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Abstract 

The startle reflex (SR), a robust, motor response elicited by an intense auditory, visual, or 

somatosensory stimulus has been widely used as a tool to assess psychophysiology in humans 

and animals for almost a century in diverse fields such as schizophrenia, bipolar disorder, 

hearing loss, and tinnitus. Previously, SR waveforms have been ignored, or assessed with 

basic statistical techniques and/or simple template matching paradigms. This has led to 

considerable variability in SR studies from different laboratories, and species. In an effort to 

standardize SR assessment methods, we developed a machine learning algorithm and 

workflow to automatically classify SR waveforms in virtually any animal model including 

mice, rats, guinea pigs, and gerbils obtained with various paradigms and modalities from 

several laboratories. The universal features common to SR waveforms of various species and 

paradigms are examined and discussed in the context of each animal model. The procedure 

describes common results using the SR across species and how to fully implement the open-

source R implementation. Since SR is widely used to investigate toxicological or 

pharmaceutical efficacy, a detailed and universal SR waveform classification protocol should 

be developed to aid in standardizing SR assessment procedures across different laboratories 

and species. This machine learning-based method will improve data reliability and 

translatability between labs that use the startle reflex paradigm. 

  



3 
 

1. Introduction 

The startle reflex (SR), an abrupt motoric response elicited by an intense auditory stimulus, 

has been used as a tool to assess a subject's overt reaction to various types of acoustic stimuli 

for over a century (Preyer, 1900; Landis and Hunt, 1939; Davis, 1984). The response is 

composed of multiple movements involving facial nerve output to the face and ears and 

spinal nerve output to the neck, back, tail, and limb extensors (Pantoni et al., 2020). Different 

components of the reflex have been measured using different methods but the main ones in 

rodents involve measurement of the whole-body response by placing piezoelectric sensors 

(Dulawa et al., 1997; Longenecker and Galazyuk, 2011; Schilling et al., 2017) or strain 

gauges/load cell (Berger et al., 2013; Virag et al., 2021) under the base of the cage. 

Alternatively, the ear flick component (Preyer reflex) can be measured separately by making 

electromyographic recordings (Cassella and Davis, 1986a; Cassella and Davis, 1986b) or 

optical tracking of ear movements (Berger et al., 2013). This basic reflex has been used to 

investigate cognitive, sensory, and mental disorders such as schizophrenia (Geyer et al., 

1990; Ahmari et al., 2012; Fendt and Koch, 2013; Buse et al., 2016; Khan and Powell, 2018), 

bipolar disorder (Mao et al., 2019), hearing loss (Longenecker et al., 2016; Lauer et al., 

2017; Wake et al., 2021), and tinnitus (Turner et al., 2006; Berger et al., 

2013; Lobarinas et al., 2013; Galazyuk and Hebert, 2015; Zhang et al., 2005). The SR is 

ubiquitous in the mammalian nervous system (Koch, 1999) and has been used to assess the 

internal state of rats (Kraus et al., 2011), mice (Longenecker and Galazyuk, 2011; Lowe and 

Walton, 2015), gerbils (Green et al., 2016), and guinea pigs (Berger et al., 2013). The 

acoustic startle response waveform has not been extensively characterized, and the lack of a 

standardized method for quantifying the startle response has led to high variation in startle 

data across different studies and laboratories. Since SR is widely used to investigate 

toxicological or pharmaceutical efficacy, a detailed and universal SR waveform classification 

system should be developed to aid in standardizing SR assessment procedures across 

different laboratories and species. 

The acoustic startle response waveform was first examined in rats many decades ago 

(Horlington, 1968) and has since been extended to other animal models. Most studies 

utilizing SR methodologies have not classified individual startle response waveforms to 

ensure that all force traces were indeed related to an animal's physiological response to the 

intense stimulus, i.e., a true startle response. Instead, nearly all studies assume that a “true 

startle” response, as opposed to extraneous motor activity, was evoked by the acoustic 

stimulus. This assumption was brought into question by a recent study that categorized and 

detailed the acoustic startle response waveform via template matching (Grimsley et al., 2015) 

in mice. 

Careful analysis indicated that a large proportion of so-called SR waveforms were actually 

non-startle responses. The Grimsley et al. study used high-speed motion cameras to help 

characterize the fundamental relationship between the mouse's whole body acoustic startle 

response and the resulting waveform. From this baseline analysis, they determined that an 

animal's movement after a positive-startle reaction was extremely stereotyped, to the point 

that a template (of waveform characteristics) could classify a true-startle from a non-startle 

almost a 100% of the time when compared to manual identification from trained SR 

behavioral neuroscientists. Unfortunately, this template analysis was set to assess only one 

type of waveform. However, the most important aspect of the study demonstrated that 

animals do not startle at a one-to-one ratio for each presentation presented, e.g., there are 

non-startle waveforms. Using the concept that not all startle stimuli result in a true-startle 

response, it was shown that SR input/output curves and PPI tests could predict the% of 

positive startles based on stimuli and that average startle magnitudes correspond to average 

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0041
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0011
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0040
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0012
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0035
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0042
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0005
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0048
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0009
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0010
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0005
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0018
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0018
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0002
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0016
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0006
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0025
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0034
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0030
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0030
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0049
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0045
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0005
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0005
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0031
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0017
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0050
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0026
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0028
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0035
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0037
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0037
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0020
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0005
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0023
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0021
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startle probability for a given stimulus set (Longenecker et al., 2016). This fact has also been 

shown in humans (Blumenthal and Levey, 1989). 

