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ABSTRACT 

G protein-coupled receptors (GPCRs) are considered to function primarily at the plasma 

membrane, where they interact with extracellular ligands and couple to G proteins that transmit 

intracellular signals. Consequently, therapeutic drugs are designed to target GPCRs at the plasma 

membrane. Activated GPCRs undergo clathrin-dependent endocytosis. Whether GPCRs in 

endosomes control pathophysiological processes in vivo and are therapeutic targets remains 

uncertain. We investigated the contribution of endosomal signaling of the calcitonin receptor-like 

receptor (CLR) to pain transmission. Calcitonin gene-related peptide (CGRP) stimulated CLR 

endocytosis, and activated protein kinase C (PKC) in the cytosol and extracellular signal 

regulated kinase (ERK) in the cytosol and nucleus. Inhibitors of clathrin and dynamin prevented 

CLR endocytosis and activation of cytosolic PKC and nuclear ERK, which derive from 

endosomal CLR. A cholestanol-conjugated antagonist, CGRP8-37, accumulated in CLR-

containing endosomes, and selectively inhibited CLR signaling in endosomes. CGRP caused 

sustained excitation of neurons in slices of rat spinal cord. Inhibitors of dynamin, ERK and PKC 

suppressed persistent neuronal excitation. CGRP8-37-cholestanol, but not unconjugated CGRP8-37, 

prevented sustained neuronal excitation. When injected intrathecally to mice, CGRP8-37-

cholestanol inhibited nociceptive responses to intraplantar injection of capsaicin, formalin or 

complete Freund’s adjuvant more effectively than unconjugated CGRP8-37. Our results show that 

CLR signals from endosomes to control pain transmission, and identify CLR in endosomes as a 

therapeutic target for pain. Thus, GPCRs function not only at the plasma membrane but also in 

endosomes to control complex processes in vivo. Endosomal GPCRs are a drug target that 

deserve further attention. 
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SIGNIFICANCE STATEMENT 

GPCRs have long been considered to function primarily at the plasma membrane. 

Consequently, most drugs are designed to target GPCRs at the cell-surface. Ligand-bound 

GPCRs undergo clathrin- and dynamin-dependent endocytosis. It is uncertain whether GPCRs in 

endosomes control complex pathophysiological processes in vivo and are a viable therapeutic 

target. We report that the CGRP receptor signals from endosomes to regulate activity of pain-

transmitting neurons in the spinal cord. Lipid-conjugated CGRP receptor antagonists accumulate 

in endosomes, selectively inhibit endosomal signals, and block sustained excitation of spinal 

neurons and persistent nociception. The results suggest that GPCRs in endosomes, in addition to 

those at the cell-surface, control ongoing pathophysiological processes in vivo, and identify 

GPCRs in endosomes as a new target for therapy.  
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INTRODUCTION 

G protein-coupled receptors (GPCRs) have long been considered to function primarily at 

the plasma membrane, where they interact with ligands in the extracellular fluid and couple to 

heterotrimeric G proteins that convey signals within the cell. Consequently, most therapeutic 

drugs are designed to target GPCRs at the cell-surface. Ligand-bound GPCRs interact with β-

arrestins (βARRs), which desensitize G protein signaling, mediate receptor endocytosis, and 

thereby rapidly terminate plasma membrane signaling (1). The conventional view that GPCRs 

signal only from the plasma membrane has been challenged by reports that GPCRs can continue 

to signal from endosomes by G protein- and βARR-mediated mechanisms (2-9). However, the 

contribution of endosomal signaling of GPCRs to the control of complex pathophysiological 

processes in vivo is uncertain, and whether endosomal GPCRs are a viable therapeutic target is 

far from clear. 

GPCRs in endosomes can generate signals in subcellular compartments (2, 6-8). 

Compartmentalized signaling involves GPCR association with signaling and regulatory proteins 

that determine the subcellular location of signals. By these mechanisms, a large number of 

different GPCRs can specifically control cellular functions using a small number of effectors. 

The importance of GPCR compartmentalized signaling for integrated responses requires further 

investigation. 

Calcitonin gene-related peptide (CGRP) is expressed throughout the nervous system (10). 

