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Abstract

As survival of extremely preterm infants continues to improve, there is also an associated increase in bronchopulmonary dysplasia
(BPD), one of the most significant complications of preterm birth. BPD development is multifactorial resulting from exposure to multiple
antenatal and postnatal stressors. BPD has both short-term health implications and long-term sequelae including increased respiratory,
cardiovascular, and neurological morbidity. Transforming growth factor b (TGF-b) is an important signaling pathway in lung develop-
ment, organ injury, and fibrosis and is implicated in the development of BPD. This review provides a detailed account on the role of
TGF-b in antenatal and postnatal lung development, the effect of known risk factors for BPD on the TGF-b signaling pathway, and
how medications currently in use or under development, for the prevention or treatment of BPD, affect TGF-b signaling.

bronchopulmonary dysplasia; transforming growth factor-b

INTRODUCTION

Bronchopulmonary dysplasia (BPD) was first described by
Northway and colleagues in 1967 as a severe form of chronic
lung disease affectingmostly preterm infants (1, 2). Postmortem
lung samples of these infants showed hypertensive pulmonary
vascular remodeling, large airway smoothmuscle (ASM) hyper-
plasia, and heterogeneity of the parenchyma with diffuse
fibroproliferative changes (3, 4). Commonly, such patho-
logical changes are referred to as “old” or “classical” BPD.
Recent advances in neonatal care have led to significantly
improved survival for preterm infants, most markedly for
those at <26 wk gestation (5). With this, a “new” form of
BPD has emerged, primarily related to extreme prematur-
ity, due to the disturbance of lung development during the
critical period of saccular lung development (1, 3). Fibrosis
is a less prominent feature and “new” BPD is instead char-
acterized by more homogenous lung parenchyma with a
larger, simpler alveolar structure and mild airway muscle
thickening (1, 3).

The transforming growth factor-b (TGF-b) superfamily of
growth factors are widely expressed proteins with well-
known and diverse roles in development, wound healing,

and fibrosis. TGF-b superfamily members have been impli-
cated in various stages of lung development in utero and
postnatally and in the pathogenesis of many of the features
of both “new” and “old” BPD including parenchymal fibro-
genesis, remodeling of the pulmonary vasculature and ASM
remodeling. In this review, we aim to provide a comprehen-
sive overview of the various roles of TGF-b proteins in nor-
mal lung development and BPD pathogenesis, with a
particular focus on the isoforms of TGFb1–3. By reviewing
recently published research, we will explore the relationship
between some known risk factors that contribute to the de-
velopment of BPD with TGF-b proteins and the pathological
features of the disease.

CONSEQUENCES OF BPD

Despite survival for extremely preterm infants improving,
rates of BPD among these infants have also increased, with
an overall increase of 4.2% in a review of 11 high-income
countries (6). There are numerous risk factors for BPD devel-
opment, which are highlighted in Fig. 1 (7–10). Antenatal fac-
tors include male sex, being small for gestational age,
genetics, maternal smoking, and chorioamnionitis. At birth
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and postnatally, BPD risk is associated with extreme preterm
birth, the need for cardiopulmonary resuscitation (<30 wk),
mechanical ventilation, exposure to hyperoxia, or volu-
trauma as a result of mechanical ventilation, as well as post-
natal infection and/or inflammation (8–11).

BPD can have significant health implications not just in
the neonatal period but throughout childhood and adult-
hood. Long-term sequalae include adverse respiratory, cardi-
ovascular, and neurological outcomes. Infants with BPD
have an increased risk of substantial airway impairment
with airway obstruction on pulmonary function testing, a
higher risk of airway hyper-responsiveness and asthma-like
symptoms, and reduced respiratory reserve persisting into
adolescence and adult life (1, 12–15).

Pulmonary hypertension (PH) affects 8%–25% of infants
with BPD and is characterized by abnormal vascular remod-
eling and vascular growth arrest resulting in increased pul-
monary vascular resistance (16). Crucially, it has been shown
that early disruption of vascular growth contributes to
reduced alveolarization, which is a feature of BPD (17), in
addition to leading to the development of PH. The incidence
of PH-associated BPD rises with increasing BPD severity (18).
This is of particular clinical importance given the associated
increased mortality, need for tracheostomy, worse neurode-
velopmental outcomes, and feeding problems in these
infants (13, 14, 16, 19). Improved understanding of the mech-
anisms driving normal lung growth and the development of
BPD are therefore essential.

