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Abstract 19 

Bovine paratuberculosis is a chronic infectious disease of cattle caused by 20 

Mycobacterium avium subspecies paratuberculosis (MAP). This is the first in a two-part 21 

review of the epidemiology and control of paratuberculosis in dairy herds. Paratuberculosis 22 

was originally described in 1895 and is now considered endemic among farmed cattle 23 

worldwide. MAP has been isolated from a wide range of non-ruminant wildlife as well as 24 

humans and non-human primates. In dairy herds, MAP is assumed to be introduced 25 

predominantly through the purchase of infected stock with additional factors modulating the 26 

risk of persistence or fade-out once an infected animal is introduced. Faecal shedding may 27 

vary widely between individuals and recent modelling work has shed some light on the role 28 

of super-shedding animals in the transmission of MAP within herds. Recent experimental 29 

work has revisited many of the assumptions around age susceptibility, faecal shedding in 30 

calves and calf-to-calf transmission. Further efforts to elucidate the relative contributions of 31 

different transmission routes to the dissemination of infection in endemic herds will aid in the 32 

prioritisation of efforts for control on farm.   33 

 34 
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Introduction 36 

Bovine paratuberculosis is a chronic infectious disease, first diagnosed in the 37 

Oldenburg region of Germany in 1895 (Johne and Frothingham, 1895). The condition was 38 

initially believed to be caused by Mycobacterium avium, and the authors named the condition 39 

pseudotuberculous enteritis. For the next 25 years, the condition was reported across Europe 40 

(Lienaux and vand den Eeckhout, 1906; McFadyean, 1906) and the United States (Pearson, 41 

1908); the aetiological agent Mycobacterium avium subspecies paratuberculosis (MAP) was 42 

identified (Holth, H. 1912; Twort and Ingram, 1912); and the term Johne’s disease (JD) was 43 

introduced (McFadyean, 1906). Over the next 100 years, JD was increasingly recognised 44 

globally. The disease is primarily associated with domestic ruminants, however, MAP has 45 

also been isolated from a wide range of non-ruminant wildlife including rabbits, foxes, stoats 46 

and weasels (Greig et al., 1997; Beard et al., 2001). Of particular interest has been the 47 

isolation of the bacterium from humans (Chiodini et al., 1984) and non-human primates 48 

(McClure et al., 1987).  49 

 50 

MAP is a Gram-positive obligate intracellular pathogen which is dependent on 51 

mycobactin, and therefore incapable of environmental replication (Lambrecht and Collins, 52 

1992). MAP’s ability to infect through indirect contact is facilitated by a prolonged survival 53 

time. Whittington et al. (2004) noted survival times of up to 55 weeks in a shaded, outdoor 54 

area in Australia. Of importance regarding pasture-based systems, is that the bacterium was 55 

more likely to be isolated from grass than leachates after application to soil (Salgado et al., 56 

2011).  57 

 58 

International studies have demonstrated limited strain diversity (Stevenson et al., 59 

2009; Ahlstrom et al., 2016). Phylogenetic analyses have uncovered a biphasic evolution of 60 



MAP strains from a Mycobacterium avium subspecies hominissuis ancestor: an initial 61 

insertion event followed by several deletion events that define the species and two 62 

phylogenetic lineages (Turenne et al., 2008; Alexander et al., 2009). Cattle (Type-C) and 63 

Sheep (Type-S) are named after the species they were first isolated and characterised from 64 

and represent two major groups of strains (Collins et al., 1990). Within these groups, 65 

genotyping methods have identified three major substrains: Type-C is synonymous with Type 66 

II strains, with Type-S consisting of Type I and Type III strains (Stevenson, 2015).  67 

 68 

The pathogenesis of MAP infection has been reviewed recently (Arsenault et al., 69 

2014). Early studies suggested the tonsillar crypts as the primary route of infection (Payne 70 

and Rankin, 1961). Later, the small intestine was proposed as the primary portal of entry 71 