The CGRP receptor comprises calcitonin receptor-like receptor (CLR), a GPCR, and receptor 

activity modifying protein 1 (RAMP1), a single transmembrane protein that imparts ligand 

specificity and ensures CLR targeting to the cell-surface. Noxious stimuli evoke CGRP release 

from the terminals of primary sensory neurons in the dorsal horn of the spinal cord and in 

peripheral tissues. CGRP activates CLR/RAMP1 on spinal neurons to induce nociception, and on 
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peripheral arterioles to cause neurogenic inflammation. CGRP and CLR are targets for migraine 

pain (10). Although CGRP stimulates endocytosis of CLR/RAMP1 (11), the contribution of 

CLR/RAMP1 endocytosis to pain transmission is uncertain, and whether CLR in endosomes is a 

therapeutic target for pain is unknown. We have recently found that the neurokinin 1 receptor 

(NK1R) signals from endosomes to mediate substance P (SP)-induced nociception (12). We now 

describe a major role for endosomal CLR in nociception, and identify CLR in endosomes as a 

therapeutic target. 

 

RESULTS 

CGRP stimulates clathrin- and dynamin-dependent endocytosis of CLR 

We used Bioluminescence Resonance Energy Transfer (BRET) to quantify the proximity 

of CLR to βARR2, an adaptor for clathrin-mediated endocytosis, and to resident proteins of the 

plasma membrane (KRas), early endosomes (Rab5a), and recycling endosomes (Rab11) of 

HEK293 cells co-expressing CLR and RAMP1 (12, 13). CGRP (100 nM, continuous) increased 

CLR-RLuc/βARR2-YFP BRET (EC50 2 nM, pEC50 8.74±0.18) (Fig. 1A, Fig. S1A). CGRP 

decreased CLR-RLuc/KRas-Venus BRET, and increased CLR-RLuc/Rab5a-Venus BRET (Fig. 

1B). After incubation with CGRP (15 min) and washout, there was an increase in CLR-

RLuc/Rab11-Venus BRET (Fig. 1C). Dominant negative dynamin K44E (DynK44E), the 

dynamin inhibitor Dyngo4a (Dy4a, 30 μM) (14), and the clathrin inhibitor PitStop2 (PS2, 30 

μM) (15) prevented CLR removal from the plasma membrane and inhibited trafficking to early 

endosomes (Fig. 1D). There was no effect of inactive Dy4a or PS2 analogs. We confirmed these 

results using two other assays of endocytosis. Cell-surface ELISA using antibodies to 

extracellular epitopes (HA-CLR, myc-RAMP1) showed that CGRP (100 nM, continuous) 

induced rapid removal of both receptor components from the plasma membrane (Fig. S1B). 

DynK44E, Dy4a and PS2, but not inactive analogs, inhibited CLR removal (Fig. 1E). CGRP 
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(100 nM, 15 min) induced CLR trafficking from the plasma membrane to early endosomes 

identified by early endosome antigen 1 (EEA1) immunoreactivity (IR) (Fig. 1F, Fig. S1C). Dy4a 

and DynK44E inhibited endocytosis. Expression of Rab5a-Venus did not appreciably alter the 

appearance of EEA1-positive early endosomes, supporting the suitability of the BRET approach 

to study CLR endocytosis (Fig. S1D). 

CLR endocytosis mediates a subset of signals in subcellular compartments  

To study CGRP signaling in subcellular compartments, we expressed in HEK cells HA-

CLR/myc-RAMP1 and genetically encoded Förster Resonance Energy Transfer (FRET) 

biosensors for plasma membrane and cytosolic cAMP (pmEpac2, cytoEpac2, respectively), 

plasma membrane and cytosolic protein kinase C (PKC, pmCKAR, cytoCKAR), and cytosolic 

and nuclear extracellular signal regulated kinase (ERK, cytoEKAR, nucEKAR) (12, 13, 16). 

Biosensors are targeted to subcellular compartments and are reversibly modified by second 

messengers, kinases and phosphatases. Single cell high-content imaging was used to study 

signaling kinetics in subcellular compartments of living cells.  

CGRP (1 nM, continuous) induced a rapid and sustained increase in plasma membrane 

and cytosolic cAMP (Fig. S2A-C), in agreement with CLR coupling to Gαs and adenylyl cyclase 

(10). CGRP induced a rapid and sustained activation of PKC in the cytosol but not at the plasma 

membrane (Fig. S2D-F), and a gradual and sustained activation of cytosolic and nuclear ERK 

(EC50 50-70 nM) (Fig. S2G-I, Fig. S3A-D). DynK44E or Dy4a, but not wild-type (WT) dynamin 

or inactive Dy4a, abolished CGRP-induced activation of cytosolic PKC and nuclear ERK, but 

not cytosolic ERK (Fig. 2A-F).  