NORMAL LUNG DEVELOPMENT

Lung development is typically divided into 5 stages con-
sisting of embryonic (4–7 wk), pseudoglandular (5–17 wk),
canalicular (16–26 wk), saccular (24 wk to birth), and alveolar
(from 36 wk) (20) (Fig. 1). During branching morphogenesis,
the lung bud undergoes a dichotomous pattern of division of
the airways forming terminal bronchioles during the pseu-
doglandular stage, which further divide in the canalicular
stage leading to the formation of respiratory bronchioles.

The saccular stage is characterized by the development of
the primitive lung saccules, lined by type 1 and 2 alveolar
cells, thinning of the connective tissue between the airspaces
and capillaries, and initiation of surfactant production (1, 13,
21). Alveolar development is the final stage of lung develop-
ment occurring from 36 wk gestation until early childhood
and is characterized by secondary septation of the primitive
lung saccules leading to alveolarization.

This branching morphogenesis acts as a template for pul-
monary vasculature growth, which follows a similar branching
process during embryological development. Vasculogenesis
predominantly occurs up to 17 wk gestation with the forma-
tion of extrapulmonary, lobar, and pre-acinar arteries. From
the canalicular phase, angiogenesis occurs with the formation
of intra-acinar arteries (18–25 wk), alveolar arteries (25 wk
onward) and capillary alveoli (30 wk onward) (22).

The complex nature and relatively late timing of branching
morphogenesis in both alveolar and vascular development
are critical for infants who are born extremely premature.
Crucially, alveolarization and angiogenesis are closely linked
in lung development with inhibition of angiogenesis able
to interrupt alveolarization (23). Furthermore, the lungs of
infants born extremely premature are exposed to a complex
interaction of perinatal and postnatal stressors during their
subsequent neonatal care, whichmay disrupt normal alveolar
and pulmonary vascular development and promote BPD
pathogenesis (Fig. 1) (7).

TRANSFORMING GROWTH FACTOR b
SIGNALING IN LUNG DEVELOPMENT AND
BPD

TGF-b exists as three isoforms, TGF-b1, TGF-b2, and TGF-
b3, which are encoded by distinct genes. They belong to the
TGF-b superfamily of proteins, which contains over 30 mem-
bers including activins, bone morphogenetic proteins (BMPs),
and growth and differentiation factors. TGF-b superfamily
members have diverse functions in development, homeosta-
sis, repair and disease, which signal through canonical (Smad
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Figure 1. Risk factors associated with the development of bronchopulmonary dysplasia. [Adapted from Davidson and Berkelhamer (7) under an open
access Creative Common CC BY license].
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signaling) and noncanonical signaling pathways (24–26). The
Smad signaling pathway includes two distinct pathways 1) the
TGF-b-Smad pathway, which is mediated via Smad 2 and
Smad 3 phosphorylation, and 2) BMP-Smad pathway which
involves Smad 1/5/8 phosphorylation (27–29). Both signaling
pathways are critical for normal alveolar and pulmonary vas-
culature development (30–33) and have been implicated in
the pathogenesis of BPD (34, 35).

Animal studies have given insights into the roles of TGF-b
isoforms in lung morphogenesis. During normal lung devel-
opment, TGF-b isoforms show different temporal expression
patterns; TGF-b1 and TGF-b3 are expressed in early saccular
development whereas TGF-b2 is expressed later in more
mature epithelium (28). Furthermore, TGF-b isoform-specific
null mice have helped shed light on the functional conse-
quences of TGF-b isoforms on lung development (Table 1)
(25, 34). TGF-b1 null mice have no overall lung developmental
defects at birth (35) whereas TGF-b2 null mice have high peri-
natal mortality associated with dilated conducting airways
and collapsed distal airways collapsed (36), and TGF-b3 null
mice die within hours of birth exhibiting severely delayed
lung development (37).