(Momotani et al., 1988; Sweeney et al., 2006). The site of entry may influence whether 72 

infection is cleared or persists in the host (Arsenault et al., 2014). MAP invades sub-epithelial 73 

macrophages and persists in phagosomes by interfering with the formation of 74 

phagolysosomes (Coussens, 2001). Persistence and proliferation within macrophages are 75 

assisted by interference of interferon-gamma (IFN-γ) (Arsenault et al., 2014) and up 76 

regulation of interleukin-10 (IL-10) (de Almeida et al., 2008). The later development of a T-77 

helper cell type 2 (Th-2) response, which is generally assumed to be non-protective, is poorly 78 

understood (Mortier et al., 2015). However, the presence of extracellular MAP may be a key 79 

factor in the development of this response (Magombedze et al., 2014). The disease state 80 

matures from preclinical stages to a period of increased bacterial shedding and the 81 

development of overt clinical signs (Stabel, 2000).  82 

 83 

The term ‘iceberg phenomenon’ has been used in the context of paratuberculosis. A 84 

value of 25 subclinical infections for every single clinical animal born in the herd has been 85 



used as an estimate based on anecdotal observations (Whitlock and Buergelt, 1996). A recent 86 

analysis suggested that although the qualitative assumption is likely to hold true, the number 87 

of animals in the ‘invisible’ stages of infection is likely to be somewhat less than this figure 88 

(Magombedze et al., 2013). 89 

 90 

The consequences of infection on animal and herd-level performance have been 91 

widely studied (Garcia and Shalloo, 2015). A reduction in milk yield associated with 92 

infection status has been the most consistent finding. A meta-analysis found that the 93 

reduction in milk yield associated with faecal culture or PCR positivity was approximately 2 94 

kg of milk/cow/day, or almost 6% (McAloon et al., 2016c). The findings from studies 95 

investigating the effect of infection on fertility have been less consistent with several studies 96 

documenting improved fertility performance associated with test positivity (Lombard et al., 97 

2005; Gonda et al., 2007; Marcé et al., 2009; Berry et al., 2010; Smith et al., 2010). However, 98 

many of these studies suffer from difficulties in quantifying reproductive performance in 99 

large numbers of animals and may be hindered by interval-based measurements of fertility 100 

performance which are not ideal for conditions where animals are often culled from the 101 

population. An increased susceptibility to other diseases has been traditionally attributed to 102 

MAP infection; however, apart from a recent article demonstrating an increased incidence of 103 

clinical mastitis in infected cows (Rossi et al., 2017), there has been little evidence to support 104 

this claim. An earlier study demonstrated an association between the development of 105 

displaced abomasum (DA) and milk fever according to shedding levels (Raizman et al., 106 

2007). However, this analysis was conducted with low numbers of animals in each group, 107 

five and two for DA and milk fever, respectively.  108 

 109 



Perhaps the most significant concern in relation to the importance of paratuberculosis 110 

as a disease of dairy cattle is its potential link with Crohn’s disease in humans. In a meta-111 

analysis, the odds of a PCR-positive test result in tissues from Crohn’s disease patients was 112 

seven times that of individuals free from inflammatory bowel disease (Feller et al., 2007). A 113 

more recent meta-analysis found a 4.3–8.4 odds of MAP detection through a variety of 114 

laboratory methods (Waddell et al., 2015). However, epidemiological evidence for increased 115 

risk of Crohn’s disease with increased exposure through likely transmission routes is weak 116 

and definitive proof of causation remains unavailable (Waddell et al., 2016). Others have 117 

concluded that available evidence supports the theory that MAP may cause Crohn’s disease 118 

in some genetically susceptible human patients (Kuenstner et al., 2017). Based on application 119 

of the precautionary principle (Weir et al., 2010), and with the knowledge that many food 120 

health ‘scares’ may not be evidence-driven, reduced exposure of consumers to MAP in 121 

animal produce is advocated, not only for the protection of public health, but also for the 122 

protection of the dairy industry. Consumer exposure is reduced through pasteurisation. 123 