NF449 (10 µM, Gas inhibitor) suppressed activation of nuclear ERK but not cytosolic 

PKC, whereas NF023 (10 µM, Gai inhibitor) had no effect (Fig. 2G, H). UBO-QIC (100 nM, 

Gaq inhibitor) blocked activation of cytosolic PKC but not nuclear ERK. U73122 (1 µM, 

phospholipase Cb inhibitor), but not EGTA (100 µM, Ca2+ chelator), also inhibited activation of 
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cytosolic PKC. βARR1+2 siRNA, which we have shown inhibits endosomal NK1R signaling (12, 

13), did not affect either signal. 

Thus, dynamin-dependent endocytosis of CLR mediates activation of nuclear ERK and 

cytosolic PKC, but not cytosolic ERK. Nuclear ERK activation requires Gas, whereas cytosolic 

PKC activation depends on Gaq but not Ca2+ mobilization.  

A cholestanol-conjugated CLR antagonist inhibits CGRP signaling in endosomes 

Conjugation to the membrane lipid cholestanol promotes endosomal delivery and 

retention of peptidase inhibitors and NK1R antagonists, which enhances therapeutic efficacy (12, 

17). We used a similar approach to deliver a membrane-impermeant CLR antagonist, CGRP8-37, 

to CLR in endosomes. Tripartite probes were synthesized comprising: cholestanol, which 

promotes membrane insertion and anchoring, or ethyl ester (control), which does not insert into 

membranes; a flexible polyethylene glycol-12 (PEG) linker to promote antagonist presentation in 

an aqueous environment; and a cargo of either cyanine 5 (Cy5) for localization or CGRP8-37 (Fig. 

3A, Fig. S4). 

To examine probe delivery to endosomes containing CLR, HEK-HA-CLR/myc-RAMP1 

cells were incubated with Cy5-cholestanol (Cy5-Chol) or Cy5-Ethyl Ester (60 min, 37°C), 

washed, and incubated with Alexa488-anti-HA antibody (40 min) to label cell-surface CLR. Live 

cells were imaged by confocal microscopy (37°C). To induce CLR endocytosis, cells were 

stimulated with CGRP (50 nM) 3 h after initial exposure to probes. Before exposure to CGRP, 

Cy5-Chol was concentrated in endosomes, CLR was at the cell-surface (Fig. 3B), and Cy5-Ethyl 

Ester remained extracellular (Fig. 3C). Alexa488-anti-HA antibody did not bind to untransfected 

HEK cells, confirming specificity (Fig. 3D). After incubation with CGRP (30, 60 min), CLR and 

Cy5-Chol were colocalized in endosomes with overlapping pixel intensities (Fig. 3B, SI Video 

1). The CLR and Cy5-Chol overlap coefficient significantly increased after incubation with 

CGRP (Fig. 3E). Thus, cholestanol conjugation delivers probes to endosomes containing CLR. 
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CGRP8-37-Chol inhibited CGRP (1 nM)-induced cAMP formation in HEK-HA-

CLR/myc-RAMP1 cells with an identical potency to unconjugated CGRP8-37 (pEC50: CGRP8-37, 

6.17±0.22; CGRP8-37-Chol, 6.36±0.14; Fig. S5A). 

To examine the capacity of CGRP8-37-Chol and CGRP8-37 to inhibit CLR signaling at the 

plasma membrane and in endosomes, we incubated HEK-HA-CLR/myc-RAMP1 cells with 

antagonists for 30 min, washed, and examined CGRP signaling immediately after washing (when 

cholestanol-conjugated probes were at the plasma membrane) or after 4 h (when probes were in 

endosomes). CGRP stimulation of cytosolic ERK (derived from plasma membrane CLR) or 

nuclear ERK (derived from endosomal CLR) was measured.  

When assayed immediately after 30 min pre-incubation, both CGRP8-37 and CGRP8-37-

Chol inhibited CGRP-stimulated activation of cytosolic and nuclear ERK (Fig. 4A, B, E, F). 

