation of drp1 on Ser 616 (p-
drp1) promotes mitochondrial fission in neuronal cells under oxidative
stress, whilst opa1, a mitochondrial inner membrane protein, is essen-
tial for mitochondrial fusion [39]. We found no significant changes in
drp1 levels but increased levels of phosphorylated drp1 and reduced
levels of opa1 in MAO-A+ cells (Fig. 6A), supporting mitochondrial
fragmentation in MAO-A+ cells. Next, we tested whether MAO-A
overexpression affected mitochondrial DNA (mtDNA) copy number. To
do this we compared the levels of NADH-ubiquinone oxidoreductase
chain 1 (ND1, mitochondrial) DNA relative to Beta-2-microglobulin
(B2M, nuclear) DNA in control and MAO-A+ cells and found no sig-
nificant differences in mtDNA copy number (Fig. 6B). We also in-
vestigated potential mtDNA deletions, but no deletions were detected
(data not shown).

To investigate the effect of MAO-A overexpression on mitochondrial

function, we initially measured mitochondrial membrane potential
using the JC-1 fluorescent dye. JC-1 exhibits a mitochondrial potential
dependent shift of fluorescence emission from green to red.
Fluorescence spectrophotometric analysis showed that the ratio of red/
green fluorescence intensity was not altered following sustained MAO-A
over-expression (Fig. 6C). A protonophore carbonyl cyanide m-chlor-
ophenylhydrazone (CCCP) was used as a positive control and, as ex-
pected, incubation with CCCP caused mitochondrial depolarisation in
both control and MAO-A+ cells (Fig. 6C).

3.7. MAO-A overexpression results in increased complex IV activity

To further study the effect of MAO-A levels on mitochondrial
function, we compared ETC activity in control and MAO-A+ cells.
MAO-A overexpression resulted in significant elevation of basal com-
plex IV activity with no significant effect on complex I, II, or III activ-
ities (Fig. 7A). We also found that citrate synthase activity (rate-limiting

Fig. 8. Effects of excess MAO substrate availability on cell viability. (A) Cell viability quantified using the MTT reduction assays following 100 µM-1mM
tyramine exposure over a 48 h time course. Results were expressed as a percentage of untreated controls for both Ctrl and MAO-A+ cells, where n= 6–8. To inhibit
MAO activity, cells were treated with clorgyline (1 µM), an irreversible MAO-A inhibitor for 30min prior to addition of tyramine. Statistical significance for multiple
comparisons was performed using a 2 way ANOVA followed by Bonferroni's multiple comparisons test. The effects of tyramine were assessed by comparing cell
viability at each concentration to untreated controls (*P < 0.05, **P < 0.01, ****p < 0.0001). To assess the protective effect of MAO-A inhibition, clorgyline plus
tyramine treated samples at each concentration were compared to clorgyline treatment only. Pre-treatment with clorgyline provided protection against the effects of
tyramine at all concentration except the highest concentration (1mM tyramine for 48 h, ••••p < 0.0001). (B) Representative phase-contrast microscope images of Ctrl
(panels i, ii, v and vi) and MAO-A+ (panels iii, iv, vii and viii) cells following 200 µM tyramine treatment for 48 h (panels v-viii). Addition of Clorgyline
(+Clorgyline, panels ii, iv, vi and viii) reversed the detrimental effects of tyramine on MAO-A+ cells (note cell morphology shown in panel viii compared to panel
vii).
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enzyme in the tricarboxylic acid cycle) was similar in control and MAO-
A+ cells, indicating that the change in complex IV activity was not due
to a change in mitochondrial mass (Fig. 7A). To determine the nature of
the mechanisms involved in the changes in mitochondrial metabolism
in response to MAO-A expression, we focused on the abundance of
mitochondrial protein components of distinct respiratory complexes.
For this, we carried out a quantitative proteomics analysis, SWATH
(Sequential window acquisition of all theoretical mass spectra) mass
spectrometry (MS). SWATH is a recently developed technique, which
performs label-free quantification by data-independent acquisition
coupled with a peptide spectral library match. Using a minimum of 2
unique peptides we detected 7 complex IV subunits (of 19). Following
stable MAO-A overexpression, there was a 1.43–2.58 fold increase in 6
complex IV subunits, with the lowest increase for COX4l1 and the lar-
gest for MT-CO2 (Fig. 7B).

Next, we investigated the ETC complex subunit levels using Western
blotting. We found a small but significant increase in the levels of a
nuclear encoded complex IV protein (COX4I1, 2 fold), and a much
higher increase in mitochondrial encoded (MT-CO1 [4.4 fold] and MT-
CO2 [8 fold]) complex IV subunits (Fig. 7C). In agreement with the ETC
complex activity assays, MAO-A overexpression had no significant ef-
fect on the levels of complex II, III, V and citrate synthase protein levels.
Mitochondrial encoded complex I subunit MT-ND1 levels were also
investigated and found to be similar in control and MAO-A+ cells
(Fig. 7C); suggesting increased mitochondrial encoded complex IV
subunits were not due to a general up-regulation of mitochondrially
encoded subunits. However, there was a small increase (1.6 fold) in a
nuclear encoded complex I protein. Since there were no changes in
citrate synthase activity levels, it also served as a loading control for the
Western blot analysis.