Removal of non-startles is important because these trials don't offer information concerning 

the physiological function of the nervous system and instead should be considered 

background noise, which importantly, should not be included in the final data analysis 

(Grimsley et al., 2015; Fawcett et al., 2020). While this was an important first step for SR 

analysis, this approach had limited effectiveness as it employed a rigid template and model 

for specific features. In addition, analysis of these waveforms has not been standardized 

across lab groups, measurement equipment and different animal models. Thus, a more 

systematic and generalized approach to SR analysis would aid in comparing results from 

different laboratories and species and advance the discipline. 

To address this issue, we have adapted a machine learning model to automatically classify SR 

waveforms from various species, paradigms, and modalities (Fawcett et al., 2020; 2021). The 

relative magnitude of neuro-muscular responses varies between species; thus, the 

stereotypical startle response waveform varies between species. Most mammalian species 

neurologically favor the whole-body response; however the guinea pig favors the Preyer 

reflex (see Berger et al., 2013 for a detailed comparison). This is highlighted in the response 

waveform variation seen in Fig. 2. However, the largest difference between the waveforms is 

the modality of which it was collected (Fig. 2A [load cell] vs 2F [piezo]) and the type of 

reflex (Fig. 2C [optical tracking] vs Fig. 2D [whole body response]). The magnitude, but not 

the overall fine structure of waveforms can be influenced by weight when considering the 

whole-body responses. 

Machine learning is an advanced and powerful method to develop predictive models for 

category discrimination, while removing measurement bias (Kotsiantis et al., 2006). Even a 

modicum of manual classification can quickly “teach” a machine learning algorithm to 

accurately classify waveforms (Fawcett et al., 2020). Importantly, machine learning can work 

for any type of waveform because it learns the details of waveform shapes, sizes, and 

latencies unique to that species or setup. A direct comparison of SR waveforms across 

species can be useful to quantitatively assess the major differences between species and 

qualitatively determine if certain species are better suited for SR testing. 

Here we provide a detailed protocol implemented in the R coding language to assist 

researchers in classifying SR waveforms as true startles from non-startles. The R language 

was selected because it is open-source as well as being intuitive and user-friendly, while also 

being able to design and implement machine learning models due to its rapid prototyping 

abilities. First, we demonstrate how to load labeled acoustic startle waveforms from a variety 

of species and modalities into the computational environment. Next, we train an initial 

machine learning model using a small set of features common to all SR waveforms and use 

default pre-processing functions to classify SR waveforms into true startles and non-startles. 

Since the accuracy and generalizability of any machine learning model is highly dependent 

on the quality of the features, we provide tools to determine the highly predictive features to 

be extracted from the SR waveforms. We then demonstrate how to train a machine learning 

algorithm with these extracted features. Finally, we demonstrate advantages of this analysis 

when applied to typical SR-related paradigms such as prepulse inhibition. This work will help 

elucidate and standardize the SR field by detailing a breadth of acoustic startle waveforms 

from most species used in SR research. 

The machine learning startle classification method was initially developed to classify true-

startles from non-startles using an acoustic SR behavioral paradigm employing CBA/CaJ 

mice (Fawcett et al., 2020). The goal was to reduce the variability in distinguishing between 

true-startle and non-startle SR waveforms through waveform normalization, feature 

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0034
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0021
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0015
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0005
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0002
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0002
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0002
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0002
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0002
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0027
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
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engineering and extraction, and then to combine these features into a robust predictive model 

that can train a machine learning ensemble to reliably distinguish between a true-startle 

versus non-startle from SR waveforms with little to no human intervention (Fawcett et al., 

2020; Hastie et al., 2009; Kuhn, 2013). Even though prepulse inhibition of the SR has been 

one of the most widely used diagnostic tools for assessing a laboratory animal's internal state 

(Fawcett et al., 2020; Davis, 1984; Koch, 1999; Ison and Hoffman, 1983), there is a lack of 

standardized, systematic methods for distinguishing true-startle from non-startle responses. 

Due to this variability, the need for the aforementioned methods of systematically classifying 

true-startles from non-startles is not only necessary for mice, but other laboratory animals as 

well, such as the rat, gerbil, and guinea pig, as well as different measurement systems. 

Having successfully developed a machine learning algorithm that correctly predicts true-

startles with a high degree of accuracy for the mouse SR collected using a piezoelectric 

platform, we extended the machine learning workflow to classify SR waveforms across the 

spectrum of laboratory animals and measurement modalities using data from different 

laboratories. 

2. Materials and methods 

Acoustic startle reflex measurements were collected from mouse, rat, guinea pig, and gerbil 

animal models using piezoelectric transducer, load cell, and optical tracking (Pryer reflex) 

measurements from five auditory neuroscience laboratories. After SR waveforms were 

collected, robust machine learning models were separately trained to classify SR waveforms 

from each species/startle modality data set as startles or non-startles via ensembles of 

machine learning models utilizing highly predictive feature engineering components from 

normalized SR waveforms. 