When cells were pulse-incubated with antagonists for 30 min, washed and then stimulated with 

CGRP 4 h later, only CGRP8-37-Chol was capable of inhibiting nuclear ERK (Fig. 4C, D, E, F). 

Using the population-based FRET assay, we demonstrated that while CGRP8-37-Chol had similar 

potency in inhibiting nuclear and cytosolic ERK after 30 min pre-incubation (pIC50: cytosolic 

ERK, 5.57±0.37; nuclear ERK, 6.23±0.23), CGRP8-37-Chol more potently inhibited nuclear 

ERK (pIC50: 6.24±0.34) than cytosolic ERK (pIC50: < 5) when the cells were pulse-incubated 

with the antagonists (Fig. 4G-H, Fig. S6A-H). A probe lacking CGRP8-37 (PEG-Biotin-Chol) had 

no effect on ERK activation, which excludes non-specific disruption of signaling by cholestanol 

or PEG. In cells that were pulse-incubated with CGRP8-37-Chol, CGRP still stimulated CLR 

endocytosis 4 h later, as shown by the decrease in CLR-RLuc/KRas-Venus BRET and the 

increase in CLR-RLuc/Rab5a-Venus BRET (Fig. S5B). The results show that cholestanol 

conjugation provides a mechanism for selective and sustained antagonism of endosomal CLR 

signaling. 

CLR signaling in endosomes mediates nociceptive transmission 
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To determine whether spinal neurons express functional CLR, we examined CGRP 

signaling in neurons isolated from the dorsal horn of the rat spinal cord. CGRP increased [Ca2+]i 

in 52±17% (942 neurons, 15 rats) of neurons (Fig. S7A). Preincubation with CGRP8-37 (1 µM, 30 

min) abolished CGRP signals, which confirms expression of CLR (Fig. S7B). Neuronal 

excitation was examined by cell-attached patch clamp recordings from lamina I neurons in slices 

of rat spinal cord. Transient exposure to CGRP (1 μM, 2 min) stimulated firing of action 

potentials that was sustained for at least 20 min after washout (Fig. 5A-C). CGRP-responsive 

neurons also responded to SP (1 μM), supporting co-expression of CLR and NK1R in second-

order spinal neurons. 

To determine whether CLR signaling from endosomes contributes to CGRP-induced 

excitation, we incubated spinal cord slices with Dy4a or inactive Dy4a (30 µM) or vehicle 10 

min before CGRP challenge. Dy4a did not affect the immediate CGRP-induced excitation, but 

prevented the sustained response (Fig. 5A-C). We preincubated tissue with U0126 (MEK 

inhibitor), GF109203X (PKC inhibitor) (1 μM, 30-45 min) to examine the underlying signaling 

mechanisms. U0126 reduced the CGRP-stimulated firing time of lamina I neurons by 72.4±5.1% 

(U0126, 17.37±1.2 min; control, 4.8±0.9 min; P<0.0001, N=neurons for U0126, N=5 neurons 

for control, 7 rats), and reduced the average number of spontaneous action potentials by 

86.6±11.6% compared to controls (Fig. 5D-F). GF109203X reduced CGRP-stimulated firing 

time by 76.5±5.3% (GF109203X, 17.37±1.2 min; control 4.07±0.9 min; P<0.0001, N=8 neurons 

for GF109203X, N=5 neurons for control, 9 rats), and reduced the average number of CGRP-

induced action potentials by 98.8±0.4% compared to controls. CGRP (1 µM, 5 min) induced 

endocytosis of CLR-IR in spinal neurons (Fig. 5G, H). Dy4a inhibited CGRP-induced 

endocytosis of CLR-IR. 

To obtain direct support for the concept that CLR signaling in endosomes mediates 

sustained excitation of spinal neurons, we preincubated spinal cord slices with vehicle, CGRP8-37 
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or CGRP8-37-Chol (1 µM, 60 min), washed, and challenged with CGRP 60 min later. In vehicle-

treated slices, CGRP caused rapid onset action potential discharge that was sustained after 

washout (Fig. 6A-C). CGRP8-37 did not affect this response. However, as observed with a 

dynamin inhibitor, CGRP8-37-Chol abolished sustained CGRP-evoked firing without affecting 

initial responses.  

The results support the hypothesis that endosomal CLR signaling mediates persistent 

excitation of spinal neurons. CLR in endosomes activates PKC and ERK, which control neuronal 

excitation. 