However, it is now well established that commercial pasteurisation does not necessarily 124 

eliminate MAP from milk (Grant et al., 2002a; Grant et al., 2002b), nor does combined 125 

pasteurisation and desiccation that occurs in the preparation of infant formula for example 126 

(Botsaris et al., 2016). Therefore, control must also include reduction of the levels of MAP 127 

supplied from dairy farms (Kuenstner et al., 2017). Several challenges exist in the study of 128 

farm level control of paratuberculosis and in the implementation of control options and 129 

recommendations. The aim of this manuscript is to review the transmission and control of 130 

paratuberculosis in dairy herds. 131 

 132 

Between-herd transmission 133 



 Introduction of MAP to herds most often occurs following the introduction of new 134 

stock into the herd. A recent systematic review reported a positive association between 135 

animal introductions and herd positivity in 6/14 studies identified (Rangel et al., 2015). In 136 

studies published subsequent to this, 3/6 have demonstrated a positive association between 137 

animal introductions (Künzler et al., 2014; Wolf et al., 2016; Puerto-Parada et al., 2018) and 138 

three have not found an effect (Vilar et al., 2015; Donat et al., 2016; McAloon et al., 2017a). 139 

Modelling studies have demonstrated that several factors other than animal purchase 140 

modulate the risk of persistence or fade-out of infections once an infected animal has been 141 

introduced. In one model, fade-out was predicted following the introduction of a single 142 

infected animal in 66% of the iterations (Marcé et al., 2011).  143 

 144 

Herd size has been identified as a risk factor for herd positivity (Vilar et al., 2015; 145 

Donat et al., 2016; McAloon et al., 2017a). This finding is not unique to paratuberculosis and 146 

is of interest given that increasing herd size is a trend in dairy production globally (Barkema 147 

et al., 2015). The reasons for this observation are not clear. In some instances, larger herds 148 

may have been amalgamated from smaller herds, and therefore the effect of herd size on 149 

MAP prevalence is confounded by purchasing behaviour. Larger herd sizes may also 150 

facilitate more effective contacts between individuals and may have associated management 151 

practices which facilitate establishment of infection once MAP has been introduced. Another 152 

explanation in serological studies, could be related to the imperfect specificity of the 153 

diagnostic test. Cut-point number of reactors are used to try to account for imperfect 154 

specificity (e.g. defining the herd as positive based on two reactors rather than one). 155 

However, as herd size increases, the probability of observing two or more false positive 156 

reactors increases, irrespective of the infection status of the herd. 157 

 158 



Within-herd transmission 159 

Studying the transmission of MAP within infected farms is hindered by the 160 

considerable difficulty in conducting field studies of natural transmission. Paratuberculosis is 161 

characterised by a prolonged latency and poor sensitivity of currently available diagnostic 162 

tests (Nielsen and Toft, 2008), caused by the biology of MAP infection. Many findings are 163 

extrapolated to the field from experimental infection studies, which may not be representative 164 

of the conditions on a commercial farm. An alternative, more economical method for 165 

studying paratuberculosis transmission has been the use of mathematical infectious disease 166 

models. However, such models differ according to the modelling approach used, the 167 

assumptions made, and the degree of simplification of biological processes relevant to 168 

transmission (Marcé et al., 2010). An example of the disparity between these models and the 169 

‘real-life’ situation is that the predicted within-herd prevalence in MAP-infected herds may 170 

be higher than the observations made from the field. For example, using a French model, it 171 

was estimated that 15 years following the introduction of infection into a 140-cow dairy herd, 172 

and in the absence of on-farm MAP control, approximately 214 (95% Confidence Interval, 173 