For all laboratories, procedures were approved by their university's respective Institutional 

Animal Care and Use Committee and/or accordance with the Animals (Scientific Procedures) 

Act 1986. In all instances animals were given food and water ad libitum in temperature and 

humidity-controlled vivariums with 12-hour light dark cycles. SR waveforms were collected 

from a variety of hardware systems and were calibrated with either Brüel and Kjaer or Larson 

Davis microphones/amplifier equipment (for details on hardware specifications and 

procedural details please see Fawcett et al., 2020; Lowe and Walton, 2015; Longenecker and 

Galazyuk, 2012; Longenecker et al., 2018; Lobarinas et al., 2004; Berger et al., 

2013; Green et al., 2017). 

2.1. Summary of startle modalities 

As described above, the acoustic startle reflex is robust and ubiquitous across mammalian 

species. However, differences in data collection modalities should be noted as startle 

response waveforms will vary dramatically as a function of how the startle was collected. As 

such, we will describe the acquisition modalities used in this work, which encompass the 

most common methodologies currently used in SR animal research. Piezoelectric transducers 

measure the whole-body animal movements recorded via the voltage generated when the 

piezoelectric materials are deformed due to animal movement. Piezoelectric transducers do 

not require a covariate of body weight for data analysis and there is no effect of dynamic 

range of measurements. Load cell transducers measure whole-body animal movements via an 

electrical signal whose magnitude is directly proportional to the force being measured. Startle 

responses from animals of different weights can be compared after body mass is taken into 

consideration. Load cell systems restrict the dynamic range of response and so that body 

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0022
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0029
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0011
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0026
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0024
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0037
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0033
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0033
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0036
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0032
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0005
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0005
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0019
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mass must be used as a covariate. Optical tracking measures the movement of the pinna 

reflex, or Preyer reflex, using a series of infrared cameras to track reflective markers placed 

on each pinna of the animal. It is important to note that Preyer reflex is used preferentially 

over whole-body startle reaction measurements in guinea pig (Berger et al., 2013). 

2.2. Machine learning startle classification 

The machine learning approach to classifying SR waveforms as startles or non-startles 

recently reported by Fawcett, et al. in 2020 was generalized, modified, and extended to 

operate on multiple species and startle modalities. SR waveforms from each species/startle 

modality data set collected using the methods described above were separately analyzed to 

determine the optimum waveform pre-processing procedure, the most predictive features for 

SR waveform classification, and to train an ensemble of machine learning models to classify 

SR waveforms as startles or non-startles. After successfully training machine learning models 

for each species/startle modality data set, the model was then used to classify startle 

waveforms from a variety of species and data acquisition systems as startles or non-startles. 

The flowchart shown in Fig. 1 describes the major steps of the machine learning 

classification. 

 

 

  

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0005
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0001
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Fig. 1. Diagram of high-level classification stages. The diagram shows the four main 

stages of the machine learning startle classification workflow: data pre-processing, 

feature engineering, machine learning, and storage and application. Stage 1 produces 

filtered and normalized SR waveforms from raw data to the normalized waveforms. 

Stage 2 involves the selection of waveform derived features, then the subsequent 

computation and selection of power spectral density (PSD) and continuous wavelet 

transform (CWT) features. Stage 3 entails training, tuning the fully customizable 

machine learning model and testing the performance of the model. In stage 4, the 

model is saved and can be applied to an unseen dataset to analyze the newly classified 

SR data (described in detail in Fawcett et al., 2020; 2021). 

2.2.1. Waveform pre-processing and normalization 

In order to derive highly predictive features from SR waveforms which exhibit highly diverse 

morphological traits in the data, both filtering and normalization are necessary to remove 

high frequency content not related to the startle reflex response and to ensure that waveforms 

within a range of amplitudes can be easily compared. The waveforms can be centered (by 

subtracting the mean value from the SR waveform) and scaled (by dividing the centered 

waveform by the standard deviation) using the mean and standard deviation measured at 

various times, including but not limited to before the startle elicitor stimulus (pre-SES), post-

SES, or the entire waveform. Additional normalization methods include dividing the SR 

waveform by the maximum amplitude of the signal to produce a signal with a maximum 

equal to 1 or subtracting the minimum of the signal then dividing by the range of the signal to 

produce a normalized signal that varies exactly between ±1. All SR waveforms considered in 

this study were centered using the mean and standard deviation computed before the startle 

elicitor stimulus (pre-SES) was presented. 

2.2.2. Feature engineering 

Features consisting of individual voltages at time points in the original SR waveform dataset 

possess weak predictive ability due to variability in startle response latency, magnitude, and 

sensor response. Therefore, waveforms must undergo several transformations to extract 

features which possess stronger predictive capability. Highly predictive features are extracted 

from the normalized SR waveforms and include features derived from the normalized 

waveform's characteristics, average frequency content obtained from power spectral density 

analysis, and temporally-resolved frequency content obtained from continuous wavelet 

transform (Fawcett et al., 2020). 