CLR signaling in endosomes mediates nociception 

Does endosomal delivery enhance the antinociceptive efficacy of CLR antagonists? To 

evaluate this possibility, we administered vehicle, CGRP8-37 or CGRP8-37-Chol (5 µl, 10 µM) to 

mice by intrathecal injection 3 h before intraplantar injection of capsaicin. This time allows 

accumulation of tripartite probes in endosomes of spinal neurons (12). We examined mechanical 

nociception by stimulation of the plantar surface of the paw using von Frey filaments. In vehicle-

treated mice, capsaicin caused mechanical allodynia of the ipsilateral paw that was sustained for 

4 h (Fig. 7A). Intrathecal CGRP8-37 had a transient anti-nociceptive effect at 1 h, whereas 

CGRP8-37-Chol induced a larger anti-nociceptive effect that was sustained for 4 h. CGRP8-37 and 

CGRP8-37-Chol did not affect withdrawal responses of the contralateral (non-injected) paw (Fig. 

7B).  CGRP8-37-Chol blunted the non-inflammatory (first phase) and inflammatory (second 

phase) of the nocifensive response to intraplantar formalin more effectively than CGRP8-37 (Fig. 

7C, D). When injected 36 h after intraplantar injection of complete Freund’s adjuvant (CFA), 

which causes a long-lasting inflammatory hyperalgesia, CGRP8-37-Chol but not CGRP8-37 

reversed the mechanical hyperalgesia (Fig. 7E). 

Painful stimuli also induce the release of SP from the central terminals of primary 

sensory neurons in the dorsal horn, where SP induces NK1R endocytosis in second-order neurons 
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and central transmission (12). To target the endosomal NK1R, we conjugated the NK1R 

antagonist spantide (Span) to cholestanol. When co-administered, Span-Chol (5 µl, 50 µM) and 

CGRP8-37-Chol (5 µl, 10 µM) caused a marked (~75%) reversal of CFA-induced mechanical 

hyperalgesia, whereas the combination of unconjugated Span and CGRP8-37 had no effect (Fig. 

7F). 

 

DISCUSSION 

Our results support the hypothesis that complex pathophysiological events, such as 

nociceptive transmission in the spinal cord, are not solely mediated by activation of GPCRs at 

the plasma membrane. We propose that GPCRs in endosomes generate sustained signals in 

subcellular compartments that underlie complex pathophysiological processes in vivo, and that 

endosomal receptors are a valid but neglected therapeutic target. 

By using FRET biosensors targeted to subcellular compartments, we found that CGRP 

stimulates cAMP formation in the cytosol and plasma membrane, activates cytosolic and nuclear 

ERK, and activates PKC only in the cytosol. These signals were maintained in the continued 

presence of CGRP, suggesting sustained CLR activation. The observation that inhibitors of 

endocytosis prevent activation of cytosolic PKC and nuclear ERK suggest that these signals arise 

from persistent endosomal CLR signaling. In contrast, endocytic inhibitors did not affect CGRP-

induced activation of cytosolic ERK, which likely originates from cell-surface CLR (Fig. S8). 

Cytosolic PKC activation depends on Gaq and is independent of Ca2+ mobilization. In contrast, 

nuclear ERK activation requires activation of Gas. Thus, both Gaq and Gas mediate CLR 

signaling from endosomes (Fig. S8). These findings support reports that Gaq and Gas mediate 

endosomal signaling of other GPCRs (2, 5, 12, 18). 

Protease-activated receptor-2 (4), NK1R (3, 12), β2-adrenergic receptor (5), parathyroid 

receptor-1 (2), PAC1 receptor (7), dopamine D1 receptor (19), and receptors for glucagon-like 
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peptide 1 (20), luteinizing hormone (21), and thyroid stimulating hormone (18) can signal from 

endosomes. Evidence of endosomal signaling derives from studies of model cells treated with 

inhibitors of endocytosis. These approaches provide mechanistic information but offer limited 

insight into the contribution of endosomal GPCR signaling for control of complex processes in 

intact tissues or animals. The observation that inhibitors of dynamin, ERK and PKC suppress 

CGRP-induced excitation of spinal neurons suggests that endosomal CLR signaling is necessary 

for nociceptive transmission. Inhibitors of endocytosis also inhibit SP-induced excitation of 

spinal neurons and PACAP-induced excitability of cardiac neurons, and can suppress 

nociception (7, 12). Thus, endocytosis of several GPCRs may be required for their actions on 

neuronal function.  