Other studies have suggested that correct temporal ante-
natal TGF-b isoform expression is critical for lung develop-
ment. Conditional mesenchyme-specific deletion of TGF-b 1
in the lung during early branching morphogenesis [embryo
day 7.5 (E7.5)] caused bilateral pulmonary hypoplasia with
the pups dying within a few hours of birth, whereas deletion
at the end of branching morphogenesis (E15.5) resulted in
lungs that were of similar size and gross appearance to wild
type lungs (38). Conversely, in primates, adenoviral-induced
TGF-b1 overexpression during the later canalicular or saccu-
lar stages resulted in lung parenchymal hypoplasia and fi-
brosis of the interstitial reticulum, pleural membranes, and
alveolar septa (39). Together, these studies indicate that cor-
rect early expression of TGF-b1 may be needed for normal
lung development. It has been suggested that the lack of
aberrant lung development in the TGF-b1 null mouse despite
clear developmental effects in other models could be due to
maternal transfer of TGF-b1 (40). In contrast, ex vivo tissue
models have demonstrated that inhibition of TGF-b2 with
antisense oligonucleotides can inhibit both early lung
branching and secondary branching whereas inhibition of
either TGF-b1 or TGF-b3 had no effect (41). Although it is
clear that further research is needed to fully delineate the

exact differential roles of the TGF-b isoforms in branching
morphogenesis and lung development, the studies described
above support the concept that tight temporal control of
each isoform is critical.

Although temporal regulation of TGF-b isoforms and asso-
ciated signaling proteins is clearly important for normal
lung development, spatial regulation of expression is also
crucial. Expression of TGF-b type II receptor (TGFbRII), a re-
ceptor that is fundamental to promoting signaling by TGF-b
isoforms, is restricted to the airway epithelium in the early
embryonic stage (E11.5) whereas by the pseudoglandular
stage (E14.5) expression is found in both epithelial and mes-
enchymal cell compartments (42). In addition, in the pseu-
doglandular stage, TGF-b1 gene expression is found within
the mesenchyme yet TGF-b2 transcripts are largely absent in
the mesenchyme yet present in the distal epithelial, and
TGF-b3 transcripts are found in the mesenchyme and meso-
thelium (43).

Furthermore, evidence of the importance of spatial reg-
ulation of TGF-b has been demonstrated in mice with cell-
type specific knockouts of proteins crucial to TGF-b acti-
vation and signaling. The guanine nucleotide-binding
proteins Gaq/11 are crucial for integrin-mediated TGF-b
activation in lung epithelial cells (44). Mice lacking Gaq/
11 in surfactant protein C (SpC)-positive type 2 alveolar
epithelial (AT2) cells have significantly reduced active
TGF-b1 and associated Smad2 signaling and develop pro-
gressive postnatal alveolar inflammation and lung paren-
chymal abnormalities, including thickened alveolar walls
and increased mean linear intercept (MLI; analysis of air-
space size, is inversely proportional to alveolar surface
area), together with an obstructive lung function deficit
(44). This suggests a critical role for integrin-mediated TGF-b1
activation inmaintaining lung homeostasis and normal devel-
opment postnatally. In addition, mesenchymal cell-specific
deletion of Gaq/11 also impacts lung development with mice
developing increased MLI, thickened alveolar walls, reduced
numbers of secondary crests and abnormal pulmonary vessels
by postnatal day 14, a phenotype that closely resembles BPD
(45). Early evidence suggests a role for TGF-b2 in the develop-
ment of this phenotype since lung TGF-b2 levels were reduced
and knockdown of Gq/11 in human lung fibroblasts reduces
expression of TGF-b2 (45). Further research is needed to fully
delineate the individual roles of TGF-b isoforms in normal
lung development and the pathogenesis of BPD.

Table 1. Expression of TGF-b isoforms and associated KO phenotypes in mice

Isoform mRNA Location Location within the Lung KO Mice Phenotype

TGF-b Endothelial, hematopoietic, neural cells,
connective tissue

Throughout the mesenchyme, highly localized
at the epithelial branching points

Systemic inflammation, perivasculitis and
lymphocytic infiltration in the lungs. High
mortality at weaning.

TGF-b2 Epithelial and neural cells Localized in the distal epithelium Cardiac, spinal column, urogenital, eye, and
ear abnormalities. Dilation of the conduct-
ing airways and collapsed distal airways.
High mortality prior and soon after birth.

TGF-b3 Mesenchymal cells Localized in the distal epithelium Cleft palate development. Dilation of the
conducting airways, alveolar hypoplasia
and mesenchymal thickening. High mor-
tality shortly after birth.