28-274) animals out of 278 animals (including youngstock) would be infected (including 174 

infected, infectious and affected animals) (More et al., 2015), whereas estimated mean 175 

within-herd true prevalence from prevalence studies is generally less than 15% (Verdugo et 176 

al., 2015; McAloon et al., 2016b). It should, however, be pointed out that these estimates are 177 

from a Bayesian latent class analysis which are in themselves problematic when applied to 178 

paratuberculosis (McAloon et al., 2019). 179 

 180 

Infection susceptibility 181 

An age-dependent susceptibility to paratuberculosis has been long established and 182 

forms the basis of on-farm control programmes. A meta-analysis concluded that there was a 183 



considerable difference in age susceptibility to infection between adults and calves less than 6 184 

months of age and between adults and calves aged between 6-12 months of age (Windsor and 185 

Whittington, 2010). In a recent experimental infection study calves could be infected with 186 

both high and low doses of MAP up to 12 months of age (Mortier et al., 2013). However, the 187 

low dose used in this study, 5 x 107 given over two consecutive days, was higher than the 188 

minimal doses of 1.5 x 106 used in other studies, (Sweeney et al., 2006). Nevertheless, this 189 

observation could have considerable consequences for control programmes: a recent French 190 

modelling study reported that the rate of decay in susceptibility with age had a dramatic 191 

effect on within-herd transmission (Ben Romdhane et al., 2017). 192 

 193 

Interest in the role of genetics in disease resistance in cattle has developed recently 194 

(Berry et al., 2011). Several different loci are likely involved in resistance to MAP, however 195 

findings between studies are often inconsistent. A meta-analysis reported eleven loci on nine 196 

different chromosomes associated with MAP infection (Minozzi et al., 2012). However, out 197 

of eight recently published studies investigating genetic susceptibility, only three quantitative 198 

trait loci were consistently found in more than one study (Kiser et al., 2017). Response to 199 

disease in general is influenced by the ability to accurately classify phenotypic traits in the 200 

population (Bishop and Woolliams, 2014). For MAP infection, phenotypes have been defined 201 

according to antibody response in either milk or serum; faecal detection using either PCR or 202 

culture; or demonstration of the organism in tissues. This variation in phenotypes has been 203 

shown to have an important impact on the outcome of genome-wide association studies 204 

(Küpper et al., 2014).  205 

 206 

Early studies demonstrated heritability estimates of less than 0.10 (Koets et al., 2000), 207 

whereas more recent studies have found higher heritability estimates of up to 0.28 (Küpper et 208 



al., 2012). Simulation models using these estimates have determined that the effect of 209 

selection is likely to be small. A Dutch simulation demonstrated that dam selection in 210 

isolation was likely to take over 379 years to eliminate infection. The effect with sire 211 

selection was greater, but still took more than 147 years (van Hulzen et al., 2014).  212 

 213 

An increased susceptibility has been shown in Channel Island breeds of cattle 214 

(Cetinkaya et al., 1997; Jakobsen et al., 2000; Sorge et al., 2011). However, such findings 215 

should be interpreted with some caution as in many cases there is potential for breed to be 216 

confounded by herd. 217 

 218 

Infectious dose  219 

Infection with MAP primarily occurs via the faecal-oral route. Doses used in 220 

experimental studies have not been consistent (Begg and Whittington, 2008), and may be 221 

inflated to reliably cause infection. Inoculation with 103 colony forming units (cfu) was 222 

enough to cause infection in sheep (Brotherston et al., 1961), whereas higher doses of greater 223 

than 108 have been used in calf studies (Gilmour et al., 1965). A US study demonstrated that 224 

a dose of 1.5 x 106 was enough to reliably establish infection, whereas 2 x 105 was not 225 

(Sweeney et al., 2006). Recently, an inoculation of 5 x 107 given over two consecutive days 226 

was used as the low dose in a Canadian study and was successful in establishing infection 227 