2.2.2.1. Waveform derived features 

Several features were derived from normalized waveforms, including the maximum 

magnitude and time of the maximum magnitude of the normalized waveform. Typically, the 

maximum magnitudes of true startles is significantly greater than that of non-startles and tend 

to occur within a predictable window after the presentation of the startle elicitor, giving these 

features very strong predictive capability. In our previous work in mice using this technique 

(Fawcett et al., 2020), we observed overlap between true-startles and non-startles in the 

maximum magnitudes when the maximum magnitudes occurred around 0.05 s (see Fig. 4 for 

example of this overlap in Fawcett et al., 2020). The substantial overlap that occurred in the 

maximum magnitude and the time of the maximum magnitude of the normalized SR true-

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0015
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0004
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
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startle and non-startle waveforms indicated that additional features are necessary for a 

machine learning algorithm to accurately classify true SR waveforms. 

2.2.2.2. Power spectral density 

Because SR waveforms exhibit periodic behavior, analysis of the frequency content of each 

waveform leads to additional highly-predictive features. In our previous study in mice, the 

power spectral density (PSD) was estimated from the periodogram of the entire 0.5 s long 

normalized SR waveform. Most of the energy from the smoothed PSD in the PSD spectrum 

was concentrated between 10 Hz and 150 Hz. Additionally, this analysis showed a marked 

difference between the magnitude of the PSD for startle versus non-startle waveforms. 

Several distinguishing features of the smoothed PSD estimates obtained from the normalized 

SR waveforms include the maximum PSD power and the frequency of the maximum PSD 

(see Figs. 5 and 6 for these features in Fawcett et al., 2020). While there are significant 

differences in the maximum power of the PSD between startles and non-startles, there were 

no significant differences in the frequency where that maximum occurred. Because of this, a 

slight overlap in the maximum power of the PSD for startles versus non-startles was 

observed, indicating a need to identify additional features to accurately classify the SR 

waveforms. 

2.2.2.3. Continuous wavelet transform 

Both the magnitude and frequency of the periodic behavior of the SR waveforms are 

functions of time. Because the PSD estimates represent an average over the entire normalized 

SR waveform, temporal information is removed from the PSD estimate. In contrast, the 

continuous wavelet transform (CWT) of the normalized SR waveforms provides an estimate 

of the frequency content of the waveform as a function of time (Fawcett et al., 

2020; Veer and Agarwal, 2015; Allen and Rabiner, 1977; Sejdic et al., 2009). In general, the 

wavelet power spectra revealed increased maximum wavelet power for true-startle versus 

non-startle waveforms. The wavelet power was concentrated around the maximum amplitude 

following the startle elicitor on trials classified as startles whereas the wavelet power was 

broadly distributed for trials classified as non-startles (Fig. 7 in Fawcett et al., 2020). 

Therefore, the CWT power spectra from normalized SR waveforms from each species/startle 

modality data set was used to obtain time and period (frequency) dependent CWT features. 

However, the exact timing and period (frequency) of the high CWT power is dependent on 

species and startle modality, requiring exploration of the CWT for several representative SR 

waveforms to determine the most useful timings and periods of interest to be extracted from 

the CWT. These features were combined with other metrics to increase the predictive ability 

(Fawcett et al., 2020; Cai et al., 2018; Vergara and Estevez, 2014). 

2.2.3. Machine learning methods 

Machine learning models were trained to classify SR waveforms as startles versus non-

startles using a combination of features extracted from the normalized SR waveforms via an 

ensemble of models from various families of algorithms. The extracted features are first pre-

processed to ensure only highly-predictive features that do not contain redundant information 

are used to train the machine learning models by removing features with near-zero variance, 

highly correlated features, and features which are linear combinations of other features. The 

remaining features are then centered and scaled prior to training any machine learning model 

so the magnitude and variability of any individual feature does not dominate the model. 

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0005
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0006
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0046
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0003
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0043
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0007
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0007
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0047
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Individual machine learning models using the Random Forests and Support Vector Machine 

(SVM) algorithms are then separately trained while also tuning hyperparameters of each 

machine learning model. After training, individual trained machine learning models are then 

stacked and combined via a generalized linear model, to provide a robust model which 

generalizes well to new/previously unseen SR waveforms. 

2.2.4. Ground truth 

Each of the 1000 SR waveforms per species and measurement paradigm (6000 total) 

presented in this paper were manually classified as either a startle or non-startle by an 

experienced neuroscientist. The number of required SR waveforms for successful machine 

learning model training was examined by generating a learning curve examining model 

performance metrics, just as accuracy and area under the receiver operating characteristic 

curve (ROC) as the number of examples used to train the models increases stratified by 

startle/non-startle classification (Balki et al., 2019). Prior to learning curve generation, 200 

examples stratified by startle classification were partitioned from the 1000 SR waveforms and 

were removed from the training dataset and used for all model performance metric 

determinations. Next, models were trained using an increasing number of randomly selected 

examples from the remaining SR waveforms (from 10 to 800) with the variability of model 

performance metrics evaluated using 150 replicates. 