We used cholestanol-conjugated probes, which accumulated in early endosomes 

containing CLR, to specifically evaluate the function of CLR in endosomes. After transient 

incubation and recovery, CGRP8-37-Chol prevented CGRP-induced activation of nuclear ERK, 

which originates from endosomal CLR, but did not affect activation of cytosolic ERK, which 

derives from CLR at the plasma membrane, or inhibit CLR endocytosis. Thus, CGRP8-37-Chol 

selectively inhibits endosomal CLR signaling. CGRP8-37-Chol inhibited CGRP-evoked excitation 

of spinal neurons, whereas unconjugated, membrane-impermeant CGRP8-37 was inactive. After 

intrathecal injection, CGRP8-37-Chol inhibited and reversed nociception more efficaciously than 

unconjugated antagonist. The capacity of CGRP8-37-Chol to specifically antagonize endosomal 

CLR signaling and sustained excitation of spinal neurons, and to cause prolonged 

antinociception, reveals the importance of endosomal signaling for nociception, and illustrates 

the therapeutic utility of endosomally-directed drugs. Combined lipidated CLR and NK1R 

antagonists could be especially effective antinociceptive drugs. The results also support a role for 

CGRP, released from the central projections of peptidergic nociceptors, and CLR/RAMP1 on 

second order spinal neurons in mechanical nociception (10). 
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There are several limitations to our study. We investigated CLR signaling in HEK293 

cells. It will be necessary to determine whether CLR trafficking also regulates signaling in spinal 

neurons. The findings that inhibitors of dynamin and endosomal CGRP signaling (CGRP8-37-

Chol, MEK, PKC inhibitors) attenuate CGRP-induced excitation of neurons in spinal cord slices 

suggests that this is the case. However, the effects of endocytosis inhibitors on neuronal 

excitation require cautious interpretation because clathrin and dynamin mediate trafficking of 

many receptors and ion channels that regulate excitation of neurons (22, 23). Although we did 

not investigate the mechanisms by which endosomal CLR causes sustained excitation of spinal 

neurons, PKC and ERK may regulate the activity of ion channels and the transcription of genes 

that control excitation (12). PKC can also mediate CLR desensitization (24). 

Our findings may be relevant to the development of CLR antagonists for the treatment of 

migraine (10). The vasodilator actions of CGRP are likely mediated by an adenylyl cyclase, 

cAMP and PKA pathway that operates at the plasma membrane to activate ATP-sensitive K+ 

channels that lead to relaxation. Inhibiting this pathway could compromise blood supply to other 

organs, such as the heart. The specific targeting of endosomal signaling may provide a novel 

strategy to limit this side effect. Whether the efficacy of small molecule CLR antagonists 

depends on their capacity to antagonize endosomal CLR signaling is unknown. GPCRs are the 

largest class of signaling proteins, control many pathophysiological processes, and are the target 

of thirty percent of therapeutic drugs. Thus, our findings that GPCRs signal from endosomes in 

vivo and are targets for therapy may have far reaching consequences. 

 

MATERIALS AND METHODS  

SI provides detailed Materials and Methods. 

cDNAs. CLR, RAMP1, bARR2, DynK44E, Dyn-WT, BRET and FRET cDNAs have been 

described (11-13).  
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Tripartite probes. Tripartite probes were synthesized on solid-phase (12). 

Cell culture, transfection. HEK cells were transiently transfected and studied after 24-48 h. 

FRET. Single cell FRET was measured by high content imaging (12, 13, 16). Population-based 

FRET was measured using a PHERAstar plate reader (BMG LabTech).  

BRET. BRET was measured as described (12, 13). 

Inhibitors. Cells were incubated with 30 µM Dy4a, Dy4a inactive, PS2, PS2 inactive, 10 µM 

NF449, 10 µM NF023, 100 nM UBO-QIC, 1 µM U73122, 100 µM EGTA, or vehicle (control)  

(30 min preincubation, inclusion throughout). Cells were preincubated with CGRP8-37, CGRP8-37-

Chol, PEG-Biotin-Chol (30 nM-10 µM) or vehicle, washed, and challenged with CGRP (1 µM) 

at 0 or 4 h after washing. 