Sources: Refs. (25) and (34). KO, knockout; TGF, transforming growth factor.
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In addition to roles for TGF-b isoforms in lung develop-
ment, research demonstrates that other members of the
TGF-b superfamily of proteins are critical during normal
lung development and in the pathogenesis of BPD. BMP sig-
naling is active during the later stages of lung development,
particularly in the saccular and alveolar developmental
stages, and has been heavily implicated in normal branching
morphogenesis in the developing lung (30, 46–48). BMP4 in
particular has a critical role in normal lung development
(32, 49, 50) but lung abnormalities have also been described
in mice lacking other functional BMPs including Bmp5 (51),
and in the Bmp9/10 double knockout mouse (52). Evidence
from mouse models of BPD suggests that BMP expression
and signaling is reduced (53–55), and recent data demon-
strate an inverse correlation between protein levels of bone
morphogenetic protein receptor type 2 (BMPR2) and the de-
velopment of lung structural changes in preterm neonates
(54). Furthermore, BMP-9 can protect against impairment of
alveolarization in a hyperoxia in vivomodel of BPD (56).

BMP signaling is heavily implicated in the development of
pulmonary hypertension, which as previously discussed, is
associated with BPD pathogenesis. Loss of function muta-
tions in the BMPR2 gene are involved in a large proportion of
both familial and idiopathic cases of pulmonary arterial
hypertension (57) and genetic mutation of Bmpr2 in rats
causes the spontaneous development of pulmonary and car-
diac characteristics of pulmonary artery hypertension (58).
Functionally active BMPR2 signaling promotes pulmonary
endothelial cell survival (59) and targeted delivery of BMPR2
attenuates pulmonary hypertension in rats (60). Crucially,
there is crosstalk between TGF-b and BMP signaling path-
ways (61), meaning that alterations in either TGF-b or BMP
levels are likely to dramatically impact both signaling path-
ways, which could be important in the pathogenesis of BPD.

It is clear from the above-discussed studies that TGF-b iso-
forms, as well as other members of the TGF-b superfamily,
must exist at a tightly controlled equilibrium with under or
overexpression leading to impaired lung development and
an abnormal lung phenotype, either directly or through
interactions with other signaling pathways. Understanding
the relationship between antenatal lung development, TGF-
b and risk factors in BPD development is therefore key.

LINK BETWEEN ANTENATAL BPD RISK
FACTORS AND ALTERED TGF-b SIGNALING

Although the association between fetal growth restriction
or being small for gestational age (birth weight<10th centile)
and BPD development is likely multifactorial, they are both
recognized antenatal risk factors for the development of BPD
(62). Induction of intrauterine growth restriction (IUGR) in
rats resulted in impaired alveolar development of the rat
pups, which was associated with decreased TGF-b1 expres-
sion, downregulation of the TGF-b responsive gene plasmin-
ogen activator inhibitor-1 (PAI-1) and dysregulation of the
composition and remodeling of the ECM components (63).
Despite reintroduction of a normal diet at birth and pups dis-
playing catch-up growth, respiratory abnormalities includ-
ing alveolar simplification and a 30% reduction in MLI
persisted. This study supports a separate earlier study in rats

showing that IUGR causes decreased TGF-b1 expression (64).
Moreover, human placental tissue from pregnancies affected
by idiopathic fetal growth restriction has increased expression
of transforming growth factor-b-induced factor (TGIF-1) (65),
which is a known repressor of TGF-b signaling. Conversely,
reports of increased TGF-b expression at postnatal day 21 in
rats with IUGR exist (66) and IUGR inmice causes airway stiff-
ening (67), which is linked with altered TGF-b signaling (68).

Chorioamnionitis is another factor that increases the risk
of BPD (8, 69). The relationship between chorioamnionitis,
TGF-b, and BPD was explored using intra-amniotic lipopoly-
saccharide (LPS)-induced chorioamnionitis animal models.
Rat pups, whose mothers were injected with LPS on embry-
onic day 16.5, demonstrated pathological features of BPD
including fewer terminal air spaces and secondary septa by
postnatal day 7 (70). In sheep, exposure of fetal lambs to
intra-amniotic LPS caused an increase in lung TGF-b1 pro-
tein and mRNA levels (71, 72) as well as increased Smad2/3
signaling (72–74). In addition, levels of endoglin, a component
of the TGF-b receptor complex, are increased in the amni-
otic fluid of women with chorioamnionitis and overexpres-
sion of endoglin in the amniotic fluid of pregnant rats
causes decreased alveolarization and vascularization in
the rat pups (75).