3. Results 

3.1. Waveform variability 

The variability in SR waveforms both within and across species and startle modality is shown 

in Fig. 2. All SR waveforms manually classified as startles presented in Fig. 2 demonstrate 

similar characteristics such as large changes in waveform activity, magnitude, and frequency 

content immediately after the startle elicitor sound (SES) is presented at t = 0. However, the 

characteristics of this increased waveform activity differs between, but is consistent within, 

species and startle modalities. For example, the biphasic shape of a startle response for mouse 

load cell examples (Fig. 2A) is significantly different than the dampened oscillating shape of 

the mouse piezoelectric examples (Fig. 2F). However, within each set of examples, the 

general shape and timing of startle responses are consistent with variations in magnitude as 

see in Fig. 2A. 

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0002
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0002
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0002
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0002
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0002
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Fig. 2. Examples of startle and non-startle waveforms from four animal models 

(mouse, rat, gerbil and guinea pig) and three types of startle modalities (piezoelectric, 

load cell, and optical tracking). Different colors in each plot indicate separate trials. 

DC offset in panels B and C is due to the baseline offset (B: body mass and C: unit of 

signal measurement here is distance between two ears in mm). 

3.2. Waveform normalization 

Fig. 3 shows the application of the various normalization methods described above on the 

same representative SR waveforms presented in Fig. 2B obtained from gerbils tested on a 

load cell transducer. Normalization methods which center and scale the waveforms using the 

mean and standard deviation shown in Fig. 3B and 3E remove any offset in the SR waveform 

introduced by the measurement technique, allowing SR waveforms from different animals 

with different weights to be compared using the same features. Normalization methods which 

scale the waveforms such that the maximum peak amplitude is equal to unity (Fig. 3C) or that 

the signals range exactly between ± 1 (Fig. 3D) ensure all waveforms, true-startles and non-

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0003
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0002
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0003
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0003
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0003
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0003
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startles, have similar maximum peak magnitudes without regard to variability in the pre-SES 

waveform. All SR waveforms presented in this paper were normalized using the mean and 

standard deviation from the pre-SES region, which provided extremely robust normalized 

waveforms for subsequent feature extraction since normalization. This method yields 

normalized waveforms representing the number of standard deviations from the mean of the 

pre-SES waveform, significantly magnifying true startles presented well above the pre-SES 

noise while significantly reducing noisy non-startle signal amplitudes. Each normalization 

method has strength and weaknesses with the ultimate choice of method governed by trained 

machine learning model performance and generalization to previously unseen examples. 

 

 

 

Fig. 3. Raw and normalized startle waveforms collected from the gerbil in Fig. 2B; 

data obtained with a load cell transducer. True-startle waveforms on the left and non-

startle waveforms on the right. Startle and non-startle waveforms, acquired from a 

startle input-output series. (A) raw startle waveforms, (B) Z-score normalization using 

the mean and standard deviation of the entire waveform, (C) maximum-magnitude 

normalization, (D) minimum-maximum normalization, and (E) Z-score normalization 

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0002
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using the mean and standard deviation from before the SES was presented (t < 0). 

Different colors in each plot indicate separate trials. 

3.3. Feature engineering 

Highly predictive features must be extracted from the normalized SR waveforms to train 

robust machine learning models. The maximum magnitude and time of the maximum 

magnitude were extracted from the normalized SR waveforms for each species and startle 

modality dataset. The distributions of these waveform derived features from gerbil SR 

waveforms measured via a load cell transducer are presented in Fig. 4A. The maximum 

normalized magnitudes are significantly higher for startles versus non-startles, most of which 

occur at 0.05 s after the SES. However, there are still example normalized SR waveforms 

where both true-startles and non-startles have similar maximum magnitudes, less than 

10°.75 and occur prior to the majority of the startle examples. Thus, although these waveform 

derived features are highly predictive, additional features are required to separate startles 

from non-startles which have similar maximum magnitude and time of maximum magnitude. 

 

 

 

Fig. 4. Distribution of (A) waveform and (B) power spectral density features for all 

1000 gerbil startle waveforms measured using a load cell transducer; data normalized 

using the mean and standard deviation before the startle eliciting sound was 

presented. Note that there is a strong distinction between startles and non-startles 

based on the maximum normalized magnitude of the waveform, with the majority of 

startles tightly clustered at 0.05 s after the SES and with magnitudes greater than 

100.75 (above the black dotted line). The PSD features (panel B) depict a significant 

separation between startles and non-startles in regards to maximum power (y-axis), 

but not in the frequency domain (x-axis). 

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0004
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All example SR waveforms presented in Fig. 2 show periodic temporal behavior which 

increases in magnitude immediately after the SES is presented for true startles. Thus, highly 

predictive features can be extracted from the power spectral density estimate (PSD) of the 

normalized SR waveforms including the maximum PSD power and frequency of the 

maximum PSD power. Fig. 4B shows the distributions of the maximum PSD magnitudes and 

the frequency at which they occurred for the same normalized SR waveforms obtained from 

gerbil via a load cell transducer whose waveform derived features are presented in Fig. 4A. 

Although most frequencies at maximum PSD power occur between 5 and 35 Hz with no 

discernible separation between startles and non-startles, there is significant separation in 

maximum PSD power with most non-startles being less than 10−0.5Hz−1 and most startles 

being greater than 10−1 Hz−1. 