Finally we investigated whether changes in the mitochondrial net-
work and ETC activity affected cellular ATP levels and found total ATP
levels to be similar in control and MAO-A+ cells (Fig. 7D). In order to
investigate whether there was a change in the relative contributions of
glycolysis and the ETC to ATP levels, we assessed ATP levels in the
presence of glucose (total), or glucose and oligomycin (glycolysis), or 2-
DG and pyruvate (ETC). There were no significant differences in gly-
colysis or ETC derived ATP in control and MAO-A+ cells (Fig. 7D). This
finding suggests that increased complex IV activity contributes to the
maintenance of energy supply.

3.8. Effects of MAO-A on cell viability depends on substrate availability

As MAO-A overexpression had no effect on ATP levels and caspase 3
activity, we finally checked the effect of providing excess MAO sub-
strate on ability of cells to survive, knowing that levels of ROS produced
by MAO will depend on substrate availability. We stimulated control
and MAO-A+ cells with tyramine (100 µM to 1mM) for 24 and 48 h.
Tyramine had no effect on cell viability of control cells at 24 h (Fig. 8A).
On the other hand, tyramine treatment caused significant cell death in
MAO-A+ cells (Fig. 8A) starting at 100 µM. By 48 h, the highest con-
centration (1mM) of tyramine also reduced viability of control cells.
Clorgyline, an irreversible MAO-A inhibitor reversed the detrimental
effects of tyramine on all cells (Figs. 8A and 8B) confirming down-
stream effects of MAO-A levels/activity depends on the substrate
availability.

4. Discussion

Parkinson's disease is characterised by preferential degeneration of
nigral dopaminergic neurons, resulting in dopamine deficiency. It is a
complex disease and although its aetiology remains unclear, oxidative
stress, mitochondrial dysfunction and altered proteolysis are considered
important contributors to neurodegeneration in PD. Current sympto-
matic treatment of PD involves use of L-DOPA (dopamine precursor)
alone or in combination with MAO-B inhibitors to maintain dopamine

levels in the brain. In the human brain MAO-B is predominately located
in glial cells and levels increase with age [40,41]. On the other hand, in
neurons the metabolism of dopamine is undertaken largely by MAO-A,
and nigral dopaminergic neurons solely express MAO-A [42]. Indeed
studies carried out in animal models suggest both endogenously re-
leased and L-DOPA derived dopamine is mainly metabolised by MAO-A
in the striatum [43,44].

Increased MAO-A expression/activities in dopaminergic neurons
derived from induced pluripotent stem-cells from familial PD patients
with mutations in parkin, glucocerebrosidase or α-synuclein have been
reported [45–47]. Furthermore, a recent study by Tong et al., found
increased levels of MAO-A protein fragments in the substantia nigra of
Parkinson's disease post mortem brains, despite the loss of MAO-A
containing neurons, supporting increased MAO-A expression (or turn-
over) in surviving dopaminergic neurons [48]. However, the down-
stream effects of increased MAO-A levels on neuronal cell death or
survival have not been studied.

Our study involved SH-SY5Y neuroblastoma cells expressing higher
levels of MAO-A protein (located on the mitochondrial outer mem-
brane) and a relatively small increase in MAO-A activity. These cells
produced a MAO-A mediated increase in ROS levels with associated
increased cellular protein oxidation. Of interest MAO-A is highly re-
sistant to short term exposure to H2O2 and this could be due to the fact
that, out of 9 cysteine residues, only one (Cys - 406) is located in the
active site and mutations in other residues do not alter catalytic activity
[7,49,50]. The term ‘mitochondrial ROS’ is mainly used in reference to
ROS produced by ETC but mitochondrial ROS can also be generated by
enzymatic action of several other mitochondrial enzymes including
MAOs. Indeed, studies carried out with intact mitochondria suggest
H2O2 generated during deamination of tyramine by MAO is 48-fold
higher than that generated during oxidation of succinate via complex II,
again demonstrating the potential contribution of MAOs to cellular ROS
levels and signalling [6].

It is now widely accepted that oxidative damage can result in in-
creased demand for degradative turnover of damaged proteins (and
organelles) and increasing evidence suggests ROS as an important
signal involved in the activation of autophagy [17]. Recent research
implicates a role for MAO-A in autophagy in prostate cancer cells and in
cardiomyocytes but the results are conflicting [18,19]. MAO's potential
role in a neuronal context has not been studied. Cellular quality control
mechanisms are particularly important for neurons in order to maintain
cellular homeostasis, and defects in autophagy are thought to be im-
plicated in neurodegenerative disorders [49]. Of significance, we found
that increased levels of MAO-A mediated cellular ROS promote autop-
hagy to remove oxidatively damaged proteins/organelles and is likely
to allow the MAO-A+ cells to survive and not to be apoptotic.