As discussed previously, tight control of TGF-b is required
to maintain homeostasis and allow correct lung develop-
ment. The above in vivo animal model studies together with
known roles of TGF-b signaling in lung development provide
an insight into how disrupted TGF-b signaling antenatally
might contribute to aberrant lung development and there-
fore increased risk of BPD (illustrated in Fig. 2). It is worthy
of note that much of the above work has focused on the role
of TGF-b1 and much less is known about the relationship
between antenatal risk factors and expression and/or activity
of TGF-b2 and TGF-b3.

EFFECT OF POSTNATAL BPD RISK FACTORS
ON TGF-b SIGNALING

Mechanical ventilation is an essential treatment strategy in
the management of preterm infants; however, there is
increasing recognition that their lungs are particularly sus-
ceptible to ventilatory-induced lung injury (8), and the need
for mechanical ventilation is a well-known risk factor for the
development of BPD(76, 77). Early mechanical ventilation in
neonatal mice recapitulates the BPD phenotype of abnormal
alveolar development with larger, fewer alveoli, increased
elastin redistribution throughout the distal airspaces, and
increased apoptosis (78–81).

There is now awealth of evidence supporting a link between
mechanical ventilation and altered TGF-b activation in the
lungs. Significant correlations between mechanical power of
ventilation and levels of TGF-b1 in patients with acute respira-
tory distress syndrome are evident (82) Neonatal mice exposed
to 24 h of mechanical ventilation exhibited a stretch-induced
increase in TGF-b activation and a dramatic increase in the
TGF-b signaling protein pSmad2 protein in the lungs (78, 80).
These effects were also seen in the developed lungs of adult
mice who were subjected to volutrauma (expansion-induced
injury) outside the period of alveolar lung development
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(83, 84). Moreover, applyingmechanical stretch to ex vivo lung
tissue strips activates TGF-b (85). It is proposed therefore that
the cyclical stretch of lung tissue involved inmechanical venti-
lation, a known activator of the TGF-b signaling pathway, is re-
sponsible for increased TGF-b signaling and the abnormal
lung development and BPD phenotype seen in these animal
studies. This is further supported through alveolar SpC-specific
deletion of Gaq/11 in mice as described above (84). Here, these
mice were not able to generate the increase in TGF-b1 in
response to high-pressure ventilation and were protected from
ventilator-induced lung injury (84).

Exposure to high amounts of oxygen is another key driver
in BPD. Although adequate oxygen is critical for preventing
hypoxia, a balance exists to provide adequate oxygen while
minimizing oxidative stress (86). Oxygen toxicity is crucial in
understanding BPD development and has formed the basis of
numerous animal studies. Northway demonstrated severe
changes to pulmonary development following exposure of
neonatal mice to 100% oxygen with progressive fibrotic lung
tissue deposition, bronchitis, bronchiolitis, emphysema and
inhibition of lung growth seen (87). Since then, neonatal rodent
models have repeatedly demonstrated abnormal lung develop-
ment in response to hyperoxia with neonatal pups exhibiting
alveolar simplification with increased MLI, decreased alveolar
number, gas exchange and disordered elastin and collagen
deposition (87–95). Over prolonged exposure, animals also
developed thickened alveolar septum, excessive a-smooth
muscle actin (aSMA) staining, increased myofibroblasts on
the septal crests indicative of fibrotic changes (95, 96) and
hindered pulmonary microvascular development (88, 94).
Recently single cell–sequencing studies have demon-
strated that hyperoxia causes dramatic changes in alveolar
epithelial cell populations in the lung and alters the tran-
scription profile of genes known to be associated with BPD
development, including the protease inhibitor Slpi and the
immune regulator Mif (97, 98). Pathway analysis showed
that pathways associated with lung, endothelial, and alve-
olar development were downregulated in response to
hyperoxia (97). Crucially, similar RNA sequencing studies
have demonstrated that early life exposure to hyperoxia
leads to lasting changes in the cellular composition of the
lungs that persist into adulthood (99).

Numerous in vitro and in vivo studies have demonstrated
a link between exposure to hyperoxia and TGF-b signaling.
Expression of TGF-b1 was increased in vitro in A549 lung
cells in a concentration-dependent manner in response to
varying oxygen concentrations (40%, 60%, and 95%) (100).