The power spectral density computes the distribution of power across the frequency 

components that make up the signal under test across the entire duration of the signal. Thus, 

the PSD provides no temporal information about the time course of the power computed from 

the PSD. However, the continuous wavelet transform allows for temporally resolved 

frequency content to be computed for all SR waveforms as a function of time. Continuous 

wavelet transform spectra from six representative SR waveforms, three true-startles and three 

non-startles, from each species/startle modality data set are shown in Fig. 5. The CWT 

spectra for all species/startle modalities presented in Fig. 5 show maximum CWT power for 

true-startles a short period of time after the SES is presented, while the magnitude of the 

maximum CWT power is generally lower for non-startles and the timing of maximum CWT 

power is highly variable. 

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0002
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0004
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0004
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0005
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0005
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Fig. 5. Examples of continuous wavelet transform (CWT) power spectra of the startle 

waveforms from the six data sets, (A) mouse load cell, (B) gerbil load cell, (C) guinea 

pig optical tracking, (D) guinea pig load cell, (E) rat piezo, and (F) mouse piezo. Each 

panel contains six randomly selected trials, three true-startles and three non-startles, 

across multiple animals, sessions, and startle elicitor intensities over a 400 ms of 

acquisition time. Note the scale bar of the normalized power varies across the data 

sets. 

Detailed analysis of the CWT spectra of each SR waveform results in many CWT derived 

features with the extraction of seventeen features reported in our initial report 

(see Table 1 and Fig. 9 in Fawcett et al., 2020). These features can be separated into general 

CWT features which apply to all CWT spectra of SR waveforms without regard to the timing 

and/or period of high CWT power (McKearney and MacKinnon, 2019). Fig. 6 shows the 

distribution of six general CWT features from the gerbil/load cell SR waveform data 

set. Fig. 6A shows the maximum CWT power after the SES is generally higher for startles 

versus non-startles with no differences in mean CWT power over the entire CWT spectra. 

The time of maximum CWT power after the SES is presented occurs between 0.05 and 0.1 s 

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#tbl0001
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0009
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0038
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0006
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0006
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for most startles and appears to be uniformly distributed across all post-SES times 

in Fig. 6B. Fig. 6C shows that most startles have lower mean CWT power before the SES 

compared to non-startles while also having higher mean CWT power over the time period 

before the SES to the maximum CWT power. 

 

Table 1. Continuous wavelet transform features of interest for the gerbil startle 

waveforms presented in Fig. 7. 

 

CWT Feature of Interest Time Range [s] Period [s−1] CWT Measure 

Well before startle (−0.26, −0.24) NA mean 

During startle (0.04, 0.06) NA mean 

Around startle (−0.02, 0.125) NA mean 

After startle (0.14, 0.149) NA mean 

Low frequency NA 2 − 4.5 mean 

High frequency NA 2 − 8.5 mean 

 

Fig. 6. Distribution of general continuous wavelet transform (CWT) features for all 

1000 gerbil startle waveforms measured using a load cell transducer. Panel A depicts 

the maximum CWT power after the SES, with startles exhibiting a larger maximum 

power and a tighter spread towards greater time elapsed relative to the SES than non-

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0006
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0006
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0007
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startles. Panel B portrays the relationship between the duration of a maximum in the 

CWT occurring as a function of time elapsed after the SES. Panel C illustrates the 

association between the difference of CWT power before the SES versus the 

maximum CWT power as a function of the mean CWT power before the SES. 

 

The general continuous wavelet transform features described above and presented 

in Fig. 6 provide only initial and general insights related to the time-resolved frequency 

content of SR waveforms. Analysis of each panel in Fig. 5 for each species/startle modality 

reveals that the location, both the timing and period (frequency) of the high-power regions of 

the CWT spectra, is dependent on species and measurement modality. A detailed exploratory 

analysis of the CWT of representative startle and non-startle SR waveforms is required to 

determine the times (or time ranges) and period (or period ranges) of regions of high (or low) 

CWT power. Fig. 7 presents the CWT of six of the representative gerbil startle waveforms 

from Fig. 2B whose CWT spectra are also presented in Fig. 5B. Inspection of many example 

CWTs of the gerbil startle waveforms allowed the selection of several CWT features of 

interest with time ranges determined for: 1) well before the startle when any SR waveform 

activity is due to animal movement, 2) around the peak amplitude of the startle encompassing 

all high power CWT activity due to the SES, 3) during the startle which captures the initial 

response to the SES and for the frequency domain: 4) a high frequency component capturing 

all high power CWT activity due to the SES, and 5) a low frequency component where CWT 

power is lower for startles versus noisy non-startles (required a log10 transform to visualize). 

A measure of the CWT power (mean and/or max) was extracted from the CWT spectra of 

each SR waveform. The CWT specialized features of interest shown in Fig. 7 are also 

summarized in Table 1. 

 

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0006
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0005
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0007
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0002
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0005
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0007
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#tbl0001
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Fig. 7. CWT of six of the representative startle waveforms from gerbil using a load 

cell transducer presented in Fig. 2B with raw CWTs presented in Fig. 5B. The red 

dashed line shows when the SES is presented (t = 0), the vertical lines show time 

ranges of interest while the horizontal lines show periods of interest in which the 

mean CWT power at or within these regions are highly-predictive features. 