Cell-surface ELISA. Cell-surface CLR and RAMP1 were quantified by ELISA using HA or 

myc antibodies (12). 

Cy5-Chol and CLR internalization. Cells were incubated with Cy5 probes (200 nM, 60 min, 

37°C), washed, and incubated with Alexa Fluor® 488-labeled anti-HA monoclonal antibody (40 

min, room temperature). Live cells were imaged by confocal microscopy. Cells were stimulated 

with CGRP (50 nM) 3 h after probe addition. Cy5-Chol and HA-CLR-IR colocalization was 

assessed (25). 

Animals. Institutional Animal Care and Use Committees approved all studies. Rats (Sprague-

Dawley, males, 3-8 weeks) and mice (C57BL/6, males, 6-10 weeks) were studied.  

Electrophysiology. Parasagittal slices were prepared from rat lumbar spinal cord. Spontaneous 

currents were recorded from lamina I neurons by cell-attached patch electrodes (26). Slices were 

preincubated with Dy4a or Dy4a inact (30 µM, 10 min), or with CGRP8-37-Chol or CGRP8-37 (1 

μM, 60 min; tissue was washed, and incubated in antagonist-free medium for 60 min before 

recording). Slices were challenged with CGRP (1 µM, 2 min) and then SP (1 µM, 2 min). The 

firing rate for each cell was normalized to the response between 2-4 min, which was not 
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significantly different between groups. The firing time was determined as the duration of the 

response to last action potential.  

CLR localization. Spinal cord slices were incubated with CGRP (1 µM, 5 min) and processed to 

localize CLR-IR (27). The plasma membrane/cytosolic pixel intensity ratio was determined to 

assess CLR-IR endocytosis (12).  

Nociception. Nociception was studied in mice (12). Capsaicin (5 µg), CFA (2 mg.ml-1), or 

vehicle was injected subcutaneously into the plantar surface of the left hindpaw (10 µl). von Frey 

scores were measured for 1-4 h post-capsaicin, and 36-40 h post-CFA. Formalin (4%, 10 µl) was 

injected subcutaneously into the plantar surface of the left hindpaw. Nocifensive behavior was 

recorded for 60 min. CGRP8-37 (10 µM), CGRP8-37-Chol (10 µM), Span (50 µM) or Span-Chol 

(50 µM) was injected intrathecally (5 µl, L3/L4) 3 h before injection of capsaicin or formalin, or 

36 h after CFA. Investigators were blinded to test agents. 

Spinal neuron culture. Superficial (lamina I-III) dorsal horn neurons from 1-2 day old neonatal 

rats were cultured for 6-8 d before [Ca2+]i assays (28).  

Statistics. Results are mean±SEM. Differences were assessed using Student's t test (two 

comparisons) or one- or two-way ANOVA and Dunnett’s (BRET, nociception), Tukey’s (FRET), 

Sidak’s (average firing rate of spinal neurons), or Dunn’s (duration of firing response of spinal 

neurons) tests (multiple comparisons). 
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FIGURE LEGENDS 

Fig. 1. CLR endocytosis. A-D. BRET assays of CLR-RLuc8 and bARR2-YFP (A), Rab5a-

Venus and KRas-Venus (B, D), and Rab11-Venus (C) proximity in HEK cells. D. CLR-RLuc8 

and Rab5a-Venus or KRas-Venus BRET (100 nM CGRP, 15 min).  E. Cell-surface HA-CLR 

ELISA in HEK cells (100 nM CGRP, 15 min). N=3 experiments. F. Confocal images of HA-

CLR-IR and EEA1-IR in HEK cells. DynK44E, dominant negative dynamin; Dy4a, dynamin 

inhibitor; PS2, clathrin inhibitor; inact, inactive analog. N=3-6 experiments, *P<0.05, **P<0.01, 

***P<0.005, ****P<0.0001 to basal or control. ANOVA, Sidak’s test. 

Fig. 2. CLR compartmentalized signaling. FRET assays of CGRP-induced activation of 

cytosolic PKC (cytoCKAR, A, B, G), cytosolic ERK (cytoEKAR, C, D), and nuclear ERK 

(nucEKAR, E, F, H) in individual HEK-HA-CLR/myc-RAMP1 cells. A, C, E: kinetics; B, D, F, 

G, H: area under curve (AUC). Cells were treated with inhibitors of dynamin (DynK44E, Dy4a), 

bARR siRNA, Gas (NF449), Gai (NF023), Gaq (UBO-QIC), phospholipase Cb (U73122), or 

with a Ca2+ chelator (EGTA). n=29-453 cells, N=3 experiments. **P<0.01, ***P<0.001 to 

vehicle; ÙÙÙP<0.001 to CGRP control. ANOVA, Tukey’s test. 
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Fig. 3. Tripartite probes. A. Probe structure. B-D. Confocal images of live HEK cells. B, C. 