(Mortier et al., 2013). 228 

 229 

MAP-shedding & exposure 230 

Faecal shedding levels in MAP-positive cows vary widely (Crossley et al., 2005). 231 

MAP culture is commonly conducted using 1-3 g aliquots of faeces in Herrold egg yolk 232 

medium (HEYM) culture tubes. Interestingly, it has been shown that if multiple tubes are 233 



cultured from a single sample, a considerable proportion (24%) may only have colonies 234 

present in one tube, demonstrating considerable within sample variation (Crossley et al. 235 

2005). This is important given that most animals are low shedders. For example, a US study 236 

found that 71% of cows were low shedders (<10 cfu/tube, i.e. <5 cfu/g), 10% were medium 237 

(10-50 cfu/tube) with 19% classified as high shedders (>50 cfu/tube) (Whitlock, 2000).  238 

 239 

The shedding distribution of faecal-orally transmitted organisms is often positively 240 

skewed (Chen et al., 2013), and recently there has been increasing interest in the role of 241 

super-shedders. Super-shedding animals were originally defined as those animals shedding 242 

more than 107 cfu MAP/g faeces (Whitlock, 2005). The overall cow-level prevalence of 243 

super-shedders in a 3577-cow Californian dairy herd was 0.5% but accounted for 10% of 244 

PCR-positive cows and 14% of ELISA-positive cows (Aly et al., 2012). Modelling work 245 

conducted at Cornell University demonstrated that super-shedders are not necessarily ‘super-246 

spreaders’ (Slater et al., 2016). This work demonstrated that the association between 247 

shedding levels and infectiousness is not linear; in fact, a 1000-fold increase in bacterial 248 

shedding results in only a 2-3 fold increase in infectiousness (Slater et al., 2016). However, 249 

other research groups have found that the level of MAP shedding from individual animals is 250 

one of the most important control phenotypic traits that can impact on the spread of infection 251 

(Ben Romdhane et al., 2017). In addition, field and research observations do support clusters 252 

of infection occurring in time and space (Zare et al., 2013). It is possible that many of these 253 

clusters are caused by the presence of a super-shedder at that time point. 254 

 255 

Work has been conducted evaluating the longitudinal pattern of faecal shedding. Two 256 

distinct shedding patterns among infected cows have been observed; so-called ‘progressors’, 257 

characterised by continuous and progressive shedders, and ‘non-progressors’, characterised 258 



by intermittent and low shedding of MAP bacteria and a virtual absence of a humoral 259 

immune response (Schukken et al., 2015). In naturally infected animals, less than 10% of 260 

cows became high shedders (>100 cfu/g), of which more than 95% were culled or died within 261 

12 months of sampling (Mitchel et al., 2015). Furthermore, in the same study, naturally 262 

infected animals generally only shifted from non-shedding to shedding states once, whereas 263 

experimentally infected animals often shifted state up to ten times, suggesting that only a 264 

small subset of animals follow the ‘expected’ pathway from non-shedding to low-shedding to 265 

higher shedding, with the majority of naturally infected animals being predominantly low and 266 

intermittent shedders (Mitchell et al., 2015). 267 

 268 

Observational studies are hindered by difficulty in identifying and quantifying faecal 269 

exposure on commercial farms. For example, in a systematic review of transmission routes, 270 

contact between calves and adults was highlighted as the most important factor influencing 271 

transmission; however, this finding was only observed in 5/14 studies that investigated this 272 

factor (Doré et al., 2011). Since then, a number of studies have demonstrated associations 273 

between herd positivity and indicators of hygiene or cleanliness (Künzler et al., 2014; Donat 274 

et al., 2016; Wolf et al., 2016; McAloon et al., 2017a) or issues around calving management 275 

such as individual use (Pithua et al., 2013), segregated calving for positive animals (Donat et 276 

al., 2016), use of the calving pen to house sick animals (McAloon et al., 2017a) and not using 277 

calving pens (Vilar et al., 2015).    278 

 279 

Early investigations found that MAP was shed in low numbers (2-4/50 mL milk) in 280 

colostrum and milk from both clinically and subclinically infected animals (Sweeney et al., 281 