 

The specialized CWT features using the time range (or period) described in Table 1 are 

shown in Fig. 8. Panel A plots the mean CWT power before the startle onset as a function of 

the maximum CWT during the startle and indicates a significant difference between startles 

and non-startles, with non-startles exhibiting a higher overall CWT power well before the 

SES and during the startle response. Panel B highlights an increase in mean CWT power 

around the startle for startles compared to non-startles. Panel C shows that the mean CWT 

power at both high and low frequencies between startles and non-startles is similar. 

 

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0002
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0005
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#tbl0001
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0008
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Fig. 8. Distribution of the specialized continuous wavelet transform features for all 

1000 gerbil startle waveforms measured using a load cell transducer with time ranges 

and periods of interest described in Table 1. (A) the maximum CWT power during the 

startle (highest frequency content) versus the mean CWT power well before the SES 

(only animal movement), (B) mean CWT power after the startle (back to baseline 

activity) versus around the startle (contains all startle activity), and (C) mean CWT 

power at high frequency (where large and fast changes occur) versus at low 

frequency. 

3.4. Machine learning model training and performance 

After feature engineering, all features extracted from the SR waveforms including the 

waveform derived, PSD derived and CWT derived features were partitioned into 80% 

training samples and 20% test samples. Several machine learning models from various 

families, Random Forests and Support Vector Machine, are then trained using the training 

samples. The individual machine learning models are then combined via a generalized linear 

model to create a robust startle classifier (Fawcett, et al. 2020). Once the ensembled model is 

trained, new SR waveforms were classified as startles or non-startles using the exact same 

features as the trained ensembled model. The prediction accuracies of the ensembled models 

for each species/startle modality are presented in Table 2. The prediction accuracy for most 

species/startle modalities were well over 0.9 and greater than 0.95 for mouse/load cell, 

rat/piezoelectric, and mouse/piezoelectric. These high prediction accuracies for machine 

learning models separately trained for each species/startle modality data set demonstrate the 

robust and general nature of the machine learning startle classification procedure presented in 

this paper. 

 

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#tbl0001
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#tbl0002
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Table 2. Prediction accuracies of ensembled machine learning models for each 

species/startle modality data set. 

 

Species Startle Modality Test Accuracy 

Mouse load cell 0.955 

Gerbil load cell 0.920 

Rat piezoelectric 0.960 

Mouse piezoelectric 0.980 

Learning curves were evaluated to investigate the effect the number of training examples on 

trained machine learning model performance metrics. The number of training examples 

varied from 10 to 700 with model metrics evaluated using 200 previously unseen test 

samples. All training and test samples were stratified by startle label so the same proportion 

of startles/non-startles is present in all samplings. Fig. 9 shows the test accuracy (Panel A) 

and area under the received operating characteristic curve (AUC) (Panel B) as the number of 

training examples increases for each species and measurement method. In general, both test 

accuracy and AUC increases with the number of training examples for all species and 

measurements methods. This is expected as machine learning models demonstrate improved 

learning as the number of training examples increases and generalize better to unseen 

examples as the variety of those training also increases (Balki et al., 2019). Although 1000 

SR waveforms for each species and measurement method were manually classified with 800 

used to train the machine learning models presented in Table 2, the learning curves shown 

in Fig. 9 show that significantly less samples are required to obtain satisfactory model 

performance. The AUC must be greater than 0.5, when the machine learning model is no 

better than random guessing and not able to adequately distinguish between startles and non-

startles, with higher AUC leading to better machine learning model performance 

(Fawcett, 2006). For example, the gerbil load cell median AUC is 0.5 until greater than 200 

training examples are used in which the AUC increases to over 0.95, allowing for 200 versus 

800 used to train successfully machine learning models if a test accuracy of slightly less than 

0.9 is acceptable. However, training machine learning models with minimal examples can 

lead to increased variability in model performance as well as significantly decreased model 

generalization. Thus, we recommend using as many training examples as possible to reduce 

model performance variability and ensure those training examples represent as many types of 

examples as possible to ensure the model generalizes to previously unseen examples. 

 

 

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0009
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0004
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#tbl0002
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0009
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0013
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Fig. 9. Learning curve showing the (A) accuracy and (B) area under the receiver 

operating characteristics (ROC) curve for 200 holdout test examples stratified by 

startle label for each species and measurement method. 

4. Discussion 

There are several existing methods for SR classification including thresholding, RMS-based, 

and template matching classification methods presented in Grimsley et al., 2015 and the 

invalid trials method presented in Schilling et al. 2017. These methods typically classify SR 

waveforms as true startles at a much higher rate than manual classification (see Table 3 

in Fawcett et al., 2020) resulting in significant inaccuracies in mean amplitude computations 

in the majority of datasets using these classification methods due to the large number of low 

amplitude non-startles being classified as startles, thus lowering mean startle amplitudes used 

for important behavioral measures such as pre-pulse inhibition (see Figs. 11, 12, and 13 

in Fawcett et al., 2020). The approach described in this report allows machine learning 

algorithms to combine the mathematical definitions of human interpretable features to 

classify SR waveforms as startles or non-startles. Machine learning models are trained with 

many examples of both startle and non-startle waveforms demonstrating the required 

flexibility to use all information, via features, when classifying waveforms versus the rigid 

thresholding or template requirements imposed by the other SR classification methods 

discussed above. Another recent publication in the field of auditory assessments used a 

similar machine learning approach to objectively classify auditory brainstem responses 

(McKearney and MacKinnon, 2019). Taken together, these works demonstrate the utility of 

using machine learning to quickly and accurately (SR: up to 98%; ABR: up to 92.6%) 

analyze large sets of data. Data analysis will also benefit from reduced bias, especially for 

near-threshold waveform analysis. For these reasons, machine learning models have and will 

continue to help standardize data across laboratories and fields. 