Furthermore, multiple in vivo studies have also demonstrated
TGF-b overexpression in response to hyperoxia. Mice pups
exposed to 85% oxygen from postnatal days 1–20 exhibited
increased TGF-b1 expression throughout the alveolar walls
and increased pSmad2/pSmad3, suggesting increased TGF-b1
activation. Importantly, administration of intraperitoneal
TGF-b neutralizing antibody subsequently dampened phos-
phorylation of Smad2/Smad3 and resulted in improvements
in alveolarization and elastin deposition (91). In separate stud-
ies, exposure of mice to 85% oxygen increased mRNA expres-
sion of all three TGF-b isoforms, TGFbR1 þ 2 and pSmad2/3
(92). TGFbR3, the coreceptor needed primarily for ligand
binding of TGF-b2 to the TGFbR2, was reduced. In rats TGF-b1
and ALK5 (aka TGFbR1) mRNA and protein increased along-
side a significant reduction in ALK1 and Smad1/5 pathway sig-
naling, suggesting decreased BMP signaling (101).

TGF-b2 may also be affected by hyperoxia. Ahlfeld and col-
leagues (93, 102) demonstrated varying TGF-b isoform expres-
sion and signaling in mice exposed to 85% oxygen (Fig. 3 for
overview). Although all TGF-b isoforms were initially reduced,
at day 2 of hyperoxia exposure, TGF-b1 was initially still the pre-
dominant isoform; however, by day 7 during peak alveolar de-
velopment, TGF-b2 was the predominant isoform. Interestingly
here, following continuous oxygen exposuremice subsequently
developed TGF-b2, pSmad2, and TGFBI overexpression, as
opposed to TGF-b1 in alveolar tissue by day 14 (104).

Overall, these studies demonstrate that exposure of the
postnatal lungs to hyperoxia results in alveolar growth
abnormalities in rodents and that there is a growing body of
evidence showing a potentially fundamental role for dysre-
gulation of TGF-b isoforms in hyperoxia-induced lung struc-
tural changes.

Further in depth understanding of this is key given the
established risk of high oxygen exposure and development
of BPD in preterm infants.

IMPACT OF BPD THERAPIES ON TGF-b
SIGNALING

There are currently limited treatments in the prevention
and treatment of BPD (103), and establishing the best treat-
ment for lung damage in premature infants was identified as
a research priority for preterm birth (104). An improved
understanding of the mechanism of action of drugs cur-
rently in use would help to optimize their use, improve
them, and develop more targeted therapies, to ultimately
improve the care and treatment of patients with BPD.

Antenatal TGF-β expression

Increased TGFβ antenatally: 
- Impaired lung branching, secondary 

septae and alveoli number 
- Interstitial fibrosis 

- Increased ECM deposition 
- Increased myofibroblasts 

Reduced TGFβ antenatally: 
- Pulmonary agenesis/ hypoplasia

- Impaired branching morphogenesis
- Alveolar simplification  

Figure 2. Effect of antenatal under and overexpression of TGF-b on lung development.
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Current pharmacological therapies available in the preven-
tion and treatment of BPD include caffeine citrate, postnatal
steroids, diuretics, azithromycin, and vitamin A (13, 105).
Although each has a broad spectrum of physiological and
molecular consequences, some may interact with TGF-b
signaling.

Caffeine citrate is one of the most widely prescribed
drugs in neonatology (106) and reduces the rates of BPD,
intraventricular hemorrhage, and neurodevelopmental
impairment among preterm infants (107). The Caffeine for
Apnea of Prematurity trial for the use of caffeine citrate
in preterm infants attributed the increased incidence of
BPD among its control group to the extended time this
group required positive pressure ventilator support (108).
However, there are potentially other effects of caffeine
that may explain the decreased BPD incidence with caf-
feine treatment. Caffeine has been shown to antagonize
TGF-b-induced Smad signaling in a concentration-de-
pendent manner in lung epithelial cells and reduced colla-
gen deposition in an ex vivo precision-cut lung slice
model of pulmonary fibrosis, suggesting that caffeine
inhibits profibrotic effects of TGF-b (109). In animal stud-
ies of BPD, mouse lung cells exposed to caffeine demon-
strated reduced expression of TGFbR1, TGFbR3, total
Smad2, pSmad2, and downstream gene expression (CTGF
and PAI) (92, 110, 111). However, although caffeine normal-
ized Smad2 phosphorylation in hyperoxia-induced BPD
mice studies, it was not able to improve the impaired alve-
olar structure as a result of hyperoxia (92). It is possible
that caffeine’s mechanism of action may be multifactorial,
working through a combination of reducing apneic events

and time requiring mechanical ventilation (thus reducing
cyclical stretch-induced TGF-b activation) as well as
directly inhibiting the TGF-b activation and signaling
itself.