In addition to activation of autophagy our data demonstrate that
increased MAO-A levels promote targeting of mitochondria for autop-
hagic clearance. In MAO-A overexpressing cells the level of K63 ubi-
quitin chains was increased and K63 ubiquitination was associated with
mitochondrial fractions, suggesting that mitochondria were specifically
targeted for autophagic clearance. MAO-A overexpression resulted in
an increased number of mitochondrial fragments whilst total mi-
tochondrial network and volume per cell were maintained.
Interestingly, there was no effect of MAO-A overexpression on overall
mitochondrial membrane potential. This finding is in agreement with
studies which reported that oxidative stress induced by H2O2 itself
produces only a very slight reduction in mitochondrial membrane po-
tential [50]. Although it is common practice to use mitochondrial un-
couplers to trigger mitophagy (autophagy of mitochondria) in vitro, the
physiological relevance of this approach in vivo has been questioned
[51,52]. Here we show H2O2 generated locally on the mitochondrial
outer membrane by MAO-A initiates mitochondrial fragmentation and
clearance in the absence of mitochondrial uncouplers and mitochon-
drial depolarisation. In recent studies it has been demonstrated that
mild oxidative stress and unfolded mitochondrial matrix proteins can
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induce mitophagy in the absence of complete mitochondrial depolar-
isation [53,54]. Importantly, suppression of mitochondrial ROS sig-
nalling via high levels of catalase expression impairs activation of mi-
tochondrial quality control mechanisms and compensatory autophagy
[55]. Overall, our study adds to increasing evidence that mitophagy
could be triggered without complete mitochondrial depolarisation and
highlights MAO-A generated ROS as a potential mitochondrial quality
control signal.

Whilst the ETC is regarded as one of the main sites that contributes
to mitochondrial ROS generation, it has also been shown that ROS can
damage and alter the activity of elements of the ETC [56]. In order to
understand the effects of altered MAO-A levels on mitochondrial
function, we investigated the activities and levels of ETC complexes. We
found that MAO-A overexpression and associated increased ROS levels
did not cause a reduction in activities of complexes I-IV. Significantly,
for the first time we report that increased MAO-A levels result in in-
creased complex IV activity/protein levels. It should be noted that the
complex IV subunits MT-CO1 and MT-CO2, which are found to be
highly upregulated in the MAO-A+ cells, are part of the catalytic core.
MT-CO2 transfers the electrons from cytochrome c and is thought to be
one of the major points of energy transduction and a key control point
in the reaction. Since the overall cellular ATP levels were unchanged,
the increase in complex IV activity could have a role in maintaining
mitochondrial membrane potential and hence cellular energy needs.

We have previously demonstrated that inhibition of ETC complex I,
III and IV, known to increase levels of mitochondrial ROS, leads to an
increase in MAO-A protein [11]. Interestingly, a recent significant study
by Stroud et al., reported increased MAO-A expression following knock
down of accessory subunits of ETC complex I [57]. Importantly, the
expression of only 20 mitochondrial proteins was altered, suggesting
MAO-A is highly sensitive to changes in the ETC. Overall these ob-
servations suggest that there is a strong relationship between MAO-A
levels and ETC activity, hence mitochondrial function.

Both autophagy and apoptosis can be induced by similar stimuli and
there is a highly complex crosstalk between autophagy and apoptotic
signal regulation [58]. Bcl-2 is suggested to be one of the key mediators
of autophagy and apoptosis and its effect is dependent on its phos-
phorylation state [34,59]. Bcl-2 can sequester the autophagy activator
Beclin 1, thus inhibiting autophagy but phosphorylation of Bcl-2 can
disrupt this interaction. Stable overexpression of MAO-A led to no
change in basal apoptosis, measured via caspase 3 activity, but stimu-
lated autophagy concurrent with phosphorylation of Bcl-2 suggesting
autophagy activation through disruption of Bcl-2/Beclin 1 interaction.
However, other mechanisms, which was not investigated here, may also
contribute to autophagy activation in MAO-A overexpressing cells. The
aldehyde product of MAO deamination may lead to acidification of the
cytosol and can contribute to induction of autophagy [60,61]. In ad-
dition, ROS produced by MAO activity can modify calcium signalling
which in turn may also contribute to activation of autophagy [62,63]. It
should be recognised that the effects of increased MAO-A levels will
depend on availability of amine substrates and if the substrates are in
excess, the cells may not be able to tolerate the increased ROS levels.
Indeed exogenous addition of tyramine as substrate leads to a large
reduction in viability of MAO-A overexpressing cells. This is particu-
larly relevant to PD, where L-DOPA (dopamine precursor) is utilised to
maintain dopamine levels in symptomatic treatment of PD [64].

This study is the first to show that an increase in MAO-A protein
levels could lead to a protective cellular response in order to promote
removal of damaged macromolecules/organelles via autophagy, but
that amine substrate availability may ultimately determine cell fate. In
addition, we provide further evidence that MAO-A plays a role in au-
tophagy-apoptosis crosstalk and our findings support MAO-A as a key
regulator of cell survival [11,19].
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