1992; Streeter et al., 1995). More recently, MAP shedding to the order of 250 cfu/mL 282 

colostrum was found in clinical animals, with lower levels (24 cfu/mL) in subclinical 283 



animals. The same study reported that the level shed in milk was also influenced by the stage 284 

of lactation, with the highest levels present in the first 60 days-in-milk and negligible 285 

shedding in mid and late lactation (Stabel et al., 2014). In another longitudinal study, only a 286 

small proportion of subclinically infected cows were found to shed MAP in milk (Khol et al., 287 

2013). On a commercial farm, colostrum is frequently contaminated with faecal material 288 

(McAloon et al., 2016a). Consequently, much of the MAP present in colostrum and milk is 289 

thought to occur through environmental contamination rather than direct shedding. For 290 

example, in an endemically infected herd, 80% of PCR-positive colostrum had a source other 291 

than the dam (Pithua et al., 2011), and more recently, an association between poor udder 292 

hygiene and MAP positivity in milk has been demonstrated (Beaver et al., 2017). 293 

 294 

Observational studies have not consistently pointed to an important role of colostrum 295 

in the transmission of MAP. In a Danish study, calves fed colostrum from multiple sources 296 

were 1.2 times more likely to be positive than those fed dam-only colostrum (Nielsen et al., 297 

2008). Similarly, Irish herds where calves were fed non-dam colostrum were 2.1 times more 298 

likely of having 2 or more reactors as those where calves were fed dam-only colostrum 299 

(McAloon et al., 2017a). However, in a longitudinal study, calves fed PCR-positive 300 

colostrum were not at a significantly greater risk of testing positive as adults compared to 301 

those fed PCR-negative colostrum (Pithua et al., 2011). Similarly, although colostrum 302 

pasteurisation reduced the incidence of MAP-infection in calves as detected by interferon 303 

gamma (Stabel et al., 2008), in the long-term, risk of infection for this cohort as adults was 304 

not different (Godden et al., 2015). Based on qualitative interviews, it has been recently 305 

suggested that farmers may overemphasise the role of colostrum and milk in the transmission 306 

of paratuberculosis indicating that the message of MAP being predominantly faecal-orally 307 

transmitted should be strengthened (McAloon et al. 2017b). 308 



In utero transmission 309 

A meta-analysis found that up to 9% of calves born to subclinically infected animals 310 

and 39% of calves born to dams with clinical JD may be infected in utero (Whittington and 311 

Windsor, 2009). However, field reports of the importance of in utero transmission are 312 

conflicting. Whereas earlier studies reported that calves born to seropositive dams were 6.6 313 

times more likely to be positive than those born to seronegative dams (Aly and Thurmond, 314 

2005), more recently, the shedding status of the dam was found to have no effect on the 2-315 

year old shedding status of the calf when reared in an endemic environment (Eisenberg et al. 316 

2015). The within-herd apparent prevalence of these eight farms ranged from 0-16%. It is 317 

therefore possible that in high prevalence herds, the relative contribution of vertical 318 

transmission to horizontal transmission may be reduced. Furthermore, heifers were only 2 319 

years old at testing in this trial. 320 

 321 

Calf-to-calf transmission 322 

Over the last few years, important work has been carried out examining calf-to-calf 323 

transmission. A Canadian study has demonstrated that calves that were orally inoculated with 324 

MAP were able to infect their penmates (Corbett et al., 2017). The basic reproductive ratio 325 

(R0) of MAP transmission among group-housed dairy calves was estimated at 0.9 - 3.2 326 

depending on the infection definition and modelling method used (Corbett, 2018). This 327 

finding was in line with earlier work demonstrating an R0 of 0.1-3.2 for calf to calf 328 

transmission (van Roermund et al., 2007). Internationally, control programmes have 329 

recognised the potential risk of calf-to-calf transmission. Risk Assessment and Management 330 