Steroids have a role in the antenatal management of pre-
term labor (112) and postnatally to reduce the incidence of re-
spiratory disease and BPD in extremely preterm infants
(113, 114). Yet the relationship between the use of postnatal
systemic corticosteroids, in particular dexamethasone and
adverse neurological outcomes, resulted in their use mainly
being reserved for infants with severe BPD (115–117).
However, a renewed more cautious approach has since
begun using early prophylactic steroids to prevent BPD in
high-risk infants. Recently a series of multicenter random-
ized controlled trials (RCTs) have examined the use of early
prophylactic low-dose hydrocortisone (118) or inhaled bude-
sonide (119) in high-risk infants to prevent BPD. These both
demonstrated a reduction in the incidence of BPD following
prophylactic steroid administration (118–121). The use of
inhaled budesonide in conjunction with surfactantmay offer
additional benefits with lower rates of BPD or death com-
pared to those given surfactant alone (42% vs. 66%) (122)
with an ongoing RCT (ACTRN12617000322336) further inves-
tigating this (123).

Steroids likely exert their effects through multiple biologi-
cal pathways, including TGF-b signaling. Mice embryonic
fibroblasts stimulated with TGF-b1 followed by a glucocorti-
coid (either dexamethasone, budesonide, fluticasone, or
methylprednisolone) exhibited attenuated TGF-b1 activity,
demonstrated through reduced activation of the down-
stream Smad3 binding element, CAGA. Dexamethasone also
reduced Smad 2/3 signaling and increased signaling via the
TGF-b/Smad 1 axis (124). Dexamethasone in particular may
interact with multiple aspects of TGF-b signaling. It was able
to interrupt avb6 integrin expression, a known activator of
TGF-b1 which is usually increased in fibrosis in a bleomycin-
induced fibrosis animal model (125) and may require
TGFbR3 interaction in order to act (124). Using in vitro pri-
mary mouse lung fibroblasts, where ablation of the tgfb r3
gene results in increased TGF-b1-induced gene activation,
dexamethasone loses its ability to dampen the effects of
TGF-b1 in the knockout cells (124).

However, conflicting results indicate that understanding
this interaction is challenging, and that the different iso-
forms may respond differently to stimulation with steroids.
Fehrholz and colleagues assessed the concurrent use of ste-
roids and caffeine in human lung epithelial cells. Here no
effect on TGF-b1 mRNA expression was observed in cells
treated with either dexamethasone, caffeine or in combina-
tion (126). However, there was a small increase in TGF-b2
and TGF-b3 in the presence of dexamethasone with a further
rise in TGF-b3 mRNA expression seen when caffeine and
dexamethasone were used in combination (126). Overall,
dexamethasone appears to influence TGF-b isoform expres-
sion, activation, and downstream signaling; however, its
exact impact on TGF-b isoform signaling and these transla-
tional effects in clinical practice are still to be fully
understood.

Retinoic acid and its biologically active form vitamin A
are essential for induction of the primordial lung bud in lung
development andmoderating TGF-b signaling. Disruption of
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Figure 3. TGF-b expression in response to hyperoxygenation. Initially
TGF-b activity decreased in response to hyperoxygenation, however fol-
lowing prolonged exposure, TGF-b activity and downstream signaling
increased with increased pSmad2/3.
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retinoic acid resulted in inhibited lung bud development
and increased intracellular pSmad2 and connective tissue
growth factor (CTGF) in mice (127, 128). In addition, vitamin
A was demonstrated to partially improve alveolar underde-
velopment in preterm lambs exposed to mechanical ventila-
tion. In this study, lambs who received daily intramuscular
vitamin A developed a heterogeneous lung appearance of
both alveolar simplification and more appropriate alveolar
formation. They had enhanced blood vessel growth, longer
alveolar secondary septae, thinner air space walls, and a
greater alveolar number compared to controls. Furthermore,
the vitamin A treatment group also had reduced TGF-b activ-
ity with reduced pSmad2 on immunostaining and increased
vascular endothelial growth factor mRNA (required for vas-
cular development) (129). Vitamin A therefore could be im-
portant in promoting correct lung and vascular maturation
and reducing the risk of BPD development. In preterm
infants, daily intramuscular vitamin A supplementation
results in a small reduction in the risk of death and oxygen
requirement in BPD (130). However, although it may
offer some protective effects against BPD, its intramuscular
route of administration and modest clinical benefits likely
accounts for this not translating into widespread clinical
practice. More recently, inhaled administration has been
explored in neonatal rat hyperoxia BPDmodels. This showed
promising results by mitigating the effects of hyperoxia-
induced lung damage and enhanced alveolar maturation
compared to the intramuscular route (131). This has not been
translated into clinical studies.