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0021
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0042
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0038
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An analysis of the classification accuracy of the machine learning method approach presented 

in this paper compared to the threshold, RMS, and invalid trials methods for each species and 

measurement method is presented in Fig. 10 via receiver operating characteristic (ROC) 

curves (Obuchowski and Bullen, 2018). Panels A through E show ROC curves for each 

classification method across each species and measurement method via a cutoff analysis 

(Thiele and Hirschfeld, 2020; NCSS Statistical Software, 2022) with the independent 

variables used to generate each curve being the startle prediction probability for the machine 

learning method. Here we show the difference in maximum post- and pre-SES magnitudes 

for the threshold method (> 0 indicating a startle), the difference in root mean square of up to 

100 ms of the post- and pre-SES signals for the RMS method (> 0 indicating a startle), and 

the maximum pre-SES magnitude for the invalid trials method (< threshold in a startle). 

These ROC curves show the machine learning method is the most robust classifier with the 

largest area under the curve with the invalid trials method being the least accurate with many 

ROCs close to the chance line. To explore the overall performance of the various methods 

independent of species and measurement method, the area under the ROC curve (AUC) was 

bootstrapped with 100 replicates of 150 randomly selected samples and presented in Panel 

F. Fig. 10F shows the AUC of the machine learning method being notably higher with 

substantially less variability than the other classification methods. 

 

 

 

Fig. 10. Receiver operating characteristic (ROC) curves for the machine learning 

method presented in this paper, the threshold method and RMS method presented in 

Grimsley et al. (2015) and the invalid trials method presented in Schilling et al. (2017) 

for several species and measurement methods: (A) mouse load cell, (B) gerbil load 

cell, (C) guinea pig load cell, (D) rat piezoelectric transducer, and (E) mouse 

piezoelectric transducer with (F) showing the bootstrapped area under the ROC curve 

(AUC) for each method independent of species and measurement method. 

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0010
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0039
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0044
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0001
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0010
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0042
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The machine learning approach presented in this paper can be easily adapted for any startle 

reflex data through the use of the asrclassify R package. The asrclassify package contains 

functions to load SR data from a Matlab.mat file containing a StartleData structure or a 

variety of comma separate value (csv) file formats including the Kinder Scientific format or 

generic csv file formats with either one waveform per row or per column. SR waveforms 

required for feature engineering and machine learning model training must have manual 

classification labels such as 1 for startle and 0 for non-startle or similar classification. After 

SR data has been loaded, the raw and/or normalized waveforms can be explored to determine 

the optimum waveform normalization method. Next, the continuous wavelet transform 

(CWT) of representative startles and non-startles can be explored to determine the time 

ranges, periods, and CWT measures for CWT features of interest (see Fig. 7 and Table 1 for 

examples). Then, features can be extracted from raw and/or normalized SR waveforms as 

well as their power spectral density estimate and CWT. After the feature dataset is collected 

and partitioned into training and testing datasets, machine learning models are trained on the 

training set with hyperparameter tuning with the best model from each machine learning 

method stacked to form a robust ensemble model. After verification of the performance of the 

ensemble machine learning model using the testing dataset, the model can then be used to 

predict whether new SR waveforms are startles or non-startles. Specific details about 

implementing the asrclassify package to build a machine learning model and classify new SR 

waveforms are thoroughly described in the vignettes of the asrclassify package. 

The SR is ubiquitous in behavioral assays of the mammalian nervous system and has been 

used in the fields of pharmacology, psychology, and neuroscience to assess the internal state 

of rats, mice, gerbil and guinea pig. However, the acoustic startle response waveform has not 

been extensively characterized across species, and the lack of a standardized method for 

quantifying the startle response has led to high variation in startle data across different studies 

and laboratories. The automated classification method using machine learning reported by 

Fawcett et al. (2020) was specifically developed for CBA/CaJ mice with SR waveforms 

collected on piezoelectric transducers. In this report, the machine learning approach to 

classify SR waveforms as startles or non-startles was generalized for use with SR waveforms 

from virtually any species and startle modality using the asrclassify R package. Using this 

machine learning approach on startle reflex waveforms measured from any species or startle 

modality will allow unified startle classification as well as significantly improve data 

reliability and translatability between laboratories conducting startle reflex behavioral 

research. 

Reporting summary 

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article. 

Code availability 

The asrclassify source code is available at https://gitlab.com/waltonlab/asrclassify. The code 

can be accessed and used by readers without restriction. 

https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#fig0007
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#tbl0001
https://www.sciencedirect.com/science/article/pii/S0378595522002350?dgcid=coauthor#bib0014
https://gitlab.com/waltonlab/asrclassify
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