Plans (RAMP) which form the basis of many of these control programmes often contain a 331 

question on the housing of dairy calves with lowest risk attributed to individually housed 332 

calves. The potential benefits in disease transmission are not unique to paratuberculosis and 333 



are likely to be of particular benefit in the control of infectious diarrhoea for example. 334 

However, the individual housing of calves is problematic. A growing body of research has 335 

shown beneficial effects of group and pair housing of calves in terms of improved starter 336 

intake, weight gain, cognitive ability and reduced fear responses (De Paula Viera et al., 2012; 337 

Gaillard et al., 2014; Costa et al., 2015). Furthermore, EU Council Directive 2008/119/EC1 338 

recommends that calves are reared in groups and dictates as a minimum that a calf must have 339 

visual and tactile contact with another calf. Further work to determine the attributable 340 

fractions of calf-to-calf transmission is required; however, in the meantime, the role of early 341 

shedding in calves and the potential for calf-to-calf transmission must be considered when 342 

implementing controls on specific farms.  343 

 344 

Other transmission routes 345 

Environmental dust samples have been confirmed to contain viable MAP (Eisenberg 346 

et al., 2010) raising the possibility of a ‘spore-forming’ ability (Lamont et al., 2012). Corner 347 

et al. (2004) argued that the respiratory tract could be a potential infection route in cattle and 348 

the potential of intestinal infection in calves following aerosol administration to the 349 

respiratory tract has been confirmed in experimental studies (Eisenberg et al., 2011). Later 350 

work found that the presence of MAP-positive dust samples increased as within-herd 351 

prevalence increases (Eisenberg et al., 2013). 352 

 353 

MAP has also been isolated from the semen of infected bulls (Larsen et al., 1981; 354 

Khol et al., 2010) and saliva of infected cows (Sorge et al., 2013), although these are not 355 

believed to be important transmission routes. 356 

 357 

                                                 
1 European Union Council Directive 2008/119/EC. 2008. Laying down minimum standards for the protection of 

calves. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32008L0119&from=EN (Accessed 

4 July 2018) 



Cross-species transmission 358 

The importance of cross-species transmission from sheep to cattle is unclear. In a 359 

prospective Australian study, only two occurrences of sheep to cattle transmission occurred 360 

in 1774 calves reared on farms with histories of ovine JD (Moloney and Whittington, 2008). 361 

However, recent advances in molecular epidemiology have demonstrated greater evidence for 362 

sheep to cattle transmission. Type I strains were more commonly isolated from New Zealand 363 

beef cattle than Type II strains, consistent with transmission between sheep and cattle 364 

(Verdugo et al., 2014). 365 

 366 

The role of wildlife has also gained interest recently. A recent review found that 367 

although MAP has been isolated from a variety of domestic and wild animals, only five are 368 

considered potential reservoirs, four of which are species of deer (Carta et al., 2013). In 369 

Scotland, several studies have shown that rabbits may act as reservoirs of infection. Mean 370 

faecal shedding from infected rabbits was found to be 7.6 x 105 cfu/g (Daniels et al., 2003). 371 

Increased prevalence of MAP in rabbits was found in herds with difficulty controlling JD in 372 

cattle (Shaughnessy et al., 2013). More recently, a counterintuitive increase in rabbit 373 

prevalence was found in cattle herds that had decreased the prevalence of infection through 374 

test-and-culling (Fox et al., 2018). 375 

 376 

Conclusions 377 

Much has been learned about the epidemiology of paratuberculosis in dairy herds. 378 

Further efforts to elucidate the relative contributions of different transmission routes to the 379 

dissemination of infection in endemic herds will aid in the prioritisation of efforts for control 380 

on farm.   381 

 382 
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