EMERGING TREATMENTS IN BPD

Azithromycin is a second-generation macrolide com-
monly used in the treatment of ureaplasma urealyticum, the
most common organism causing chorioamnionitis, a risk
factor for BPD development (132). A systematic review and
meta-analysis (n = 3 studies) showed the use of prophylactic
azithromycin at birth led to a significant reduction in the
risk of developing BPD [risk ratio 0.86 (95% CI 0.77–0.97)]
with a number need to treat of 10 (133). Macrolides have
well-described anti-inflammatory properties and may act via
a number of mechanisms (134). In bleomycin-induced fibro-
sis mouse models, mice treated with azithromycin had sig-
nificantly reduced fibrosis and restrictive lung deficits (135).
Onemechanism by which azithromycin acts may be through
inhibition of TGF-b-induced myofibroblast differentiation
(136). In addition, fibroblasts taken from adult patients with
pulmonary fibrosis (IPF) exposed to a combination of both
TGF-b1 and azithromycin had enhanced antifibrotic and
proapoptotic effects compared to TGF-b stimulated IPF
fibroblasts (137). Although we found no published studies on
azithroymcin and TGF-b signaling in relation to BPD the
above studies suggest there is merit in further research in
this area. In the United Kingdom, a large multicenter
randomized controlled trial has completed recruitment
(ISRCTN11650227) assessing the effectiveness of a 10-day
course of prophylactic azithromycin from birth in infants
less than 30 wk, with the primary outcomes of diagnosis of
BPD andmortality at 36 wk postmenstrual age (138).

Stem cells are a potentially exciting therapeutic strategy
in regenerative medicine. Studies have moved over the past

10 year from initial proof of concept studies toward recruit-
ment for RCTs (NCT03645525, NCT03392467) (139–142). In
humans, a Phase I trial delivered intratracheal human umbili-
cal cord blood-derived mesenchymal stem cells (MSCs) to pre-
term infants at high risk of developing BPD. Although this was
a feasibility study with a small sample size, no infant in the
treatment group was discharged home with supplemental ox-
ygen (compared with 22% in the control group). Furthermore,
a reduction in proinflammatory cytokines including TGF-b
was seen in tracheal aspirates of infants in the treatment
group by day 7 (143, 144). A Phase II trial also using intratra-
cheal administration of MSCs showed similar promising
results, with a reduction of severe BPD in infants born at 23–
24 wk gestation (19% BPD in the intervention group vs. 53%
BPD in the control group) (145). Animal studies have shown
improvements in the pulmonary architecture of animals fol-
lowing MSC administration. MSC administration reduced
oxygen-induced lung damage, inflammation, and fibrosis
(146–148) whereas intraperitoneal administration of human
amnion epithelial cells reduced alveolar simplification and
improved body weight in mice (147). Stem cells could also
dampen TGF-b1 expression and downstream signaling in
BPD animal studies (146, 148).

CONCLUSIONS

TGF-b is a complex and important cell signaling pathway
implicated in a number of respiratory and fibrotic disease
pathways and plays a key role in BPD development. The cor-
rect balance of TGF-b isoform expression, activation, and
downstream signaling is essential for normal lung develop-
ment and can be influenced by multiple risk factors impli-
cated in BPD development. Current treatments already in
use in neonatology may exert their mechanisms of action, at
least in part, through modulating TGF-b signaling. However,
most of the research currently investigating this is limited to
in vitro and rodent animal models with very few studies in
larger animals or translated into clinical practice. More
research and understanding of this important cell signaling
pathway and its interaction with other related pathways
could be further explored and aid in the development of
more targeted treatment strategies for use in the manage-
ment of BPD.
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