HEK-HA-CLR/myc-RAMP1 cells were incubated with Cy5-Chol (B) or Cy5-Ethyl Ester (C). 

CLR was labeled with HA-Alexa488 antibody. Cells were stimulated with CGRP (50 nM, 30 or 

60 min) to induce endocytosis. Insets (white boxes) show magnified regions and co-localization 

(arrows). Traces (left) show relative overlap of pixel intensities for HA-CLR and Cy5-Chol 

along dashed lines. D. Untransfected HEK cells incubated with Cy5-Chol. E. Overlap coefficient 

for HA-CLR and Cy5-Chol or Cy5-Ethyl Ester. n=6-14 cells, N= 4 experiments. **P<0.01 to 0 

min. ANOVA, Dunnett’s test. 

Fig. 4. Tripartite antagonism of CLR. ERK activity was assessed in individual HEK-HA-

CLR/myc-RAMP1 cells expressing FRET biosensors for cytosolic ERK (cytoEKAR, A, C, E) or 

nuclear (nucEKAR, B, D, F) ERK. Cells were preincubated with vehicle, CGRP8-17, or CGRP8-

37-Chol for 30 min and washed. CGRP-stimulated ERK activity was assessed immediately after 

washing (A, B, 30 min preincubation) or 4 h after washing (C, D, 4 h pre-pulse). A-D: kinetics. 

E, F: area under curve (AUC). G, H. Effects of graded concentrations of CGRP8-37-Chol on 

cytosolic (G) and nuclear (H) ERK signaling in populations of HEK-HA-CLR/myc-RAMP1 

cells. A-F, n=159-417 cells, N=3 experiments; G-H, N=4-9 experiments. ***P<0.001 to vehicle; 

ÙÙÙP<0.001 to antagonist vehicle control. ANOVA, Tukey’s test. 

Fig. 5. CLR endocytosis and excitation of spinal neurons. A-F. CGRP-induced activation of 

lamina I neurons in rat spinal cord slices. Dy4a, dynamin inhibitor; GF109203X, PKC inhibitor; 

U0126, MEK inhibitor. A, D. Representative traces. B, E. Firing rate normalized to 2 min. C, F. 

Firing duration to last action potential. n=5-8 neurons per group, N=19 rats. *P<0.05, 

***P<0.001. ANOVA, Sidak’s multiple comparisons test (firing rate), or Dunn’s multiple 

comparisons test (firing time). G. Confocal images of CLR-IR. Arrow: endosomes. Arrow head: 

plasma membrane. H. Quantification of CLR endocytosis. n=6-8 neurons per group, N=3 rats. 

*P<0.05, ***P<0.001. ANOVA, Tukey’s test. 
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Fig. 6. Tripartite antagonism of CGRP-induced excitation of spinal neurons. Spinal cord 

slices were incubated with vehicle (Veh), CGRP8-37 or CGRP8-37-Chol for 60 min, washed, and 

challenged with CGRP 60 min later. A. Representative traces. B. Firing rate normalized to 2 min. 

C. Firing duration to last action potential. n=5-7 neurons per group, N=21 rats. *P<0.05, 

**P<0.01. ANOVA, Sidak’s test (firing rate), or Dunn’s test (firing time). 

Fig. 7. Tripartite antagonism of nociception. Antagonists were injected intrathecally 3 h 

before intraplantar injection of capsaicin (Cap, A, B) or formalin (Form, C, D) or 36 h after CFA 

(E, F). von Frey withdrawal responses to stimulation of the planar surface of the injected paws 

(A, E, F) or non-injected paws (B) and nocifensive behavior (C, D) were assessed. (N).  *P<0.05, 

**P<0.01, ***P<0.001 to basal or vehicle control. ANOVA, Dunnett’s test. 


